Find answers and explanations in the attachments
Answer:
Explanation:
) (C) Suppose the piston is fixed. Find the energy input required to raise the temperature to 700 K.
A high-voltage powerline operates at 500000 V-rms and carries an rms current of 500 A. If the resistance of the cable is 0.050Ω/km, what is the resistive power loss in 200 km of the powerline?
Answer:
2,500,000W or 2.5MW
Explanation:
The power lost due to resistance is given by I^2R. We must first obtain R as follows;
Resistance per kilometer= 0.050Ω/km
Distance covered= 200km
R = 200km x 0.050Ω/km = 10Ω
The lost power as a 500A current passes through the powerline is:
P = I²R
P= 500² x 10
P= 2,500,000 W or 2.5MW
The resistive power loss in 200 km of the powerline is of 2.5 MW.
Given data:
The root mean square voltage is, V' = 500000 V.
The magnitude of current through the power line is, I =500 A.
The magnitude of resistance of cable is, R = 0.050 Ω/km.
The length of powerline is, L = 200 km.
Whenever there is a flow of current through the wire, then there are various losses out of which the power loss is a major factor. The mathematical expression for the power loss is given as
P = I²R
Solving as,
P= 500² x 10
P= 2,500,000 W or 2.5MW
Thus, we can conclude that the resistive power loss in 200 km of the powerline is of 2.5 MW.
Learn more about the resistive power loss here:
https://brainly.com/question/15158529
Two 110 kg bumper cars are moving toward each other in opposite directions. Car A is moving at 8 m/s and Car Z at −10 m/s when they collide head–on. If the resulting velocity of Car A after the collision is −10 m/s, what is the velocity of Car Z after the collision? 10 m/s −8 m/s 8 m/s 10 m/s-
Answer:
it will be 8ms-1
Explanation:
MaUa+MbUb=MaVa+MbVb
A construction worker uses an electrical device to attract fallen nails and sharp objects
from a construction site. What is causing the attraction of the metal objects?
O An electrical wave oscillating perpendicular to the electrical device.
O An electrical charge radiating perpendicular to the wire
O Amagnetic wave radiating perpendicular to an electrical device
O A magnetic wave and electrical current moving in opposite directions
Answer:
is the last one, a magnetic wave and electrical current moving in opposite directions
Explanation:
opposite directions always attract in magnetic waves and fields
A person holds a 25 kg (250 newton) bag of cement over his head and moves it a distance of 10 m, taking 2 minutes, while another person carries it on a wheelbarrow that same distance, taking 1 minute.Who does more work ? What is the power of each person?
Explanation:
Assuming the 10 m distance is the vertical displacement, the work done by both people is the same.
Work = force × distance
W = (250 N) (10 m)
W = 2500 J
The power of the first person is:
Power = work / time
P = 2500 J / 120 s
P = 20.83 W
The power of the second person is:
P = 2500 J / 60 s
P = 41.67 W
Calculate the intensity of current flowing through a computer that consumes 180W and operates at 120 V.
A.)0,66 A
B.)12600 A
C.)1,5 A
D.)60 A
Answer:
C) 1.5 A
Explanation:
P = IV
180 W = I (120 V)
I = 1.5 A
What is the Opportunity Cost in textbooks from going from point A to B?
Answer:
60.00
Explanation:
you welcome
The law of conservation of momentum states that the total momentum of interacting objects does not change . This means the total momentum a collision or explosion is equal to the total momentum a collision or explosion.what is momentum
Answer:
The momentum of an object is equal to the product of its mass and its velocity.
Explanation:
Consider an object of mass [tex]m[/tex] travelling at a velocity [tex]\vec{v}[/tex]. The momentum [tex]\vec{p}[/tex] of this object would be:
[tex]\vec{p} = m \cdot \vec{v}[/tex].
For the law of conservation of momentum, consider two objects: object [tex]\rm a[/tex] and object [tex]\rm b[/tex]. Assume that these two objects collided with each other.
