Another trader would like to carry out a hypothesis test about stocks that offer dividends. Why is this hypothesis test right-tailed? Select the correct answer below: This is a right-tailed test because a direction is not specified. This is a right-tailed test because a direction is specified. The population parameter is greater than the specified value. This is a right-tailed test because a direction is specified. The population parameter is less than the specified value. More information is needed.

Answers

Answer 1

Answer:

This is a right-tailed test because a direction is specified. The population parameter is greater than the specified value.

Step-by-step explanation:

The hypothesis testing technique is used to test an assumption regarding population parameter. Null hypothesis is a statement that is to be tested against the alternative hypothesis and then decision is taken whether to accept or reject the null hypothesis. A right tailed test is where the most of data is in the right side. This is one tailed test where the direction is specified.


Related Questions

In a random sample of 205 people, 149 said that they watched educational television. Find the 95% confidence interval of the true proportion of people who watched educational television. Round intermediate answers to at least five decimal places.

Answers

Answer: Given a sample of 200, we are 90% confident that the true proportion of people who watched educational TV is between 72.1% and 81.9%.

Step-by-step explanation:

[tex]\frac{154}{200} =0.77[/tex]

[tex]1-0.77=0.23[/tex]

[tex]\sqrt{\frac{(0.77)(0.23)}{200} }[/tex]=0.049

0.77±0.049< 0.819, 0.721

how would you write six times the square of a number

Answers

6 to the power of whatever number you are going by

Answer:

[tex]\huge \boxed{6x^2 }[/tex]

Step-by-step explanation:

6 times a number squared.

Let the number be [tex]x[/tex].

6 is multiplied to [tex]x[/tex] squared.

[tex]6 \times x^2[/tex]

What is the error in this problem

Answers

Answer:

10). m∠x = 47°

11). x = 30.96

Step-by-step explanation:

10). By applying Sine rule in the given triangle DEF,

   [tex]\frac{\text{SinF}}{\text{DE}}=\frac{\text{SinD}}{\text{EF}}[/tex]

   [tex]\frac{\text{Sinx}}{7}=\frac{\text{Sin110}}{9}[/tex]

   Sin(x) = [tex]\frac{7\times (\text{Sin110})}{9}[/tex]

   Sin(x) = 0.7309

   m∠x = [tex]\text{Sin}^{-1}(0.7309)[/tex]

   m∠x = 46.96°

   m∠x ≈ 47°

11). By applying Sine rule in ΔRST,

   [tex]\frac{\text{SinR}}{\text{ST}}=\frac{\text{SinT}}{\text{RS}}[/tex]

   [tex]\frac{\text{Sin120}}{35}=\frac{\text{Sin50}}{x}[/tex]

   x = [tex]\frac{35\times (\text{Sin50})}{\text{Sin120}}[/tex]

   x = 30.96   


An apartment building is infested with 6.2 X 10 ratsOn average, each of these rats
produces 5.5 X 10' offspring each year. Assuming no rats leave or die, how many additional
rats will live in this building one year from now? Write your answer in standard form.

Answers

Answer: 3.41x10^3

Step-by-step explanation:

At the beginning of the year, we have:

R = 6.2x10 rats.

And we know that, in one year, each rat produces:

O = 5.5x10 offsprins.

Then each one of the 6.2x10 initial rats will produce 5.5x10 offsprings in one year, then after one year we have a total of:

(6.2x10)*(5.5x10) = (6.2*5.5)x(10*10) = 34.1x10^2

and we can write:

34.1 = 3.41x10

then: 34.1x10^2 = 3.41x10^3

So after one year, the average number of rats is:  3.41x10^3

Which of the following graphs accurately displays a parabola with its directrix and focus?

Answers

Answer:

Hey there!

The first graph is the correct answer. A point on the parabola is equally far from the focus as it is to the directrix.

Let me know if this helps :)

The graph that  accurately displays a parabola with its directrix and focus is the first graph.

How do we make graph of a function?

Suppose the considered function whose graph is to be made is  f(x)

The values of 'x' (also called input variable, or independent variable) are usually plotted on horizontal axis, and the output values  f(x) are plotted on the vertical axis.

They are together plotted on the point  (x,y) = (x, f(x))

This is why we usually write the functions as:  y = f(x)

A point shown in the graphs on the parabola is equally far from the focus as it is to the directrix.

Therefore, The first graph is the correct answer.

