All the wavelengths of visible light combine to form white light.
What is visible light?
Visible light is made up of different wavelengths of electromagnetic radiation that range in color from violet (shortest wavelength) to red (longest wavelength). When all of the wavelengths of visible light are combined, they form white light.
This can be observed in various phenomena, such as the splitting of white light into its component colors when passing through a prism, or when white light is shone onto a surface and reflects back as white.
What is an electromagnetic radiation?
Electromagnetic radiation is a form of energy that travels through space as a wave, without the need for a medium to propagate. It is made up of electric and magnetic fields that oscillate perpendicular to each other and to the direction of the wave's travel.
To know more about electromagnetic radiation, visit:
https://brainly.com/question/10759891
#SPJ1
Complete question is: All the wavelengths of visible light combine to form white light.
Two coherent sources of intensity ratio 1 : 4 produce an interference pattern. The visibility of fringes will be a. 1
b. 0.6
c. 0.8
d. 0.4
Two coherent sources of intensity ratio 1: 4 produce an interference pattern. The visibility of fringes will be 0.6. Thus, the correct option is B.
What is Interference pattern?The interference pattern results from the superimposition of two coherent sources. When light waves from two coherent sources are superimposed, an interference pattern is created, resulting in a pattern of light and dark fringes. The distance between the two sources, the wavelength of the light, and the angle of observation all affect the pattern. This pattern is referred to as an interference pattern.
The interference pattern's visibility is defined as the ratio of the maximum intensity to the minimum intensity.
V = (Imax- Imin)/(Imax + Imin)
where, V is the visibility of the fringe, Imax is the maximum intensity, and Imin is the minimum intensity.
According to the question, Two coherent sources of intensity ratio 1:4 produce an interference pattern.
Using the above formula: V = (Imax - Imin)/(Imax + Imin)
We know that the two sources' intensity ratio is 1:4.
Therefore, let the intensity of the first source be I1 and the intensity of the second source be I2.I1/I2 = 1/4 = I2 = 4I1
Imax = I1 + I2 = I1 + 4I1 = 5I1
Imin = I1 - I2 = I1 - 4I1 = -3I1
Substitute the value of Imax and Imin in the visibility formula:
V = (Imax - Imin)/(Imax + Imin)= (5I1 - (-3I1))/(5I1 + (-3I1))= (5I1 + 3I1)/(5I1 - 3I1) = 8I1/2I1 = 4
Therefore, the visibility of fringes will be 0.6.
Therefore, the correct option is B.
Learn more about Interference pattern here:
https://brainly.com/question/1581262
#SPJ11
You are carrying a 6.00 kg
bag at a height of 3.20 m
above the level floor of a 4.220
mlong room at a constant
velocity of 0.60 m s'. How
much work do you do on the
bag in moving across the
room?
OA. 247J
O B. 182J
Oc.0J
OD.
318 J
O E. 34J
Answer:
The answer is A) 247 J, which is the closest to the calculated value.
Explanation:
To calculate the work done on the bag, we need to use the formula:
work = force x distance x cos(theta)
where force is the weight of the bag (mg), distance is the length of the room, and theta is the angle between the force and the displacement (which is zero since the force and displacement are in the same direction).
First, let's calculate the force:
force = weight of the bag = mg = (6.00 kg) x (9.81 m/s^2) = 58.86 N
Next, let's calculate the distance:
distance = length of the room = 4.220 m
Now, we can calculate the work done:
work = (58.86 N) x (4.220 m) x cos(0) = 247.68 J
if two tiny identical spheres attract each other with a force of 2.0 nn when they are 29 cm apart, what is the mass of each sphere? express your answer with the appropriate units.
The mass of each sphere with the appropriate units are the 0.6 kg by the two tiny identical spheres attract each other with a force of 2.0 nn when they are 29 cm apart.
Let's consider the following scenario: Two tiny identical spheres attract each other with a force of 2.0 nn when they are 29 cm apart. The mass of each sphere is what we need to calculate. The formula for calculating the mass of each sphere. F = Gm1m2 / r²Where:F = Force. G = Gravitational constantm1 and m2 = the masses of the object sr = the distance between the objects.
Substitute the given values: Force (F) = 2.0 nn. Distance (r) = 29 cm = 0.29 m. Gravitational constant (G) = 6.67 × 10-11 N.m²/kg²Find the mass of each sphere.m1 = m2 = m. Multiply the entire equation by ][tex]r² / G:m² = F × r² / G = (2.0 nn) × (0.29 m)² / 6.67 × 10-11 N.m²/kg²= 0.6 kg.[/tex]
Therefore, each sphere's mass is 0.6 kg.
