Answer:
Hola busco amigos
Perdí mi otra cuenta
Ayúdame y te ayudo con tus tareas
¿ si?
Step-by-step explanation:
Found out the answer please I can't do this
Answer:
530.929158457
Step-by-step explanation:
13x13= 169 x pi= 530.929158457
A multiple-choice test contains 25 questions, each with 4 answers. Assume a student just guesses on each question. (a) What is the probability that the student answers more than 20 questions correctly
Answer:
9.68*10^-10
Step-by-step explanation:
The problem above can be solved using the binomial probability relation :
Where ;
P(x = x) = nCx * p^x * q^(n-x)
n = number of trials = 25
p = 1/4 = 0.25
q = 1 - p = 0.75
x = 20
P(x > 20) = p(x = 21) + p(x = 22) +.. + p(x = 25)
Using the binomial probability calculator to save computation time :
P(x > 20) = 9.68*10^-10
Determine whether the stochastic matrix P is regular. Then find the steady state matrix X of the Markov chain with matrix of transition probabilities P. P=
0.22 0.20 0.65
0.62 0.60 0.15
0.16 0.20 0.20
Answer:
Step-by-step explanation:
Given that:
[tex]P = \left[\begin{array}{ccc}0.22&0.20&0.65\\0.62&0.60&0.15\\0.16&0.20&0.20\end{array}\right][/tex]
For a steady-state of a given matrix [tex]\bar X[/tex]
[tex]\bar X = \left[\begin{array}{c}a\\b\\c\end{array}\right][/tex]
As a result P[tex]\bar X[/tex] = [tex]\bar X[/tex] and a+b+c must be equal to 1
So, if P[tex]\bar X[/tex] = [tex]\bar X[/tex]
Then;
[tex]P = \left[\begin{array}{ccc}0.22&0.20&0.65\\0.62&0.60&0.15\\0.16&0.20&0.20\end{array}\right]\left[\begin{array}{c}a\\b\\c\end{array}\right] =\left[\begin{array}{c}a\\b\\c\end{array}\right][/tex]
[tex]\implies \left\begin{array}{ccc}0.22a+&0.20b+&0.65c\\0.62a+&0.60b+&0.15c\\0.16a+&0.20b+&0.20c\end{array} \right = \left \begin{array}{c}a ---(1)\\b---(2)\\c---(3)\end{array}\right[/tex]
Equating both equation (1) and (3)
(0.22a+ 0.2b + 0.65c) - (0.16a + 0.2b + 0.2c) = a - c
0.06a + 0.45c = a - c
collect like terms
0.06a - a = -c - 0.45c
-0.94 a = -1.45 c
0.94 a = 1.45 c
[tex]c =\dfrac{ 0.94}{1.45}a[/tex]
[tex]c =\dfrac{ 94}{145}a --- (4)[/tex]
Using equation (2)
0.62a + 0.60b + 0.15c = b
where;
c = 94/145 a
[tex]0.62a + 0.60b + 0.15(\dfrac{94}{145}) a= b[/tex]
[tex]0.62a + 0.15(\dfrac{94}{145}) a= -0.60b+b[/tex]
[tex]0.62a + (\dfrac{141}{1450}) a= 0.40b[/tex]
[tex](0.62+\dfrac{141}{1450}) a= 0.40b[/tex]
[tex](\dfrac{62}{100}+\dfrac{141}{1450}) a= 0.40b[/tex]
[tex](\dfrac{1043}{1450})a= 0.40b[/tex]
[tex](\dfrac{1043}{1450})a= \dfrac{4}{10} b[/tex]
[tex](\dfrac{1043 \times 10}{1450 \times 4})a = \dfrac{4}{10} \times \dfrac{10}{4}[/tex]
[tex]b = (\dfrac{1043}{580}) a --- (5)[/tex]
From a + b + c = 1
[tex]a + \dfrac{1043}{580}a + \dfrac{94}{145} a = 1[/tex]
[tex]a + \dfrac{1043}{580}a + \dfrac{94*4}{145*4} a = 1[/tex]
[tex]a + \dfrac{1043}{580}a + \dfrac{376}{580} a = 1[/tex]
[tex]\dfrac{580+ 1043+376 }{580} a= 1[/tex]
[tex]\dfrac{1999}{580} a= 1[/tex]
[tex]a = \dfrac{580}{1999}[/tex]
∴
[tex]b = \dfrac{1043}{580} \times \dfrac{580}{1999}[/tex]
[tex]b = \dfrac{1043}{1999}[/tex]
[tex]c = \dfrac{94}{145} \times \dfrac{580}{1999}[/tex]
[tex]c= \dfrac{376}{1999}[/tex]
∴
The steady matrix of [tex]\bar X[/tex] is:
[tex]\bar X = \left[\begin{array}{c}\dfrac{580}{1999} \\ \\ \dfrac{1043}{1999}\\ \\ \dfrac{376}{1999}\end{array}\right][/tex]