Let [tex]m_{\rm a}[/tex] and [tex]m_{\rm b}[/tex] denote the mass of the two objects. Let [tex]\vec{v}_{\rm a}(\text{initial})[/tex] and [tex]\vec{v}_{\rm b}(\text{initial})[/tex] denote the velocity of the two object right before the interaction. Let [tex]\vec{v}_{\rm a}(\text{final})[/tex] and [tex]\vec{v}_{\rm b}(\text{final})[/tex] denote the velocity of the two objects right after the interaction. The momentum of the two objects right before the collision would be [tex]m_{\rm a}\cdot \vec{v}_{\rm a}(\text{initial})[/tex] and [tex]m_{\rm b}\cdot \vec{v}_{\rm b}(\text{initial})[/tex], respectively. The momentum of the two objects right after the collision would be [tex]m_{\rm a}\cdot \vec{v}_{\rm a}(\text{final})[/tex] and [tex]m_{\rm b}\cdot \vec{v}_{\rm b}(\text{final})[/tex], respectively.The sum of the momentum of the two objects would be:
[tex]m_{\rm a}\cdot \vec{v}_{\rm a}(\text{initial}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{initial})[/tex] right before the collision, and[tex]m_{\rm a}\cdot \vec{v}_{\rm a}(\text{final}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{final})[/tex] right after the collision.Assume that the system of these two objects is isolated. By the law of conservation of momentum, the sum of the momentum of these two objects should be the same before and after the collision. That is:
[tex]m_{\rm a}\cdot \vec{v}_{\rm a}(\text{initial}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{initial}) = m_{\rm a}\cdot \vec{v}_{\rm a}(\text{final}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{final})[/tex].
Distinguish between concave mirror and convex mirror
Answer:
Concave mirror makes someone looking at it look dwarf or short, while convex mirror stretches the person making the person look weird.
write down the reading shown on the instrument above in units of the instrument
Answer:
The reading of the vernier calliper is 3.93 mm
Explanation:
The given instrument is a micrometer screw gauge that has a main scale reading and a vernier scale reading
The the question, we have;
The individual divisions of the main scale = 0.5 mm
The reading on the main scale = 3.5 mm
The reading on the vernier scale = 43
The accuracy of the vernier caliper = 0.01
Reading on the vernier scale multiplied by the accuracy of the vernier caliper = 43 × 0.01 = 0.43 mm
The reading of the micrometer screw gauge = The reading on the main scale + Reading on the vernier scale multiplied by the accuracy of the vernier caliper
Therefore, the reading of the micrometer screw gauge = 3.5 + 0.43= 3.93 mm
The reading of the vernier calliper = 3.93 mm.
Students create a standing wave
with three loops on a slinky 3.75 m
long. They time 20 oscillations in
6.73 s. What is the wavelength of
the standing wave?
(Unit = m)
Explanation:
Given that,
Number of loops are 3
Length of slinky is 3.75 m
They time 20 oscillations in 6.73 s.
We need to find the wavelength of the standing wave.
For 3 loops, [tex]L=\dfrac{3\lambda}{2}[/tex]
Here, [tex]\lambda[/tex] is the wavelength of the standing wave
So,
[tex]\lambda=\dfrac{2L}{3}\\\\\lambda=\dfrac{2\times 3.75}{3}\\\\\lambda=2.5\ m[/tex]
So, the wavelength of the standing wave is 2.5 m.
A container contains 200g of water at initial temperature of 30°C. An iron nail of mass 200g at temperature of 50°C is immersed in the water. What is the final water temperature? State the assumptions you need to make in your calculations.
[Given the value of specific heat capacity of water is 4200 J kg^-1 °C^-1 and that of iron is
450 J kg^-1 °C^-1]
Answer:
The final temperature is 31.94°
Explanation:
The mass of the water in the container m₁ = 200 g = 0.2 kg
The initial temperature of the water, T₁₁ = 30°C
The mass of the iron, m₂ = 200 g = 0.2 kg
The temperature of the iron T₂₁= 50°C is immersed in the water,
The specific heat capacity of the water, c₁ = 4200 J/(kg·°C)
The specific heat capacity of the iron, c₂ = 450 J/(kg·°C)
Heat capacity relation is given by the formula;
Heat capacity Q = Mass, m × Specific heat capacity, c × Temperature change, (T₂ - T₁)
Given that energy can neither be created nor destroyed, and with the assumption that all the heat lost by the nail is gained by the water we have;
Heat lost by iron nail = Heat gained by the water
m₁ × c₁ × (T₂ - T₁₁) = m₂ × c₂ × (T₂₁ - T₂)
Where, T₂ is the final temperature
0.2 kg × 4200 J/(kg·°C) × (T₂ - 30) = 0.2 kg × 450 J/(kg·°C) × (50° - T₂)
840·T₂ - 25200 = 4500 - 90·T₂
4500 + 25200 = 840·T₂ + 90·T₂
29700 = 930·T₂
T₂ = 29700/930 = 31.94°.