Read more about mass:
https://brainly.com/question/19385703
#SPJ11
A 1500-W heater is designed to be plugged into a 120-Voutlet.What current will flow through the heatingcoil when the heater is plugged in?I = AWhat isR,the resistance of the heater?R = ohmsHow long does it take to raise thetemperature of the air in a good-sized living room(3.00{\rm m} \times 5.00{\rm m} \times 8.00{\rm m})by10.0^\circ{\rm C}? Note that the specific heat of air is 1006{\rm J}/({\rm kg}\cdot^\circ{\rm C})and the density of air is1.20\; {\rm kg}/{\rm m}^3.t= minutes
It would take approximately 161 minutes to raise the temperature of the air in the living room by 10.0°C using the given heater.
Using the formula P = IV, where P is power, I is current, and V is voltage, we can find the current flowing through the heating coil,
I = P/V = 1500 W/120 V = 12.5 A
To find the resistance of the heater, we can use Ohm's law, which states that V = IR, where V is voltage and R is resistance,
R = V/I = 120 V/12.5 A = 9.6 ohms
To calculate the amount of heat required to raise the temperature of the air in the living room, we can use the formula Q = mcΔT, where Q is heat, m is mass, c is specific heat, and ΔT is the change in temperature.
First, we need to find the mass of the air in the living room. The volume of the living room is 3.00 m × 5.00 m × 8.00 m = 120.00 m^3. Since the density of air is 1.20 kg/m^3, the mass of the air in the living room is,
m = density × volume = 1.20 kg/m^3 × 120.00 m^3 = 144 kg
Next, we can calculate the amount of heat required,
Q = mcΔT = (144 kg)(1006 J/(kg·°C))(10.0°C) = 1.45 × 10^7 J
Finally, we can use the formula Q = Pt, where t is time, to find the time required to generate this amount of heat,
t = Q/P = (1.45 × 10^7 J)/(1500 W) = 9667 seconds ≈ 161 minutes.
To know more about resistance, here
brainly.com/question/30720709
#SPJ4
A train is moving up a steep grade at constant velocity (see following figure) when its caboose breaks loose and starts rolling freely along the track. After 5.0 s, the caboose is 30 m behind the train. What is the acceleration of the caboose?
The velocity of the caboose is constant, so the acceleration is zero. Therefore, the caboose's acceleration is 0 m/s².
Acceleration is the rate at which the velocity of an object changes over time. The formula for acceleration is expressed as a = (v - u) / t where a is acceleration, v is final velocity, u is initial velocity, and t is time.
The velocity of the train and the caboose is the same. The caboose breaks loose and starts rolling freely along the track. Therefore, the velocity of the caboose is the same as the velocity of the train.
Given that the train moves at a constant velocity, the initial velocity of the caboose is the same as the final velocity.
Using the formula above, the acceleration of the caboose is calculated as follows:
a = (v - u) / ta
= (0 - 0) / 5.0
a = 0 m/s²
Therefore, the acceleration of the caboose is 0 m/s². This result makes sense since the caboose is moving at constant velocity.
Learn more about Acceleration here:
https://brainly.com/question/460763
#SPJ11
the regular satellites of the giant planets formed via the process of
The regular satellites of the giant planets formed via the process of accretion from a circumplanetary disk.
The giant planets in our solar system, such as Jupiter, Saturn, Uranus, and Neptune, are surrounded by a system of moons, which are divided into two main categories: regular and irregular. The regular satellites are large, spherical, and have nearly circular orbits around their host planets. They are believed to have formed from a circumplanetary disk of gas and dust that surrounded the planet during its formation. The gravitational forces of the planet caused the material in the disk to accrete into small bodies, which eventually coalesced into the regular satellites we see today.
To know more about satellites, here
brainly.com/question/21675499
#SPJ4
1. about a trillion comets are thought to be located far, far beyond pluto in the______.
2. the bright spherical part of a comet observed when it is close to the sun is the ______.
3. a comet's ____ stretches directly away from the sun.
4. a comet's____ is the frozen portion of a comet.
5. particles ejected from a comet can cause a(n) ______ on earth.
6. the ______ extends from about beyond the orbit of neptune to about twice the distance of neptune from the sun.
1. About a trillion comets are thought to be located far, far beyond Pluto in the Oort Cloud.
2. The bright spherical part of a comet observed when it is close to the sun is the coma.
3. A comet's tail stretches directly away from the sun.
4. A comet's nucleus is the frozen portion of a comet.
5. Particles ejected from a comet can cause a meteor shower on earth.
6. The Kuiper Belt extends from about beyond the orbit of Neptune to about twice the distance of Neptune from the sun.
A comet is a small, icy, dusty celestial body. When a comet is close to the sun, it may emit gas and dust into space, producing a visible coma and a tail. The nucleus is the frozen portion of a comet, whereas the coma is the bright spherical part of a comet observed when it is close to the sun. The tail of a comet extends directly away from the sun.