Learn more about graphing functions here:

https://brainly.com/question/14455421

#SPJ2

g The intersection of events A and B is the event that occurs when: a. either A or B occurs but not both b. neither A nor B occur c. both A and B occur d. All of these choices are true. a. b. c. d.

Answers

Answer:

c. both A and B

Step-by-step explanation:

Given that there are two events A and B.

To find:

Intersection of the two sets represents which of the following events:

a. either A or B occurs but not both

b. neither A nor B occur

c. both A and B occur

d. All of these choices are true. a. b. c. d

Solution:

First of all, let us learn about the concept of intersection.

Intersection of two events means the common part in the two events.

Explanation using set theory:

Let set P contains the outcomes of roll of a dice.

P = {1, 2, 3, 4, 5, 6}

And set Q contains the set of even numbers less than 10.

Q = {2, 4, 6, 8}

Common elements are {2, 4, 6}

So, intersection of P and Q:

[tex]P \cap Q[/tex] = {2, 4, 6}

Explanation using Venn diagram:

Please refer to the image attached in the answer area.

The shaded region is the intersection of the two sets P and Q.

When we apply the above concept in events, we can clearly say from the above explanation that the intersection of two events A and B is the event that occurs when both A and B occur.

So, correct answer is:

c. both A and B

Answer:

C.

Step-by-step explanation:

A highway department executive claims that the number of fatal accidents which occur in her state does not vary from month to month. The results of a study of 140 fatal accidents were recorded. Is there enough evidence to reject the highway department executive's claim about the distribution of fatal accidents between each month? Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Fatal Accidents 8 15 9 8 13 6 17 15 10 9 18 12

Answers

Answer:

There is enough evidence to reject the highway department executive's claim about the distribution of fatal accidents between each month, as the Variance is 14 and the Standard Deviation = 4 approximately.

There is a high degree of variability in the mean of the population as explained by the Variance and the Standard Deviation.

Step-by-step explanation:

Month       No. of              Mean       Squared

           Fatal Accidents  Deviation   Difference

Jan          8                       -4                  16

Feb        15                        3                   9

Mar         9                       -3                   9

Apr         8                       -4                  16

May       13                        1                    1

Jun         6                      -6                 36

Jul         17                       5                 25

Aug       15                       3                   9

Sep       10                      -2                   4

Oct        9                       -3                   9

Nov    18                          6                 36

Dec    12                          0                   0

Total 140                                         170

Mean = 140/12 = 12    Mean of squared deviation (Variance) = 170/12 = 14.16667

Standard deviation = square root of variance = 3.76386 = 4

The fatal accidents' Variance is a measure of how spread out the fatal accident data set is. It is calculated as the average squared deviation of the number of each month's accident from the mean of the fatal accident data set.  It also shows how variable the data varies from the mean of approximately 12.

The fatal accidents' Standard Deviation is the square root of the variance, and a useful measure of variability when the distribution is normal or approximately normal.

Change each of the following points from rectangular coordinates to spherical coordinates and to cylindrical coordinates.
a. (4,2,−4)
b. (0,8,15)
c. (√2,1,1)
d. (−2√3,−2,3)

Answers

Answer and Step-by-step explanation: Spherical coordinate describes a location of a point in space: one distance (ρ) and two angles (Ф,θ).To transform cartesian coordinates into spherical coordinates:

[tex]\rho = \sqrt{x^{2}+y^{2}+z^{2}}[/tex]

[tex]\phi = cos^{-1}\frac{z}{\rho}[/tex]

For angle θ:

If x > 0 and y > 0: [tex]\theta = tan^{-1}\frac{y}{x}[/tex];If x < 0: [tex]\theta = \pi + tan^{-1}\frac{y}{x}[/tex];If x > 0 and y < 0: [tex]\theta = 2\pi + tan^{-1}\frac{y}{x}[/tex];

Calculating:

a) (4,2,-4)

[tex]\rho = \sqrt{4^{2}+2^{2}+(-4)^{2}}[/tex] = 6

[tex]\phi = cos^{-1}(\frac{-4}{6})[/tex]

[tex]\phi = cos^{-1}(\frac{-2}{3})[/tex]

For θ, choose 1st option:

[tex]\theta = tan^{-1}(\frac{2}{4})[/tex]

[tex]\theta = tan^{-1}(\frac{1}{2})[/tex]

b) (0,8,15)

[tex]\rho = \sqrt{0^{2}+8^{2}+(15)^{2}}[/tex] = 17

[tex]\phi = cos^{-1}(\frac{15}{17})[/tex]