The final temperature = 31.94°.
Bus starts from rest if the acceleration of the bus is 0.5 MS squared what will be the velocity at the end of two minutes and what distance will it cover during that time
Explanation:
Given that,
Initial speed of the bus, u = 0
Acceleration of the bus, a = 0.5 m/s²
Let v is the velocity at the end of 2 minutes. The change in velocity divided by time equals acceleration.
So,
[tex]a=\dfrac{v-u}{t}\\\\v=u+at\\\\v=0+0.5\times 120\\\\v=60\ m/s[/tex]
Let d is the distance cover during that time. So,
[tex]v^2-u^2=2ad\\\\d=\dfrac{v^2-u^2}{2a}\\\\d=\dfrac{(60)^2}{2\times 0.5}\\\\d=3600\ m[/tex]
So, the final speed is 60 m/s and the distance covered during that time is 3600 m.
identify properties of a human body system
Answer:
integumentary, skeletal, muscular, nervous, endocrine, cardiovascular, lymphatic, respiratory, digestive, urinary, and reproductive
Explanation:
and this is biology not physics
The distance covered by a body along the x axis is given by x=2t^3+5t^2+t where t is measured in seconds and x is in meter. Find average speed in a time interval from t= 0s and t=2s
Explanation:
It is given that,
The distance covered by a body along the x-axis is given by :
[tex]x=2t^3+5t^2+t[/tex]
t is in seconds and x is meters
Speed of the body is given by :
[tex]v=\dfrac{dx}{dt}\\\\v=\dfrac{d(2t^3+5t^2+t)}{dt}\\\\v=6t^2+10t+1[/tex]
At t = 0,
[tex]v=6(0)^2+10(0)+1=1\ m/s[/tex]
At t = 2 s,
[tex]v=6(2)^2+10(2)+1=45\ m/s[/tex]
So, the average speed in a time interval from t= 0s and t=2s is 45 m/s.
Self-Check
por Learning
A truck mass 8000 kg and a car a mass 1000
kg are travelling at the same velocity. Which one has greater kinetic energy ? Why?
Answer:
K.E of truck > K.E of car
Explanation:
Mass of the truck = 8000Kg
K.E=[tex]\frac{1}{2} mv[/tex]
K.E =[tex]\frac{1}{2}*8000*v\\ 4000v[/tex]
Mass of the car = 1000 Kg
K.E of the car =[tex]\frac{1}{2}*1000*v\\ 500v[/tex]
Therefore Kinetic energy of the truck is greater than that of the car
Which statement accurately describes electronic tools? Check all that apply
Answer:
Electronic tools provide more accurate data and this data is more efficient fast and easy to understand
Hope this helps you!!
Identifying Maller
In your own words, describe how matter is identified.
Answer:
Matter can be identified through its properties. One clue to helps us identify matter is magnetism. Magnetism is the ability of a material to be attracted by a magnet. Only certain materials are attracted to magnets, like iron, nickel, and cobalt.
Explanation:
we can identify matter by: physical properties and
chemical properties
if you drop a rock with a density of 1.73 grams will it float or sink
Answer:
the rock will sink. this is because it is more dense than water
Answer:it will sink
Explanation:
because the density of water is 1g and the rock is heavier the the density of water
Can someone please illustrate how the refracted ray will look like?
Answer
As the angle of incidence increases in Figure 2.8, a point is finally reached where the refracted ray does not emerge at the second layer but lie along the interface. This particular angle of incidence at which the angle of refraction is 90° and the refracted ray lies along the interface is known as the critical angle. At and beyond the critical angle, there is no transmitted ray and therefore a very high reflected ray will be recorded .
Therefore,
sinθisin90=Vp1Vp2
But, sin 90 = 1.
At critical angle,
sinθcritical=Vp1Vp2
A critical refracted wave travels along the interface between layers and is refracted back into the upper layer at the critical angle. The waves refracted back into the upper layer are called head waves or first-break refractions because at certain distances from a source, they are the first arriving energy. Recorded first-break refraction is shown in Figure 2.10.
