"A thin film with an index of refraction of 1.50 is placed in one of the beams of a Michelson interferometer. If this causes a shift of 8 bright fringes in the pattern produced by light of wavelength 540 nm, what is the thickness of the film?"

Answers

Answer 1

Answer:

The film thickness is 4.32 * 10^-6 m

Explanation:

Here in this question, we are interested in calculating the thickness of the film.

Mathematically;

The number of fringes shifted when we insert a film of refractive index n and thickness L in the Michelson Interferometer is given as;

ΔN = (2L/λ) (n-1)

where λ is the wavelength of the light used

Let’s make L the subject of the formula

(λ * ΔN)/2(n-1) = L

From the question ΔN = 8 , λ = 540 nm, n = 1.5

Plugging these values, we have

L = ((540 * 10^-9 * 8)/2(1.5-1) = (4320 * 10^-9)/1 = 4.32 * 10^-6 m


Related Questions

The sun generates both mechanical and electromagnetic waves. Which statement about those waves is true?
OA. The mechanical waves reach Earth, while the electromagnetic waves do not.
OB. The electromagnetic waves reach Earth, while the mechanical waves do not.
OC. Both the mechanical waves and the electromagnetic waves reach Earth.
OD. Neither the mechanical waves nor the electromagnetic waves reach Earth.

Answers

Answer: The correct answer for this question is letter (B) The electromagnetic waves reach Earth, while the mechanical waves do not. The sun generates both mechanical and electromagnetic waves. Space, between the sun and the earth is a nearly vacuum. So mechanical wave can not spread out in the vacuum.

Hope this helps!

Answer:

The electromagnetic waves reach Earth, while the mechanical waves do not

A long bar slides on two contact points and is in motion with velocity ν. A steady, uniform, magnetic field B is present. The induced current through resistor R is:

Answers

Answer:

The induced current in the resistor is I = BLv/R

Explanation:

The induced emf ε in the long bar of length, L in a magnetic field of strength, B moving with a velocity, v is given by

ε = BLv.

Now, the current I in the resistor is given by

I = ε/R where ε = induced emf in circuit and R = resistance of resistor.

So, the current I = ε/R.

substituting the value of ε the induced emf, we have

I = ε/R

I = BLv/R

So, the induced current through the resistor is given by I = BLv/R

If Superman really had x-ray vision at 0.12 nm wavelength and a 4.1 mm pupil diameter, at what maximum altitude could he distinguish villains from heroes, assuming that he needs to resolve points separated by 5.4 cm to do this?

Answers

Answer:

Maximum altitude to see(L) =  1.47 × 10⁶ m (Approx)

Explanation:

Given:

wavelength (λ) = 0.12 nm = 0.12 × 10⁻⁹ m

Pupil Diameter (d) = 4.1 mm = 4 × 10⁻³ m

Separation distance (D) = 5.4 cm = 0.054 m

Find:

Maximum altitude to see(L)

Computation:

Resolving power = 1.22(λ / d)

D / L = 1.22(λ / d)

0.054 / L = 1.22 [(0.12 × 10⁻⁹) / (4 × 10⁻³ m)]

0.054 / L = 1.22 [0.03 × 10⁻⁶]

L = 0.054 / 1.22 [0.03 × 10⁻⁶]

L = 0.054 / [0.0366 × 10⁻⁶]

L = 1.47 × 10⁶

Maximum altitude to see(L) =  1.47 × 10⁶ m (Approx)

A 750 gram grinding wheel 25.0 cm in diameter is in the shape of a uniform solid disk. (we can ignore the small hole at the center). when it is in use, it turns at a consant 220 rpm about an axle perpendicular to its face through its center. When the power switch is turned off, you observe that the wheel stops in 45.0 s with constant angular acceleration due to friction at the axle. What torque does friction exert while this wheel is slowing down?

Answers

Answer:

Torque = 0.012 N.m

Explanation:

We are given;

Mass of wheel;m = 750 g = 0.75 kg

Radius of wheel;r = 25 cm = 0.25 m

Final angular velocity; ω_f = 0

Initial angular velocity; ω_i = 220 rpm

Time taken;t = 45 seconds

Converting 220 rpm to rad/s we have;

220 × 2π/60 = 22π/3 rad/s

Equation of rotational motion is;

ω_f = ω_i + αt

Where α is angular acceleration

Making α the subject, we have;

α = (ω_f - ω_i)/t

α = (0 - 22π/3)/45

α = -0.512 rad/s²

The formula for the Moment of inertia is given as;

I = ½mr²

I = (1/2) × 0.75 × 0.25²

I = 0.0234375 kg.m²

Formula for torque is;

Torque = Iα

For α, we will take the absolute value as the negative sign denotes decrease in acceleration.