[tex]\theta = tan^{-1}\frac{y}{x}[/tex]

The angle θ gives a tangent that doesn't exist. Analysing table of sine, cosine and tangent: θ = [tex]\frac{\pi}{2}[/tex]

c) (√2,1,1)

[tex]\rho = \sqrt{(\sqrt{2} )^{2}+1^{2}+1^{2}}[/tex] = 2

[tex]\phi = cos^{-1}(\frac{1}{2})[/tex]

[tex]\phi[/tex] = [tex]\frac{\pi}{3}[/tex]

[tex]\theta = tan^{-1}\frac{1}{\sqrt{2} }[/tex]

d) (−2√3,−2,3)

[tex]\rho = \sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}+3^{2}}[/tex] = 5

[tex]\phi = cos^{-1}(\frac{3}{5})[/tex]

Since x < 0, use 2nd option:

[tex]\theta = \pi + tan^{-1}\frac{1}{\sqrt{3} }[/tex]

[tex]\theta = \pi + \frac{\pi}{6}[/tex]

[tex]\theta = \frac{7\pi}{6}[/tex]

Cilindrical coordinate describes a 3 dimension space: 2 distances (r and z) and 1 angle (θ). To express cartesian coordinates into cilindrical:

[tex]r=\sqrt{x^{2}+y^{2}}[/tex]

Angle θ is the same as spherical coordinate;

z = z

Calculating:

a) (4,2,-4)

[tex]r=\sqrt{4^{2}+2^{2}}[/tex] = [tex]\sqrt{20}[/tex]

[tex]\theta = tan^{-1}\frac{1}{2}[/tex]

z = -4

b) (0, 8, 15)

[tex]r=\sqrt{0^{2}+8^{2}}[/tex] = 8

[tex]\theta = \frac{\pi}{2}[/tex]

z = 15

c) (√2,1,1)

[tex]r=\sqrt{(\sqrt{2} )^{2}+1^{2}}[/tex] = [tex]\sqrt{3}[/tex]

[tex]\theta = \frac{\pi}{3}[/tex]

z = 1

d) (−2√3,−2,3)

[tex]r=\sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}}[/tex] = 4

[tex]\theta = \frac{7\pi}{6}[/tex]

z = 3

Let E and F be two events of an experiment with sample space S. Suppose P(E) = 0.6, P(F) = 0.3, and P(E ∩ F) = 0.1. Compute the values below.

(a) P(E ∪ F) =



(b) P(Ec) =



(c) P(Fc ) =



(d) P(Ec ∩ F) =

Answers

Answer:

(a) P(E∪F)= 0.8

(b) P(Ec)= 0.4

(c) P(Fc)= 0.7

(d) P(Ec∩F)= 0.8

Step-by-step explanation:

(a) It is called a union of two events A and B, and A ∪ B (read as "A union B") is designated to the event formed by all the elements of A and all of B. The event A∪B occurs when they do A or B or both.

If the events are not mutually exclusive, the union of A and B is the sum of the probabilities of the events together, from which the probability of the intersection of the events will be subtracted:

P(A∪B) = P(A) + P(B) - P(A∩B)

In this case:

P(E∪F)= P(E) + P(F) - P(E∩F)

Being P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.1

P(E∪F)= 0.6 + 0.3 - 0.1

P(E∪F)= 0.8

(b)  The complement of an event A is defined as the set that contains all the elements of the sample space that do not belong to A.  The Complementary Rule establishes that the sum of the probabilities of an event and its complement must be equal to 1. So, if P (A) is the probability that an event A occurs, then the probability that A does NOT occur is  P (Ac) = 1- P (A)

In this case: P(Ec)= 1 - P(E)

Then: P(Ec)= 1 - 0.6

P(Ec)= 0.4

(c) In this case: P(Fc)= 1 - P(F)

Then: P(Fc)= 1 - 0.3

P(Fc)= 0.7

(d)  The intersection of two events A and B, designated as A ∩ B (read as "A intersection B") is the event formed by the elements that belong simultaneously to A and B. The event A ∩ B occurs when A and B do at once.