The Oort Cloud is the location of about a trillion comets, far beyond Pluto. The Kuiper Belt, on the other hand, extends from beyond the orbit of Neptune to about twice the distance of Neptune from the sun. Finally, particles ejected from a comet can cause a meteor shower on earth.
Learn more about Comet:
https://brainly.com/question/12443607
#SPJ11
member bc exerts on member ac a force p directed along line bc. knowing that p must have a 325-n horizontal component, determine (a) the magnitude of the force p, (b) its vertical component.
(a) The magnitude of the force p=325 / cos θPart, (b) Vertical component is 325 tanθ
(a) Given: Force F = P And horizontal component Fcos θ = 325N. Here, θ is the angle made by the force with the horizontal, and θ is unknown. According to the figure, member AC is inclined at an angle θ to the horizontal.
Let's resolve the force P into vertical and horizontal components. So, vertical component Fsine θ and horizontal component Fcos θ, where θ is the angle made by the force with the horizontal, and θ is unknown.
Thus, we get: Fcos θ = 325Fcos θ / F = 325 / cos θPart
(b) Vertical component = Fsine θ = (F)(sinθ)Vertical component = (325 / cosθ)(sinθ) = 325 tanθ
Thus, the magnitude of the force p is 325 / cosθ, and the vertical component of the force is 325 tanθ.
To know more about force, refer here:
https://brainly.com/question/13191643#
SPJ11#
at what angle above the horizon is the sun when light reflecting off a smooth lake is polarized most strongly?
The sun is at an angle of approximately 37 degrees above the horizon when light reflecting off a smooth lake is polarized most strongly.
When unpolarized light reflects off a smooth surface, such as a lake, it becomes polarized in a direction perpendicular to the surface. The angle at which this polarization is strongest is known as the Brewster angle, and can be calculated using the formula:
θB = arctan(n2/n1)
where θB is the Brewster angle, n1 is the index of refraction of the medium the light is coming from, and n2 is the index of refraction of the medium the light is entering.
For water, the index of refraction is approximately 1.33, and for air it is approximately 1.00. Plugging these values into the formula, we get:
θB = arctan(1.33/1.00) = 53.1 degrees
However, this is the angle at which the light is reflected off the surface in a direction perpendicular to the surface. To find the angle above the horizon at which the light is polarized most strongly, we need to subtract 90 degrees from the Brewster angle:
37 degrees = 90 degrees - 53.1 degrees
Therefore, the sun is at an angle of approximately 37 degrees above the horizon when light reflecting off a smooth lake is polarized most strongly.
For more similar questions on Brewster angle:
brainly.com/question/29428422
#SPJ11
A resistor is constructed by shaping a material of resistivity p into a hollow cylinder of length L and with inner and outer radii ra and rb, respectively (Fig. P27.66). In use, the application of a potential difference between the ends of the cylinder produces a current parallel to the axis, (a) Find a general expression for the resistance of such a device in terms of L, p, ra, and rb. (b) Obtain a numerical value for. R when L = 4.00 cm, ra = 0.500 cm, rb = 1.20 cm, and p = 3.50 times 105 Ohm m. (c) Now suppose that the potential difference is applied between the inner and outer surfaces so that the resulting current flows radially outward. Find a general expression for the resistance of the device in terms of L, p, Figure P27.66 ra, and rb. (d) Calculate the value of R, using the parameter values given in part (b).
Explanation:
Refer to pic...........
For which of these questions could a testable hypothesis be developed? Check all that apply.
Does the width of a rubber band affect how far it will stretch?
How does the thickness of a material affect insulation?
Which of Nikola Tesla’s inventions was the coolest?
Do all objects fall to the ground at the same speed?
Which laboratory experiment is the most fun?
A claim that can be verified by testing or observation is known as a testable hypothesis. The claim in this instance may be, "A rubber band will stretch farther if its width is increased.
Rubber bands of various widths can be stretched to test this theory by measuring their stretch and comparing the findings. Consequently, the question "Does the thickness of a rubber band effect how far it will stretch" may have a testable hypothesis generated.
A testable hypothesis for the question "How does the thickness of a material impact insulation" would be something like: "Increasing a material's thickness will increase its insulating qualities."
Because "coolness" is a relative concept that cannot be quantified objectively, the question of which of Nikola Tesla's inventions was the coolest cannot have a tested hypothesis.