Shawn thinks that helium prices next year might increase by 10%. He plans to buy 7 small balloons and x large balloons. He creates the following equation to find the total price for next year’s helium:P
Answer:
P = 7.7 C + 1.1 XC
Step-by-step explanation:
From the question, it is noted that the price of helium required to fill each of the balloons would increase by 10%. Let the current price of helium be C, so that;
10% of C = 0.1 C
The price of helium next year = C + 0.1 C
= 1.1 C
Cost of 7 small balloons = 1.1 C * 7
= 7.7 C
Cost of X large balloons = 1.1 C * X
= 1.1 XC
The total price, P for helium next year = 7.7 C + 1.1 XC
Thus, the equation to find the total price of helium that would fill the balloons next year is;
P = 7.7 C + 1.1 XC
A rectangular field is covered by circular sprinklers as
shown in the diagram. What percentage of the field is not
being watered by the sprinklers?
Answer:
21%
Step-by-step explanation:
Area of one sprinkler
a = πr²
a = π10²
a = 314.159 ft²
8 sprinklers
a = 8 * 314.159
a = 2,513.272
---------------------
area of field
a = lw
a = 80 * 40
a = 3200
------------------------
area not watered
a = 3200 - 2,513.272
a = 686.728
------------------
percentage not watered
p = 686.728 / 3200 * 100%
p = 21.46025%
Rounded
21%
What is the greatest possible integer value of x for which StartRoot x minus 5 EndRoot is an imaginary number?
Answer:
The answer is 4.
Step-by-step explanation:
Edge 2021
Answer:
4
Step-by-step explanation:
EDGE2021
All of the benches in a park are red or blue. The ratio of red benches to blue benches in the park is 3 : 4. Based on this information, which of the following statements is true?
A. For every 4 benches in the park, 3 are red.
B. For every 7 benches in the park, 4 are red.
C. For every 3 red benches in the park, there are 4 blue benches.
D. For every 3 red benches in the park, there are 7 blue benches.
(I'll give brainly, likes, follow, etc for anybody who answers this question with some explanation.)
Answer:
The answer is C
Step-by-step explanation:
3 : 4
^ ^
II II
red blue
NEED HELP ASAP!!
use the vertical line test to determine if the relation whose graph is provided is a function
(graph and answers pictured)
Answer:
Yes, this graph represents a function
Step-by-step explanation:
The function passes the vertical line test, which tests for if any input has more than one unique output by moving a vertical line from left to right. If the vertical line doesn't pass 2 or more points at a time, then the function is indeed a function.
Answer:
The graph does represent a function
Step-by-step explanation:
The function is at about 30y = x^3
what weight remains when 5/9 of a cake weighing 450 grams is eaten.
Will mark Brainlest (from a deck of cards,pemba withdraw a card at random what is the probability that the card is queen) step by using formula
Answer:
1/13
Step-by-step explanation:
there are total no of 52 cards
out of that there are 4 queen
propability = tatal no of favorable outcomes / total no of possible outcomes
=4 / 52
=1/13
Answer:
1/13
Step-by-step explanation:
Total cards = 52
Number of Queen = 4
Probability of the chosen card to be queen
[tex]=\frac{Number \ of \ queen}{total \ number \ of \ cards}\\\\=\frac{4}{52} \\\\= \frac{1}{13}[/tex]
I need the answers Anyoneeee
Please help me!!!!!!!!!!!!!!!!