As mentioned, the complementary rule states that the sum of the probabilities of an event and its complement must equal 1. Then:

P(Ec intersection F) + P(E intersection F) = P(F)

P(Ec intersection F) + 0.1 = 0.3

P(Ec intersection F)= 0.2

Being:

P(Ec∪F)= P(Ec) + P(F) - P(Ec∩F)

you get:

P(Ec∩F)= P(Ec) + P(F) - P(Ec∪F)

So:

P(Ec∩F)= 0.4 + 0.3 - 0.2

P(Ec∩F)= 0.8

I need help on this question :(​

Answers

Answer: 40 degree

Explanation:

FT bisect angle EFD dividing it into 2 equal angles (EFT and DFT)

And EFD = 80

We get :
EFT = 80/2
EFT = 40

And EFT + DFT = EFD = 80 degree

Therefore EFT = 40 degrees

solve the system with elimination 4x+3y=1 -3x-6y=3

Answers

Answer:

x = 1, y = -1

Step-by-step explanation:

If we have the two equations:

[tex]4x+3y=1[/tex] and [tex]-3x - 6y = 3[/tex], we can look at which variable will be easiest to eliminate.

[tex]y[/tex] looks like it might be easy to get rid of, we just have to multiply [tex]4x+3y=1[/tex]  by 2 and y is gone (as -6y + 6y = 0).

So let's multiply the equation [tex]4x+3y=1[/tex]  by 2.

[tex]2(4x + 3y = 1)\\8x + 6y = 2[/tex]

Now we can add these equations

[tex]8x + 6y = 2\\-3x-6y=3\\[/tex]

------------------------

[tex]5x = 5[/tex]

Dividing both sides by 5, we get [tex]x = 1[/tex].

Now we can substitute x into an equation to find y.

[tex]4(1) + 3y = 1\\4 + 3y = 1\\3y = -3\\y = -1[/tex]

Hope this helped!

The weight of an object on moon is 1/6 of its weight on Earth. If an object weighs 1535 kg on Earth. How much would it weigh on the moon?

Answers

Answer:

255.8

Step-by-step explanation:

first

1/6*1535

=255.8

Identifying the Property of Equality

Quick

Check

Identify the correct property of equality to solve each equation.

3+x= 27

X/6 = 5

Answers

Answer:

a) Compatibility of Equality with Addition, b) Compatibility of Equality with Multiplication

Step-by-step explanation:

a) This expression can be solved by using the Compatibility of Equality with Addition, that is:

1) [tex]3+x = 27[/tex] Given

2) [tex]x+3 = 27[/tex] Commutative property

3) [tex](x + 3)+(-3) = 27 +(-3)[/tex] Compatibility of Equality with Addition

4) [tex]x + [3+(-3)] = 27+(-3)[/tex] Associative property

5) [tex]x + 0 = 27-3[/tex] Existence of Additive Inverse/Definition of subtraction

6) [tex]x=24[/tex] Modulative property/Subtraction/Result.

b) This expression can be solved by using the Compatibility of Equality with Multiplication, that is:

1) [tex]\frac{x}{6} = 5[/tex] Given

2) [tex](6)^{-1}\cdot x = 5[/tex] Definition of division

3) [tex]6\cdot [(6)^{-1}\cdot x] = 5 \cdot 6[/tex] Compatibility of Equality with Multiplication

4) [tex][6\cdot (6)^{-1}]\cdot x = 30[/tex] Associative property

5) [tex]1\cdot x = 30[/tex] Existence of multiplicative inverse

6) [tex]x = 30[/tex] Modulative property/Result

Answer:

3 + x = 27

✔ subtraction property of equality with 3

x over 6  = 5

✔ multiplication property of equality with 6

Find the value of the expression: −mb −m^2 for m=3.48 and b=96.52

Answers

Answer:

The value of the expression when [tex]m = 3.48[/tex] and [tex]b = 96.52[/tex] is 323.779.

Step-by-step explanation:

Let be [tex]f(m, b) = m\cdot b - m^{2}[/tex], if [tex]m = 3.48[/tex] and [tex]b = 96.52[/tex], the value of the expression:

[tex]f(3.48,96.52) = (3.48)\cdot (96.52)-3.48^{2}[/tex]

[tex]f(3.48,96.52) = 323.779[/tex]

The value of the expression when [tex]m = 3.48[/tex] and [tex]b = 96.52[/tex] is 323.779.

The blue dot is at what value on the number line?

Answers

Answer:

-19

Step-by-step explanation:

By looking at the 2 numbers provided, -10 and -4, you can work out that there is a gap of 6 numbers as(-4) - (-10) = 6

There are 2 intervals between -10 and -4, so each interval is

6/2 = 3

a gap of 3

This means the number to the left of -4 is -7, then -10 which works.