Note that these first-break refractions can give us important information about the shallow velocities on land seismic data.
Note also that seismic data are acquired in such a way that reflections from horizons of interest are in the pre-critical region, even at the farthest offset in the data.
In reality, part of the seismic energy arriving at an interface is transmitted and refracted, and another part of the energy is reflected at that same interface. Given that there are many reflectors in the subsurface, there will be many paths from source to receiver, each of them with a different travel time. The proportion of energy reflected depends on the material properties of the two bounding layers and on the angle of incidence
PLZ HELP ASAP!!!! THANK YOU The disturbance that occurs as longitudional waves travel through a medium can be described as a series of A:oscillations and refractions B:propagations and compressions C:destructions and constructions D:rarefactions and compressions
Answer:
D:rarefactions and compressions
Explanation:
Longitudinal waves are readily formed in materials such as a stretched spring. Longitudinal waves are waves which travel in a direction parallel to the vibrations of the medium.
Longitudinal waves are characterized by a series of compressions and rarefactions. The compressions are areas of clusters while rarefactions are areas of expansions. The same can be observed in a sound wave.
If you go to a nutrition store and buy a supplement you can count on the fact that it is pure and safe because supplements are regulated controlled and inspected by the FDA
Answer:
The answer is False.
Explanation: The FDA (food and drug administration) is a regulatory agency of the United state Government, they regulate the production and distribution of food and drugs within the United States of America, ensuring that standards are met and followed.
Most of the approvals given to food and drugs by FDA are done based on random sampling of products which may not be able to capture all the defective products in a given lot or batch of supplies, which is why it very necessary to take other measures to verify the wholesomeness, authenticity etc of a given product before purchasing or making use of such products.
Answer:
false
Explanation:
got right on egd
How much heat does 25 g of aluminum lose when cooled from 100 ° C to 20 ° C? Express your result in BTU
Answer:
1.7 BTU
Explanation:
q = mCΔT
q = (25 g) (0.9 J/g/°C) (100°C − 20°C)
q = 1800 J
q = 1800 J × (1 BTU / 1055 J)
q = 1.7 BTU
Brandon buys a new seadoo he goes 12 km north from the beach he jumps wakes for 6 km to the east the chases a boat 10 km north what distance did he cover what was his displacement
Answer:
Distance covered 28 km
displacement is 22.8 km North-East
Explanation:
Distance shows how far apart objects or points are from each other. The distance he covered is the sum of all the distance travelled. Therefore:
Distance covered = 12 km + 6 km + 10 km = 28 km
Displacement is a vector quantity (has direction). It is the overall change in position.
The total distance traveled north = 12 km + 10 km = 22 km
The distance traveled east = 6 km
The displacement (d) is:
d² = 22² + 6² = 484 + 36
d² = 520
d = √520 = 22.8 km
Therefore the displacement is 22.8 km North-East
Distance covered 28 km
displacement is 22.8 km North-East
The calculation is as follows:
Distance covered
= 12 km + 6 km + 10 km
= 28 km
Now
The total distance traveled north = 12 km + 10 km = 22 km
And,
The distance traveled east = 6 km
So,
The displacement (d) is:
[tex]d^2 = 22^2 + 6^2\\\\ d^2 = 520\\\\d = \sqrt520[/tex]
= 22.8 km
learn more: https://brainly.com/question/10813422?referrer=searchResults
Match the words to the correct blanks in the sentences. Use each choice only once. a. The collapse of a protostar with less than 0.08 times the mass of the Sun is halted by________. b. As a protostar shrinks in size, its central temperature rises along with its________. c. A star that has not yet finished forming is called a_______. d. A forming star spins more rapidly as it collapses because of conservation of________. e. If a protostar has a mass too small for it to sustain nuclear fusion it becomes the type of object known as a________.A. thermal pressureB. angular momentumC. energy balanceD. degeneracy pressureE. brown dwarfF. gravitational equilibriumG. protostar
Answer:
The collapse of a protostar with less than 0.08 times the mass of the Sun is halted by DEGENERACY PRESSURE. b. As a protostar shrinks in size, its central temperature rises along with its THERMAL PRESSURE. c. A star that has not yet finished forming is called a__PROTOSTAR_____. d. A forming star spins more rapidly as it collapses because of conservation of ANGULAR MOMENTUM. e. If a protostar has a mass too small for it to sustain nuclear fusion it becomes the type of object known as a____BROWN DWARF____
A narrow beam of light containing red (660 nm) and blue (470 nm) wavelengths travels from air through a 1.00 cm thick flat piece of crown glass and back to air again. The beam strikes at an incident angle of 30 degrees. (a) At what angles do the two colors emerge
Answer:
The color blue emerges at 19.16° and the color red emerges at 19.32°.