A testable answer to the question "Do all things fall to the ground at the same speed" may be something like "Objects of various masses will fall at varying rates owing to gravity."
learn more about testable hypothesis here:
https://brainly.com/question/1612010
#SPJ4
A, B & D are the correct answers
A conducting ring sits in a magnetic field directed into the page that is decreasing in magnitude as a function of time. Is a current induced in the ring? If so, what is the direction of current induced in the ring?
(a) clockwise
(b) counterclockwise
(c) The induced current is zero.
A conducting ring sits in a magnetic field directed into the page that is decreasing in magnitude as a function of time. A current induced in the ring, the direction of current induced in the ring is b. counterclockwise.
Electromagnetic induction is a phenomenon where an electromotive force (EMF) is produced in a closed-loop wire when there is a change in the magnetic field within the loop. Electromagnetic induction is based on Faraday's Law, which is one of Maxwell's equations. It's named after Michael Faraday, who discovered it. The magnetic flux through the loop (N = number of turns) and the time rate of change of the magnetic field (ΦB) is what produces the EMF, according to Faraday's Law.
The Faraday's Law is shown below:- ε = -N (dΦB / dt)Where ε is the EMF and ΦB is the magnetic flux. The negative sign indicates that the EMF's direction opposes the change in magnetic flux, according to Lenz's Law. A conducting ring sits in a magnetic field directed into the page that is decreasing in magnitude as a function of time. Is a current induced in the ring? Yes, a current is induced in the ring.What is the direction of current induced in the ring?The induced current in the ring is counterclockwise.
Learn more about Faraday's Law at:
https://brainly.com/question/1640558
#SPJ11
the speed of an airplane is 275 mi/h relative to the air. the wind is blowing due north with a speed of 35 mi/h. in what direction should the airplane head in order to arrive at a point due west of its location? (round your answer to two decimal places.)
The airplane should head in a direction of 298.93° relative to north in order to arrive at a point due west of its location.
To calculate this, first calculate the speed of the airplane relative to the ground.
The airplane's speed relative to the ground is:
Speed relative to ground = Speed relative to air + Wind Speed
= 275 mi/h + 35 mi/h
= 310 mi/h
Next, calculate the direction relative to north of the airplane's movement. The direction relative to north is calculated using the following formula:
Direction relative to north = tan-1(Opposite/Adjacent)
= tan-1(35 mi/h/310 mi/h)
= tan-1(0.1145)
= 298.93°
Therefore, the airplane should head in a direction of 298.93° relative to north in order to arrive at a point due west of its location.
To know more about Direction please visit :
https://brainly.com/question/30337361
#SPJ11
during a one-second period, air is added into a rigid tank. the volume of the tank is 3 m3 and the initial density of air is 1.2 kg/m3; at the end of the charging process, the density of air reaches 6.3 kg/m3. what is the mass flow rate of air that is entering the tank?
The mass flow rate of air that is entering the tank is 15.3 kg/s.
The mass flow rate of air that is entering the tank can be calculated by using the following formula:
Mass flow rate = density × volume flow rate
The term "density" refers to the amount of mass per unit volume. It is calculated as the mass of an object divided by its volume. Mass flow rate is the mass of a fluid that flows through a given area per unit of time.
The volume of the tank is 3 m³.
The initial density of air is 1.2 kg/m³.
At the end of the charging process, the density of air reaches 6.3 kg/m³.
We will first find the volume flow rate.
The volume flow rate is equal to the change in volume over time.
Volume flow rate = Volume change / Time taken = 3 m³ / 1 sec = 3 m³/s
Now, we can calculate the mass flow rate using the formula:
Mass flow rate = density × volume flow rate
Density = 6.3 kg/m³ − 1.2 kg/m³ = 5.1 kg/m³
Mass flow rate = 5.1 kg/m³ × 3 m³/s = 15.3 kg/s
Therefore, the mass flow rate of air entering the tank is 15.3 kg/s.
Learn more about density:
https://brainly.com/question/1354972
#SPJ11
A 1200-turn coil of wire that is 2. 3 cm in diameter is in a magnetic field that drops from 0. 13 T to 0 T in 12 ms. The axis of the coil is parallel to the field. What is the emf of the coil? Express your answer using two significant figures
In a magnetic field that decreases from 0. 13 T to 0 T in 12 ms, a wire coil with 1200-turns and a 2. 3 cm diameter is placed. The coil's axis is perpendicular to the field. The coil's emf is 0.059 V.