From there, you count how many intervals there is between -10 and the ?

There are 3 intervals, so you have to decrease -10 by -3x3 or -9

Therefore the ? is -19

Another way is to just count it directly

The number directly left of -10 is going to be -13, then -16 and finally -19

You flip two coins. What is the probability
that you flip at least one head?

Answers

Answer:

[tex]\boxed{Probability=\frac{1}{2} }[/tex]

Step-by-step explanation:

The probability of flipping at least 1 head from flipping 2 coins is:

=> Total sides of the coins = 4

=> Sides which are head = 2

=> Probability = 2/4 = 1/2

Which choice shows the product of 22 and 49 ?

Answers

Answer:

1078

Step-by-step explanation:

The product of 22 and 49 is 1078.

Answer:

1078 is the product

Step-by-step explanation:

Question: The hypotenuse of a right triangle has a length of 14 units and a side that is 9 units long. Which equation can be used to find the length of the remaining side?

Answers

Answer:

The hypotenuse is the longest side in a triangle.

a^2=b^2+c^2.

14^2=9^2+c^2.

c^2=196-81.

c^2=115.

c=√115.

c=10.72~11cm

A hypothesis test is to be performed to test the equality of two population means. The sample sizes are large and the samples are independent. A 95% confidence interval for the difference between the population means is (1.4, 8.7). If the hypothesis test is based on the same samples, which of the following do you know for sure:
A: The hypothesis µ1 = µ2 would be rejected at the 5% level of significance.
B: The hypothesis µ1 = µ2 would be rejected at the 10% level of significance.
C: The hypothesis µ1 = µ2 would be rejected at the 1% level of significance.
A) A and B
B) A and C
C) A only
D) A, B, and C

Answers

Answer:

C) A only

Step-by-step explanation:

In statistics, the null hypothesis is the default hypothesis and the alternative hypothesis is  the research hypothesis. The alternative hypothesis usually comes in place to challenge the null hypothesis in order to determine if the test is statistically significant or not.

Similarly,

In hypothesis testing, the confidence interval consist of all reasonable value of the population mean. Values for which the null hypothesis will be rejected [tex]H_o[/tex] .

Given that:

At 95% confidence interval for the  difference between the population means is (1.4, 8.7).

The level of significance = 1 - 0.95 = 0.05  = 5%

So , If the hypothesis test is based on the same samples, The hypothesis µ1 = µ2 would be rejected at the 5% level of significance.

How many ways are there to choose 22 croissants with at least one plain croissant, at least two cherry croissants, at least three chocolate croissants, at least one almond croissant, at least two apple croissants, and no more than three broccoli croissants

Answers

Answer:

There are 6566 ways to choose 22 croissants with at least one plain croissant, at least two cherry croissants, at least three chocolate croissants, at least one almond croissant, at least two apple croissants, and no more than three broccoli croissants.

Step-by-step explanation:

Given:

There are 5 types of croissants:

plain croissants

cherry croissants

chocolate croissants

almond croissant

apple croissants

broccoli croissants

To find:

to choose 22 croissants with:

at least one plain croissant

at least two cherry croissants

at least three chocolate croissants

at least one almond croissant

at least two apple croissants

no more than three broccoli croissants

Solution:

First we select

At least one plain croissant to lets say we first select 1 plain croissant, 2 cherry croissants, 3 chocolate croissants, 1 almond croissant, 2 apple croissants

So

1 + 2 + 3 + 1 + 2  = 9

Total croissants = 22  

So 9 croissants are already selected and 13 remaining croissants are still needed to be selected as 22-9 = 13, without selecting more than three broccoli croissants.

n = 5

r = 13

C(n + r - 1, r)

= C(5 + 13 - 1, 13)

= C(17,13)

[tex]=\frac{17! }{13!(17-13)!}[/tex]

= 355687428096000 / 6227020800 ( 24 )

= 355687428096000 / 149448499200

= 2380

C(17,13) = 2380

C(n + r - 1, r)

= C(5 + 12 - 1, 12)

= C(16,12)

[tex]=\frac{16! }{12!(16-12)!}[/tex]

= 20922789888000 / 479001600 ( 24 )

= 20922789888000  / 11496038400

= 1820

C(16,12) = 1820

C(n + r - 1, r)

= C(5 + 11 - 1, 11)

= C(15,11)

[tex]=\frac{15! }{11!(15-11)!}[/tex]

= 1307674368000 / 39916800 (24)

= 1307674368000 / 958003200

= 1307674368000 / 958003200

= 1365

C(15,11) = 1365

C(n + r - 1, r)

= C(5 + 10 - 1, 10)

= C(14,10)

[tex]=\frac{14! }{10!(14-10)!}[/tex]

= 87178291200 / 3628800 ( 24 )

= 87178291200 / 87091200

= 1001

C(14,10) = 1001

Adding them:

2380 + 1820 + 1365 + 1001 = 6566 ways

From a group of 11 people, 4 are randomly selected. What is the probability the 4 oldest people in the group were selected

Answers

The probability that the 4 oldest people in the group were selected is based on combinatorics is 0.00303 or 0.303%.