Explanation:
The angle at which the two colors emerge can be calculated using the Snell's Law:
[tex]n_{1}sin(\theta_{1}) = n_{2}sin(\theta_{2})[/tex]
Where:
n₁ is the refractive index of the incident medium (air) = 1.0003
n₂ is the refractive index of the refractive medium:
blue light in crown glass = 1.524
red light in crown glass = 1.512
θ₁ is the angle of the incident light = 30°
θ₂ is the angle of the refracted light
For the red wavelengths we have:
[tex] \theta_{2} = arcsin(\frac{n_{1}sin(\theta_{1})}{n_{2}}) = arcsin(\frac{1.0003*sin(30)}{1.512}) = 19.32 ^{\circ} [/tex]
For the blue wavelengths we have:
[tex] \theta_{2} = arcsin(\frac{n_{1}sin(\theta_{1})}{n_{2}}) = arcsin(\frac{1.0003*sin(30)}{1.524}) = 19.16 ^{\circ} [/tex]
Therefore, the color blue emerges at 19.16° and the color red emerges at 19.32°.
I hope it helps you!
2 Which invention was crucial to the development of cell theory?
Answer:
I guess i would say the microscope
Explanation:
Because of the microscope, we can see the cells.
Halley is standing outside on a cloudy day. When she hears thunder, she goes back inside so that she doesn't get caught in
a storm. Is this an example of inference or prediction? Explain
Answer:
Inference
Explanation:
An inference involves the application of logic to progress from a premise to a conclusion or logical consequence on the basis of the evidence or known fact. Inference is a process of thought that be divided into a deduction and an induction aspect.
In the given question Halley, by standing outside was able to deduce the sound of thunder she is then able by inductive reasoning from the fact that storms are usually preceded by and accompany lightening, conclude that there is a storm coming.
An 8.0g bullet, moving at 400 m/s, goes through a stationary block of wood in 4.0 x 10^-4s, emerging at a speed of 100 m/s. (a) what average force did the wood exert on the bullet? (b) how thick is the wood?
Answer:
Explanation:
Initial velocity (u) of the Bullet = 400 m/sec
Final velocity (v) of the Bullet = 100 m/sec
Bullet passed through the block in (t) = 0.0004 sec
Using 1st Equation of motion :
400 m/s = 100 m/s - a (0.0004)
Deceleration of Bullet = 750,000 m/sec^2
(a) F (force exerted by the wooden block on the bullet) = F (force exerted by the bullet on the wooden block)
F = m * a = 0.008 * 750,000 = 6000 N
(b) Using 3rd Equation of motion :
[tex]v^{2} = u^{2} - 2aS[/tex]
10000 = 160000 - 2 * 750,000 * S
Thickness of wood (S) = 0.1 m
the distance between two successive troughs of wave is 0.4m. If the frequency of the source is 825Hz, calculate the speed of the wave
Answer:
speed=330m/s
Explanation:
the speed of wave is given as
speed(meter per second) =frequency(hertz) * wavelength(meters)
so using the above formula we substitute the figures given in the question in the formula we get
speed = 0.4*825
speed =330m/s
note m/s is the si unit for speed which is read as meter per second
therefore speed =330m/s
If you told a policeman about a car traveling 44.704 m/s (100 mph) that was traveling in an eastward direction, you would be describing the car's ___.
Answer:
Velocity
Explanation:
You would be describing the velocity of the car.
Velocity in physics is defined as Vector quantity that describes the displacement of an object with respect to the time it takes to attain it. Displacement is the addition of direction to the speed of an object. The displacement is noted in the question, "traveling eastward". While it is stated that the car travels at 44.704 m/s. Ordinarily, it would have been tagged speed, if not for the direction added to it which makes it velocity.
I hope you understand.