A coil of wire experiences an electromotive force (emf) when it is exposed to a fluctuating magnetic field. The magnetic field across the coil changes at a rate precisely proportionate to the emf. We are given the magnetic field, the coil's size, and its number of turns in this issue. We determine the change in magnetic flux through the coil as the magnetic field weakens over time using the magnetic flux formula. Lastly, we determine the induced emf in the coil using the emf formula. The response, 0.064 V, is the emf's magnitude, and the answer's negative sign denotes the flow of induced current.
learn more about magnetic field here:
https://brainly.com/question/23096032
#SPJ4
when subjected to heating and cooling, the change in the refractive index of nontempered glass is significantly greater than the change in the refractive index of tempered glass.
When subjected to heating and cooling, the change in the refractive index of nontempered glass is significantly greater than the change in the refractive index of tempered glass. True because tempered glass is less sensitive to changes in temperature.
Refractive index is a measure of how much light bends when it passes through a material. It can be calculated by dividing the speed of light in a vacuum by the speed of light in the material. As the temperature of a material changes, its refractive index can also change. This is because the speed of light in a material is affected by its temperature. Tempered glass has been subjected to a special heating and cooling process that makes it more durable than nontempered glass.
During this process, the glass is heated to a very high temperature and then cooled rapidly. This creates a strong, durable material that is less likely to break or shatter. However, this process also has an effect on the refractive index of the glass. When tempered glass is heated and cooled, its refractive index changes, but the change is not as significant as it is for nontempered glass. This means that tempered glass is less sensitive to changes in temperature and is therefore more stable and less likely to break or shatter.
Learn more about refractive index at:
https://brainly.com/question/30761100
#SPJ11
While you stand on the floor you are pulled downward by gravity and supported upward by the floor. Gravity pulling down and the support force pushing up
answer choicesa. make an action-reaction pair of forces.
b. do not make an action-reaction pair of forces.
c. need more information
While you stand on the floor you are pulled downward by gravity and supported upward by the floor. Gravity pulling down and the support force pushing up make an action-reaction pair of forces (option A)
What is an action-reaction pair of forces?Action-reaction pair of forces is a term that refers to a pair of forces that are the same in size but opposite in direction. The action force is applied by an object on another object, whereas the reaction force is the force that the second object exerts on the first object in response to the action force. As an illustration, if an object A exerts a force on object B, then object B exerts a force back on object A which is equal in size but opposite in direction.
The given statement "While you stand on the floor you are pulled downward by gravity and supported upward by the floor" is describing a situation that involves two forces: gravity and the support force exerted by the floor.
Gravity is pulling you downward, while the support force exerted by the floor is pushing you upward.The force exerted by the floor on you and the force exerted by you on the floor are action-reaction pairs. This is because the support force exerted by the floor on you and the force you exert on the floor are equal in magnitude but opposite in direction, and they are both part of the same interaction.
Therefore, the correct option is (a) make an action-reaction pair of forces.
Learn more about action reaction here: https://brainly.com/question/29447428
#SPJ11
a big block of mass m(10kg) slides down a frictionless inclined at an angle 30 with the horizontal table. initially the block is at the top of the incline at rest. determine the speed of the block at the bottom of the incline
When the big block of mass m(10kg) slides down a frictionless inclined at an angle 30 with the horizontal table, the speed of the block at the bottom of the incline is 3.14 m/s.
Given that
Mass of the block, m = 10 kg.
Angle of inclination, θ = 30°
Initial velocity, u = 0.
Frictional force, f = 0.
Using the formula for gravitational force, F = mg
where, g = 9.8 m/s² (acceleration due to gravity)
F = mg= 10 kg × 9.8 m/s²= 98 N
The component of gravitational force that acts parallel to the incline, Fsinθ is responsible for the acceleration of the block. Fsinθ = ma; Where a is the acceleration of the block.
a= (98 N)sin 30° / 10 kg= 4.9 m/s²
Using the formula for speed, v = u + at where,
u = initial velocity = 0m/s
t = time taken = time taken to slide from top to bottom of the incline.= √(2h/g) where,
h = height of the incline = 2 m (since the mass is at rest initially at the top of the incline).
Therefore, t = √(2 × 2 m / 9.8 m/s²)= 0.64 s
Substituting the values in the above formula, v = u + at= 0 + (4.9 m/s² × 0.64 s)= 3.14 m/s.
To know more about speed, refer here:
https://brainly.com/question/29309579#
SPJ11#
The straight section of the line in figure 10 can be used to calculate the useful power output of the kettle explain how
Using the line's straight segment in figure 10, it is possible to determine the usable power output of the kettle.