Answer:
I think it might be SAS. (side angle side)
Please help me!! i have no clue how to do this unit :(
Answer:
the area is 27
Step-by-step explanation:
Answer:
the base of this shape is 6
lets break it up into a rectangle and a triangle
the rectangle is 6(base) time 3(height)=18
the triangle is 6(base) times 3(height) divided by two = 9
18 plus 9 = 27
PLEASE HELP
Libby flips a quarter 2 times in a row.
What is the probability of the quarter landing on heads at least 1 time?
A. 1/4
B. 1/3
C. 3/4
D. 1/2
Im needing help with this math question
Answer:
4 weeks = 105
16 weeks = 42
24 weeks = 0
Step-by-step explanation:
the function is missing the 'w'
it should be : C(w) = 126 - 5.25w
'w' is the number of weeks
Substitute number of weeks in the 'w' spot
first one is 4 weeks, so
C(w) = 126 - 5.25(4)
= 126 - 21
= 105
Question 6 of 10
Which expression gives the volume of a sphere with radius 7?
A 4/3pi(7^2)
B. 4/3pi (7^3)
C. 4pi(7^3)
D. 4pi(7^2)
Answer:
B. 4/3pi (7^3)
Step-by-step explanation:
The volume of a sphere is given by
V = 4/3 pi r^3
We know the radius is 7
V = 4/3 pi 7^3
Five minivans and three trucks are traveling on a 3.0 mile circular track and complete a full lap in 98.0, 108.0, 113.0, 108.0, 102.0, 101.0, 85.0, and 95.0 seconds, respectively. Assuming all vehicles are traveling at constant speeds, what is the time-mean speed of the minivans
Answer:
The time-mean speed of the minivans is of 105.8 seconds.
Step-by-step explanation:
Mean of a data-set:
The mean of a data-set is the sum of all values in the data-set divided by the number of values.
Five minivans, times of: 98.0, 108.0, 113.0, 108.0, 102.0, in seconds.
Thus, the mean is:
[tex]M = \frac{98 + 108 + 113 + 108 + 102}{5} = 105.8[/tex]
The time-mean speed of the minivans is of 105.8 seconds.
A study of college football games shows that the number of holding penalties assessed has a mean of penalties per game and a standard deviation of penalties per game. What is the probability that, for a sample of college games to be played next week, the mean number of holding penalties will be penalties per game or less
Answer:
The probability that the mean number of holding penalties per game is of X or less is the p-value of [tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex], in which [tex]\mu[/tex] is the mean number of penalties per game, [tex]\sigma[/tex] is the standard deviation and n is the number of games that will be sampled.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
We have that:
The mean number of penalties per game is [tex]\mu[/tex] and the standard deviation is [tex]\sigma[/tex].
Sample of n games:
This means that [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]
What is the probability that, for a sample of college games to be played next week, the mean number of holding penalties will be X penalties per game or less?
The probability that the mean number of holding penalties per game is of X or less is the p-value of [tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex], in which [tex]\mu[/tex] is the mean number of penalties per game, [tex]\sigma[/tex] is the standard deviation and n is the number of games that will be sampled.
What is the measure of each angle of a regular 24-gon? If necessary, round to the
nearest tenth.
Answer:
165°
Step-by-step explanation:
Find the interior angle measure by using the formula, ((n - 2) x 180°) / n
Plug in 24 as n:
((n - 2) x 180°) / n
((24 - 2) x 180°) / 24
(22 x 180°) / 24
3960 / 24
= 165
So, the measure of each angle is 165°
Answer:
163.6
Step-by-step explanation:
180•(22-2)=180•20 =3600
3600/22= 163.636363…
HELP ASAP!!!
(Question and answers pictured)
9514 1404 393
Answer:
(d) reflection about the x-axis, up 6 units
Step-by-step explanation:
The parent function y=1/x is multiplied by -1, which reflects it over the x-axis. Then 6 is added, which shifts it up 6 units.
The transformations are ...
reflection about the x-axis, up 6 units
The base of a solid is a circular disk with radius 4. Parallel cross sections perpendicular to the base are squares. Find the volume of the solid.