Given that:

Find how many ways the 4 oldest people can be selected from the group.

Since the 4 oldest people are already determined, there is only 1 way to select them.

n = 11 (total number of people in the group) and k = 4 (number of people to be selected).

To calculate the probability, to determine the total number of ways to select 4 people from the group of 11. This can be found using the combination formula:

Number of ways to choose k items from n items :

C(n,k) = n! / (k!(n-k)!)

Calculate the total number of ways to select 4 people from the group:

Plugging n and k value from given data:

C(11,4 )= 11! / (4!(11-4)!)

On simplifications gives:

C(11, 4) = 330.

Calculate the probability:

Probability = Number of ways 4 oldest people selected / Total number of ways to select 4 people

Plugging the given data:

Probability = 1 / 330

Probability ≈ 0.00303 or 0.303%.

Therefore, the  probability that the 4 oldest people in the group were selected is based on combinatorics is 0.00303 or 0.303%.

Learn more about probabilities here:

https://brainly.com/question/23846068

#SPJ4

Transform the given parametric equations into rectangular form. Then identify the conic. x= -3cos(t) y= 4sin(t)

Answers

Answer:

Solution : Option D

Step-by-step explanation:

The first thing we want to do here is isolate the cos(t) and sin(t) for both the equations --- ( 1 )

x = - 3cos(t) ⇒ x / - 3 = cos(t)

y = 4sin(t) ⇒ y / 4 = sin(t)

Let's square both equations now. Remember that cos²t + sin²t = 1. Therefore, we can now add both equations after squaring them --- ( 2 )

( x / - 3 )² = cos²(t)

+ ( y / 4 )² = sin²(t)

_____________

x² / 9 + y² / 16 = 1

Remember that addition indicates that the conic will be an ellipse. Therefore your solution is option d.

Find the product of all solutions of the equation (10x + 33) · (11x + 60) = 0

Answers

Answer:

18

Step-by-step explanation:

Using Zero Product Property, we can split this equation into two separate equations by setting each factor to 0. The equations are:

10x + 33 = 0 or 11x + 60 = 0

10x = -33 or 11x = -60

x = -33/10 or x = -60/11

Multiplying the two solutions together, we get -33/10 * -60/11 = 1980 / 110 = 18.

given point (-6, -3) and a slope of 4, write an equation in point-slope form

Answers

Answer:

y = 4x + 21

Step-by-step explanation:

Hello!

Point-slope form is y - y1 = m(x - x1)

y1 is the y point

x1 is the x point

m is the slope

Put in what you know

y - -3 = 4(x - -6)

Subtracting a negative is the same as adding

y + 3 = 4(x + 6)

Distribute the 4

y + 3 = 4x + 24

Subtract 3 from both sides

y = 4x + 21

The answer is y = 4x + 21

Hope this helps!

Help me please I need answers

Answers

Answer:

[tex]\huge \boxed{\mathrm{\$ \ 7,533.33}}[/tex]

Step-by-step explanation:

There are 12 months in one whole year.

In one year, the person earns $96,600 with bonus.

The person gets a bonus of $6,200 during Christmas.

96,600 - 6,200 = 90,400

The person earns $90,400 yearly.

[tex]\frac{90,400}{12}[/tex] = 7,533.3333

Each month, the person earns $7,533.33, to the nearest cent.

Hakim is making a mosaic
from square tiles. The area he
needs to fill measures 150 mm
by 180 mm. The tiles have side
lengths of 4, 6 or 8 mm and are
too small to cut. Which tiles
should Hakim use?​

Answers

Answer:

6×6 tile

Step-by-step explanation:

First let's calculate the total area Hakim should fill.

Let A be that area.

The area is a rectangle so its area is the product of the length and the width.