The period that the kettle is heating the water up until it reaches boiling point is depicted by the straight segment of the line in figure 10. Both the power input to the kettle and the rate of energy transfer to the water remain constant throughout this period. Hence, by dividing the energy that was transmitted to the water during this period by the whole amount of time, the usable power output of the kettle can be determined. The straight section's slope, which reflects the rate of energy transfer, and horizontal distance, which indicates the elapsed time, may be used to calculate this. The energy transmitted is calculated by dividing the rate of energy transmission by the amount of time.
learn more about power here:
https://brainly.com/question/22285866
#SPJ4
A girl cycles a distance of 50 meters using a total force on the pedals of 150 N. Calculate the work done on the bicycle. (don't forget the units on your answer)
ASAP!!!PLEASE HELP!!
Explanation:
Please give a brainliest answer
A block of mass m is at rest at the origin at t=0. It is pushed with constant force F0 from x=0 to x=Lacross a horizontal surface whose coefficient of kinetic friction is μk=μ0(1−x/L). That is, the coefficient of friction decreases from μ0 at x=0 to zero at x=L.
Part A
We would like to know the velocity of the block when it reaches some position x. Finding this requires an integration. However, acceleration is defined as a derivative with respect to time, which leads to integrals with respect to time, but the force is given as a function of position. To get around this, use the chain rule to find an alternative definition for the acceleration ax that can be written in terms of vx and dvxdx. This is a purely mathematical exercise; it has nothing to do with the forces given in the problem statement.
Express your answer in terms of the variables vx and dvxdx.
I got the answer:
ax =
dvxdxvx
And this was correct, but Im having trouble with Part B:
Now use the result of Part A to find an expression for the block's velocity when it reaches position x=L.
Express your answer in terms of the variables L, F0, m, μ0, and appropriate constants.
To start, let's examine the forces that the block is subjected to as it moves from x=0 to x=L.
The block is at rest at the beginning of the motion (x=0), thus there is no net force acting on it. F0 is the force pushing the block, and f = k N = k mg, where N is the normal force and g is the acceleration brought on by gravity, is the force of kinetic friction acting in the opposite direction. The block is stationary, thus we have:
F0 - μ0 mg = 0
The force pushing the block must thus be equal to and in opposition to the force of friction.
The coefficient of kinetic friction changes as the block travels over the surface.
learn more about subjected here:
https://brainly.com/question/3541306
#SPJ4
A body in a room at 300 k is heated to 3,000k. The amount of energy radiated each second by the body increases by a factor of:
a) 10
b) 100
c) 1,000
d) 10,000
e) 100,000
The amount of energy radiated each second by the body increases by a factor of 10000 (option D)
How do i determine the factor of increase of the energy per second?To determine the factor in which the amount of energy radiated per second increases, we shall determine the energy per second at 3000 K. Details below:
Initial temperature (T₁) = 300 KInitial energy per second (P₁) = PFinal temperature (T₂) = 3000 KFinal energy per second (P₂) = ?P₁ / T₁⁴ = P₂ / T₂⁴
P / 300⁴ = P₂ / 3000⁴
Cross multiply
300⁴ × P₂ = P × 3000⁴
Divide both sides by 300⁴
P₂ = (P × 3000⁴) / 300⁴
P₂ = P × 10000
From the above calculation, we can see that the energy per second at 3000 K, is 10000 times the energy per second at 300 K.
Therefore, we can conclude that the energy radiated increase by a factor of 10000 (option D)
Learn more about energy radiation:
https://brainly.com/question/24144494
#SPJ1
An object starts at rest in position A on the track shown, then slides to position B. Friction acts on the object over the entire track. Which equation can you use to find the object's velocity at position B?
Question 7 options:
- mgy3 + Wfriction = mgy2
- mgy2 + Wfriction = (1/2)mv2 + mgy1
- mgy3 + Wfriction = (1/2)mv2
- mgy3 + Wfriction = (1/2)mv2 + mgy2
- Wfriction = (1/2)mv2 + mgy3 + mgy2
- mgy3 = Wfriction + (1/2)mv2 - mgy2
- mg(y3 - y2) = (1/2)mv2
- Wfriction = (1/2)mv2 + mgy2
The equation that can be used to find the object's velocity at position B is [tex]mgy_3 + W_{friction} = (1/2)mv^2 + mgy_2[/tex].
What is friction?Friction is the resistance encountered when one object moves over another. Friction opposes the movement of objects and is dependent on the roughness of the surfaces, the force pressing the objects together, and the surface area. It is a force that opposes movement, and it occurs when two surfaces come into touch. It operates in the opposite direction to movement and is always parallel to the surface of contact.
What is Velocity?Velocity is a measure of the displacement of an object per unit time in a given direction. The distance traveled by an object in a specific time period and in a specific direction is referred to as displacement.
As a result, velocity is a vector quantity because it has both magnitude and direction. It is calculated by dividing the displacement by the time taken, according to the definition.