Answer:
the volume of the solid is 1024/3 cubic unit
Step-by-step explanation:
Given the data in the question,
radius of the circular disk = 4
Now if the center is at ( 0,0 ), the equation of the circle will be;
x² + y² = 4²
x² + y² = 16
we solve for y
y² = 16 - x²
y = ±√( 16 - x² )
{ positive is for the top while the negative is for the bottom position }
A = b²
b = 2√( 16 - x² ) { parallel cross section }
A = [2√( 16 - x² )]²
A = 4( 16 - x² )
Now,
VOLUME = [tex]\int\limits^r -rA dx[/tex]
= [tex]\int\limits^4_4 {-4(16-x^2)} \, dx[/tex]
= 4[ 16x - (x³)/3 ] { from -4 to 4 }
= 4[ ( 64 - 64/3 ) - (-64 = 64/3 0 ]
= 4[ 64 - 64/3 + 64 - 64/3 ]
= 4[ (192 - 64 + 192 - 64 ) / 3 ]
= 4[ 256 / 3 ]
= 1024/3 cubic unit
Therefore, the volume of the solid is 1024/3 cubic unit
Graph the image of kite JKLM after a translation 3 units up.
Consider the following data. 15,−4,−10,8,14,−10,−2,−11
Step 1 of 3: Determine the mean of the given data
Step 2 of 3: Determine the median of the given data.
Step 3 of 3: Determine if the data set is unimodal, bimodal, multimodal, or has no mode. Identify the mode(s), if any exist.
Answer:
(a) The mean is 0
(b) The median is -30
(c) The mode is unimodal
Step-by-step explanation:
Given
[tex]Data: 15,-4,-10,8,14,-10,-2,-11[/tex]
Solving (a): The mean.
This is calculated using:
[tex]\bar x = \frac{\sum x}{n}[/tex]
So, we have:
[tex]\bar x =\frac{15-4-10+8+14-10-2-11}{8}[/tex]
[tex]\bar x =\frac{0}{8}[/tex]
[tex]\bar x =0[/tex]
Solving (b): The median
First, arrange the data
[tex]Sorted: -11,-10, -10, -4, -2,8,14,15[/tex]
There are 4 elements in the dataset. So, the median is the mean of the 4th and 5th item.
[tex]Median = \frac{-4-2}{2}[/tex]
[tex]Median = \frac{-6}{2}[/tex]
[tex]Median = -3[/tex]
Solving (c): The mode
The item that has occurs most is -10.
Hence, the mode is -10. The dataset is unimodal because it has only 1 mode (-10).
Find x
Find Angle CBD
Find Angle D
Answer:
[tex]thank \: you[/tex]
find the mesure of angle b
Answer:
It's C
Step-by-step explanation:
because there is a 90 degrees sigh behind it and those two angles need to add up to 90
Answer:
31
Step-by-step explanation:
b+59=90
b=90-59
b=31
hope it helps
Simplify the following completely, show all work. √-45
Answer:
[tex]3\sqrt{5}i[/tex]
Step-by-step explanation:
[tex]\sqrt{-45}[/tex]
[tex]\sqrt{-9*5}[/tex]
[tex]\sqrt{-9}\sqrt{5}[/tex]
[tex]3i\sqrt{5}[/tex]
[tex]3\sqrt{5}i[/tex]
What is the equation of the line that passes through the point (1,7)and has a slope of -1
?
Answer:
y = -x + 8
Step-by-step explanation:
First, plug in the slope.
y = mx + b
y = -1x + b
y = -x + b
Then, plug in the point.
7 = -(1) + b
7 = -1 + b
8 = b
A colony contains 1500 bacteria. The population increases at a rate of 115% each hour. If x represents the number of hours elapsed, which function represents the scenario?
f(x) = 1500(1.15)x
f(x) = 1500(115)x
f(x) = 1500(2.15)x
f(x) = 1500(215)x
Answer:
C) f(x) = 1500(2.15)x
Step-by-step explanation:
Got it right on Edge :)
a tv cost £800 plus VAT at 20% what is the total cost of the tv?
Answer:
Given:
Cost = £ 800
Tax = 20%
To find:
The total cost
Solution:
Total cost = Cost + Tax
Tax = 20 % of cost
20 / 100 * 800
Tax = £ 160
Hence,
Total cost = £ 800 + £ 160
Total cost = £ 960
What’s the answer to this question?
Answer:
its x^4
Step-by-step explanation:
its x^4