● A = 180*150

● A = 27000 mm^2

■■■■■■■■■■■■■■■■■■■■■■■■■■

The tiles Hakim has are all squares with different sides(4,6,8).

Let calculate the area of each tile.

Let A' , A" and A"' be the areas respectively of the 4,6 and 8 squares.

Since all tiles are squares, the area is the side times itself.

■■■■■■■■■■■■■■■■■■■■■■■■■■

● A' = 4^2 = 16 mm^2

● A" = 6^2 = 36 mm^2

● A"' = 8^2 = 64 mm^2

Divide the total area by each area and see wich one will give you a whole number.

●A÷A' = 27000÷16 = 1687.5

This isn't a whole number

● A÷A" = 27000÷36 = 750

This is a whole number, so it is the right tile.

● A+A"' = 27000÷64 = 421.875

This isn't the right tile.

Hakil should use the 6×6 tile

Hakim should use a tile of 6×6 side.

What is area?

The area is the region bounded by the shape of an object. The space covered by the figure or any two-dimensional geometric shape, in a plane, is the area of the shape.

Given that, Hakim is making a mosaic from square tiles. The area he needs to fill measures 150 mm by 180 mm. The tiles have side lengths of 4, 6 or 8 mm and are too small to cut.

To know that which tile fits best, we will divide the area of mosaic to the area of the tile, and see if we get a whole number if not a whole number then it should be cut, but we are restricted to do so, therefore we will look for the whole number,

Area of the mosaic = 150×180 = 27000 mm²

Area of the tile with side 4 mm = 4² = 16 mm²

Number of tile = 27000/16 = 1687.5 tiles. (not a whole number)

Area of the tile with side 6 mm = 6² = 36 mm

Number of tile = 27000/36 = 750 tile. (a whole number)

Hence, Hakim should use a tile of 6×6 side.

For more references on area, click;

https://brainly.com/question/27683633

#SPJ2

S varies inversely as G. If S is 8 when G is 1.5​, find S when G is 3. ​a) Write the variation. ​b) Find S when G is 3.

Answers

Step-by-step explanation:

a.

[tex]s \: = \frac{k}{g} [/tex]

[tex]8 = \frac{k}{1.5} [/tex]

[tex]k \: = 1.5 \times 8 = 12[/tex]

[tex]s = \frac{12}{g} [/tex]

b.

[tex]s = \frac{12}{3} [/tex]

s = 4

A blue die and a red die are thrown. B is the event that the blue comes up with a 6. E is the event that both dice come up even. Write the sizes of the sets |E ∩ B| and |B|a. |E ∩ B| = ___b. |B| = ____

Answers

Answer:

Size of |E n B| = 2

Size of |B| = 1

Step-by-step explanation:

I'll assume both die are 6 sides

Given

Blue die and Red Die

Required

Sizes of sets

- [tex]|E\ n\ B|[/tex]

- [tex]|B|[/tex]

The question stated the following;

B = Event that blue die comes up with 6

E = Event that both dice come even

So first; we'll list out the sample space of both events

[tex]B = \{6\}[/tex]

[tex]E = \{2,4,6\}[/tex]

Calculating the size of |E n B|

[tex]|E n B| = \{2,4,6\}\ n\ \{6\}[/tex]

[tex]|E n B| = \{2,4,6\}[/tex]

The size = 3 because it contains 3 possible outcomes

Calculating the size of |B|

[tex]B = \{6\}[/tex]

The size = 1 because it contains 1 possible outcome

The angles of a quadrilateral are (3x + 2), (x-3), (2x+1), and 2(2x+5). Find x.

Answers

Answer:

3x+2+x-3+2x+1+2(2x+5)=360

10x+10=360

x=35

The area of a rectangular garden if 6045 ft2. If the length of the garden is 93 feet, what is its width?

Answers

Answer:

65 ft

Step-by-step explanation:

The area of a rectangle is

A = lw

6045 = 93*w

Divide each side by 93

6045/93 = 93w/93

65 =w

Answer:

[tex]\huge \boxed{\mathrm{65 \ feet}}[/tex]

Step-by-step explanation:

The area of a rectangle formula is given as,

[tex]\mathrm{area = length \times width}[/tex]

The area and length are given.

[tex]6045=93 \times w[/tex]

Solve for w.

Divide both sides by 93.

[tex]65=w[/tex]

The width of the rectangular garden is 65 feet.