Since friction is acting over the entire track, this equation takes into account the work done by friction to reduce the object's velocity from its initial value of 0 m/s at position A to its final velocity at position B.
Learn more about Friction here:
https://brainly.com/question/24338873
#SPJ11
The polarization of a partially polarized beam of light is defined as
p=(Imax-Imin)/(Imax+Imin)
where Imax and Imin are the maximum and minimum intensities that are
obtained when the light passes through a polarizer that is slowly rotated. Such light
can be considered as the sum of two unequal plane-polarized beams of intensities
Imax and Imin perpendicular to each other. Show that the light transmitted by a
polarizer, whose axis makes an angle f to the direction in which Imax is obtained, has
intensity
I(f)=(1+pcos2f)Imax/(1+p).
The light transmitted by a polarizer, whose axis makes an angle f to the direction in which Imax is obtained, has intensity: I(f) = (1 + pcos2f)Imax / (1 + p). Light is transmitted due to polarization.
What is the light transmitted through polarizer?
The light transmitted by a polarizer, whose axis makes an angle f to the direction in which Imax is obtained, has intensity I(f) given by:
I(f) = (1 + pcos2f)Imax / (1 + p)
This equation can be derived by considering the light as a sum of two unequal plane-polarized beams of intensities Imax and Imin perpendicular to each other.
Let θ be the angle between the direction of polarization of the light and the direction in which Imax is obtained.
The intensity of light that is transmitted by a polarizer whose axis makes an angle f to the direction in which Imax is obtained can be expressed as:
I(f) = (Imax cos2(θ + f)) + (Imin cos2(θ - f))
Using the equation for polarization of the light
p = (Imax - Imin) / (Imax + Imin)
we can rewrite the expression for I(f) as follows:
I(f) = Imax [(1 + pcos2f) / (1 + p)]
Hence, the light transmitted by a polarizer, whose axis makes an angle f to the direction in which Imax is obtained, has intensity: I(f) = (1 + pcos2f)Imax / (1 + p).
Learn more about Light transmission here:
https://brainly.com/question/3080788
#SPJ11
a very long straight wire carries current 32 a. in the middle of the wire a right-angle bend is made. the bend forms an arc of a circle of radius 14 cm, as show. determine the magnetic field at the center of the arc.
Therefore, the magnetic field at the center of the arc is 1.005 × 10^-5 T.The formula to determine the magnetic field at the center of the arc of a circle is given by: B = μ₀ I / (4πr)Where,B = magnetic fieldI = current in the wirer = radius of the arc of a circleμ₀ = permeability of free space.
Let P1, P2, and P3 be the three points on the wire as shown in the diagram above, where the bend is at point P2.
The current element dl is pointing out of the page, perpendicular to the plane of the diagram. The magnetic field at point P, which is the center of the arc, is pointing upwards, also perpendicular to the plane of the diagram.
Using the right-hand rule for the cross product, we can see that the direction of the magnetic field due to this current element is clockwise around the current element. Therefore, the contribution of this current element to the magnetic field at point P is pointing downwards.
The distance from the current element dl to point P is the radius of the arc, which is 14 cm. Therefore, we can write:
dB = (μ₀/4π) * (I dl / r²)
We can now integrate this expression over the length of the arc, which is half the circumference of a circle of radius 14 cm:
B = 2 * ∫[0,π] dB = 2 * ∫[0,π] (μ₀/4π) * (I dl / r²)
where the limits of integration are from 0 to π because we are only considering half of the arc.
Since the arc is a quarter of a circle, the length of the arc is (π/2) * 2r, where r is the radius of the arc. Therefore, we can write:
dl = (π/2) * 2r * dθ
where dθ is a small angle element. Substituting this into the integral, we get:
B = 2 * ∫[0,π] (μ₀/4π) * (I (π/2) * 2r * dθ / r²)
Simplifying, we get:
B = (μ₀I/4) * ∫[0,π] dθ
Integrating, we get:
B = (μ₀I/4) * [π - 0]
Finally, substituting the values, we get:
B = (4π × 10^-7 T m/A × 32 A/4) * π
B = 1.005 × 10^-5 T
Therefore, the magnetic field at the center of the arc is 1.005 × 10^-5 T.
For such more questions on magnetic field
https://brainly.com/question/13689629
#SPJ11
A solid ball of radius r_b has a uniform charge density rho. A) What is the magnitude of the electric field at a distance r>r_b from the center of the ball? Express your answer in terms ofrho,r_b,r,andepsilon_0.
E(r)=
The magnitude of the electric field at a distance r > r_b from the center of the ball is given by: E(r) = (1/3) * ρ * r_b³ / (ε₀ * r²).