Other Questions
Hola! Mi nombre es Eloisa y soy ecuatoriana, pero vivo en Miami, Florida. Mi familia y yo estuvimos de vacaciones en un parque nacional de los Glaciares en Estados Unidos. El parque nacional de los Glaciares tiene 25 glaciares; en el ao 1850 este parque tena 150 glaciares. La geografa del parque nacional de los Glaciares en Montana tiene montaas grandes, lagos hermosos, reas llanas con muchas rocas y glaciares muy bonitos. What can Eloisa do to better understand the issue facing Glacier National Park in the text above? Learn about the origin of the local food. Research the reason for the declining natural resource. Speak about the influence of prior inhabitants. Volunteer to clean up local rivers and beaches. In a recent year, the scores for the reading portion of a test were normally distributed, with a mean of and a standard deviation of . Complete parts (a) through (d) below. (a) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is less than . The probability of a student scoring less than is nothing. (Round to four decimal places as needed.) (b) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is between and . The probability of a student scoring between and is nothing. (Round to four decimal places as needed.) (c) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is more than . The probability of a student scoring more than is nothing. (Round to four decimal places as needed.) (d) Identify any unusual events. Explain your reasoning. Choose the correct answer below. A. than 0.05. B. than 0.05. C. The event in part is unusual because its probability is less than 0.05. D. The events in parts are unusual because its probabilities are less than 0.05. 1. What do you think will happen to Hal and Charles based on London's first description of them? 2. What was Mercedes' reaction when experienced men went through her belongings to lighten the load? What does this say about her and her relationship with her husband and brother? 3. Compare Charles, Hal, and Mercedes to any other characters that you have met in other books, plays, movies, television shows or real life. What traits did Buck have that allowed him to adapt to the north that they lacked? 4. Why do you think that London included these three characters in the book? What do they represent? 5. Why did Buck refuse to rise and lead the team? What did he have that his masters lacked? 50 POINTS In your own words, describe the connection between the heat from earths core and the movement of tectonic plates. Jack bought a car for $50,000. He spent $5000 on repairs. He sold the car at a profit of $5000. At what price did he sell the car. Paul travels from Rye to Eston at an average speed of 90 km/h He travels for T hours.Mary makes the same journey at an average speed of 70 km/h She travels for 1 hour longer than Paul. Work out the value of T . Instead of a dividend of $1.60 per share, the company has announced a share repurchase of $16,000 worth of stock. How many shares will be outstanding after the repurchase? Long-term debt ratio 0.3 Times interest earned 10.0 Current ratio 1.2 Quick ratio 1.0 Cash ratio 0.4 Inventory turnover 3.0 Average collection period 73 days Use the above information from the tables to work out the following missing entries, and then calculate the companys return on equity. Net sales _____$ Cost of goods sold Selling, general, and administrative expenses 20.00 Depreciation 30.00 Earnings before interest and taxes (EBIT) _____$Interest expense Income before tax _____$Tax (35% of income before tax) Net income _____$ Which of the following statements about collateral contracts is true? Group of answer choices The guarantor promises to pay only if the principal debtor fails to do so. The principal debtor's debt is secondary. A collateral contract involves three parties and one promise to perform. The guarantor's debt is primary. using the property of squares find the value of the following 24 square - 23 square You are pushing a box with 20 N of force that hasa mass of 10 kg, solve for acceleration a broker gets rs 20000 as commission from sale of a piece of land which costs rs 8000000. Find the rate of commission. Describe three Chinese inventions and their impact on later civilizations? 5 diferrent representations of the value 3 what errors can lead to pseudocience? A researcher measures daily driving distance from college and weekly cost of gas for a group of commuting college students. What kind of correlation is likely to be obtained for these two variables? On January 1, 2021, Legion Company sold $270,000 of 4% ten-year bonds. Interest is payable semiannually on June 30 and December 31. The bonds were sold for $169,056, priced to yield 10%. Legion records interest at the effective rate. Legion should report bond interest expense for the six months ended June 30, 2021, in the amount of: (Round your answer to the nearest dollar amount.) Consider the hypothetical chemical reaction represented by the equation 3 A + 2 B A 3B 2 Which of the following is a correct interpretation of this equation? i. 3 grams of A react with 2 grams of B to form 1 gram of A 3B 2 ii. 3 atoms of A react with 2 atoms of B to form 1 molecule of A 3B 2 iii. 3 moles of A react with 2 moles of B to form 1 mole of A 3B 2 Find the product of the roots of the equationxl-5x - 36 = 0 7x-y= 224x + 2y = 10can someone help plz?