Magnitude refers to the quantitative measurement of a physical quantity such as length, mass, time, temperature, or energy. Magnitude is expressed in units of measurement, which allows for standardized comparison and communication of measurements between different observers.
Magnitude can also refer to the strength or intensity of a physical phenomenon, such as the magnitude of an earthquake or the magnitude of a magnetic field. In this context, magnitude is typically measured on a logarithmic scale, where an increase of one unit represents a tenfold increase in strength. Magnitude is a fundamental concept in physics that plays a crucial role in quantifying and understanding physical phenomena.
To learn more about Magnitude visit here:
brainly.com/question/29766788
#SPJ4
A student placed a stuffed animal on the dashboard of a car. When the car accelerated quickly, the stuffed animal flew back onto the seat. Which principle BEST describes the motion of the stuffed animal as the car accelerated.inertiaspeedmomentumgravity
The principle that best describes the motion of the stuffed animal as the car accelerated is inertia.
Inertia is a property of matter that describes the resistance of an object to changes in its state of motion. An object will stay at rest or continue moving in a straight line at a constant speed if no external force acts upon it. This property of matter is referred to as inertia.
The stuffed animal in the scenario experienced the effects of inertia. The stuffed animal was at rest on the dashboard, and when the car accelerated quickly, the stuffed animal had a tendency to remain at rest due to its inertia. This resistance to a change in motion led to the stuffed animal being propelled backward and off the dashboard and onto the seat.
The principle that best describes the motion of the stuffed animal as the car accelerated is inertia. The stuffed animal had a tendency to remain at rest due to its inertia. This resistance to a change in motion led to the stuffed animal being propelled backward and off the dashboard and onto the seat.
Learn more about inertia:
https://brainly.com/question/1830739
#SPJ11
What is the approximate diffraction limit, in arc second, of a 84 meter diameter radio telescope observing 24 cm radiation?
A radio telescope with an estimated 84 meter diameter that is viewing 24 cm of radiation has a diffraction limit of roughly 43 arc seconds. The Rayleigh criteria, which asserts that the angular resolution .
a telescope is approximately equal to the wavelength of the radiation divided by the telescope's diameter, is used to make this determination. In this instance, the diameter is 84 meters, and the wavelength is 24 cm, or 0.24 meters. The result of dividing the wavelength by the diameter is around 0.002857 radians, or roughly 163 arc seconds. The Rayleigh criteria, which asserts that the angular resolution . Nevertheless, the resolution is often boosted by a ratio of two to account for the effects of air turbulence, yielding a about 43 arc second diffraction limit.
learn more about telescope here:
https://brainly.com/question/556195
#SPJ4
when troubleshooting an hvac system, if no voltage is measured across any of the pairs of thermostat wiring terminals, the problem is most likely with the wire connected to terminal
When troubleshooting an HVAC system, if no voltage is measured across any of the pairs of thermostat wiring terminals, the problem is most likely with the wire connected to terminal C.
What is an HVAC system?HVAC stands for heating, ventilation, and air conditioning. An HVAC system is used to regulate indoor temperatures, humidity, and air quality. It may be used in residential, commercial, or industrial settings. HVAC systems can be complex, with various components and controls, and can require maintenance and repair from time to time.
When troubleshooting an HVAC system, there are several possible causes of a no-voltage problem, including: Tripped circuit breaker or blown fuse in the HVAC system or main electrical panel. Thermostat malfunction: faulty or damaged wiring or connections in the HVAC system, thermostat, or electrical panel.
Transformer failure or malfunction in this case, if no voltage is measured across any of the pairs of thermostat wiring terminals, the problem is most likely with the wire connected to terminal C. This could be due to a wiring or connection problem or a transformer failure or malfunction. A qualified HVAC technician should be consulted to diagnose and repair the problem.
Learn more about HVAC system here:
https://brainly.com/question/28235245
#SPJ11
if you stand next to a wall on a frictionless skateboard and push the wall with a force of 30 n, how hard does the wall push on you? if your mass is 60 kg, show that your acceleration is 0.5m/s^2.
If you stand next to a wall on a frictionless skateboard and push the wall with a force of 30 N, the wall will push you with a force of 30 N. Here's how you can show that your acceleration is 0.5 m/s² if your mass is 60 kg:Solution:The formula for force is:
F = ma
Where:
F is the force,
m is the mass,
a is the acceleration
Rearrange the equation for acceleration:
a = F/m
Substitute the given values:
F = 30 Nm = 60 kg
Then, solve for acceleration:
a = 30 N/60 kga = 0.5 m/s²
Therefore, your acceleration is 0.5 m/s² if your mass is 60 kg.
Learn more about acceleration: https://brainly.com/question/460763
#SPJ11