Thus;

Torque = 0.0234375 × 0.512

Torque = 0.012 N.m

g In the atmosphere, the shortest wavelength electromagnetic waves are called A. infrared waves. B. ultraviolet waves. C. X-rays. D. gamma rays. E.

Answers

Answer:gamma ray

Explanation:

an electromagnetic wave propagates in a vacuum in the x-direction. In what direction does the electric field oscilate

Answers

Answer:

The electric field  can either oscillates in the z-direction, or the y-direction, but must oscillate in a direction perpendicular to the direction of propagation, and the direction of oscillation of the magnetic field.

Explanation:

Electromagnetic waves are waves that have an oscillating magnetic and electric field, that oscillates perpendicularly to one another. Electromagnetic waves are propagated in a direction perpendicular to both the electric and the magnetic field. If the wave is propagated in the x-direction, then the electric field can either oscillate in the y-direction, or the z-direction but must oscillate perpendicularly to both the the direction of oscillation of the magnetic field, and the direction of propagation of the wave.

What is the magnitude of the applied electric field inside an aluminum wire of radius 1.4 mm that carries a 4.5-A current

Answers

Answer:

Explanation:

From the question we are told that

    The radius is  [tex]r = 1.4 \ mm = 1.4 *10^{-3} \ m[/tex]

     The  current is  [tex]I = 4.5 \ A[/tex]

Generally the electric field is mathematically represented as

         [tex]E = \frac{J}{\sigma }[/tex]

Where [tex]\sigma[/tex] is the conductivity of  aluminum with value [tex]\sigma = 3.5 *10^{7} \ s/m[/tex]

J is the current density which mathematically represented as  

      [tex]J = \frac{I}{A}[/tex]

Here A is the cross-sectional area which is mathematically represented as  

       [tex]A = \pi r^2[/tex]

       [tex]A = 3.142 * (1.4*10^{-3})^2[/tex]

       [tex]A = 6.158*10^{-6} \ m^2[/tex]

So

    [tex]J = \frac{ 4.5 }{6.158*10^{-6}}[/tex]

    [tex]J = 730757 A/m^2[/tex]

So

       [tex]E = \frac{ 730757}{3.5*10^{7} }[/tex]

       [tex]E = 0.021 \ N/C[/tex]

Water flows at speed v in a pipe of radius R. At what speed does the water flow through a constriction in which the radius of the pipe is R/3

Answers

Answer:

   v₂ = 9 v

Explanation:

For this exercise in fluid mechanics, let's use the continuity equation

           v₁ A₁ = v₂ A₂

where v is the velocity of the fluid, A the area of ​​the pipe and the subscripts correspond to two places of interest.

The area of ​​a circle is

           A = π R²

let's use the subscript 1 for the starting point and the subscript 2 for the part with the constraint

     

In this case v₁ = v and the area is

            A₁ = π R²

in the second point

           A₂= π (R / 3)²

we substitute in the continuity equation

           v π R² = v₂ π R² / 9

            v = v₂ / 9

           

            v₂ = 9 v

A charged capacitor and an inductor are connected in series. At time t = 0, the current is zero, but the capacitor is charged. If T is the period of the resulting oscillations, the next time, after t = 0 that the energy stored in the magnetic field of the inductor is a maximum is

Answers

Answer:

t = T / 2 all energy is stored in the inductor

Explanation:

The circuit described is an oscillating circuit where the charge of the condensation stops the inductor and vice versa, in this system the angular velocity of the oscillation is

          w = √1/LC

          2π / T =√1 / LC

          T = 2π  √LC

The energy is constant and for the initial instant it is completely stored in the capacitor

         Uc = Q₀² / 2C

In the process, the capacitor is discharging and the energy is stored in the inductor until when the charge in the capacitors zero, all the energy is stored in the inductor

        U = L I² / 2

in the intermediate instant the energy is stored in the two elements.

Since the period of the system is T for time t = 0 all energy is stored in the capacitor and for t = T / 2 all energy is stored in the inductor

After t = 0 the maximum energy stored in the magnetic field of the inductor is equal to [tex]U'=\dfrac{L I^{2}}{2}[/tex] for the time period, half of period of oscillation  (t = T/2).

The given problem is based on the charging and discharging concepts of capacitor. An oscillating circuit is a circuit where the charge of the capacitor stops the inductor and vice versa, in this system the angular frequency of the oscillation is given as,

[tex]\omega =\dfrac{1}{\sqrt{LC}}\\\\\\\dfrac{2 \pi}{T} =\dfrac{1}{\sqrt{LC}}\\\\\\T = 2\pi \times \sqrt{LC}[/tex]

here, T is the period of oscillation.

 

Also, the energy stored in the capacitor is constant and for the initial instant it is completely stored in the capacitor. So, the energy stored is given as,

[tex]U =\dfrac{Q^{2}}{2C}[/tex]

here, C is the capacitance.

In the process, the capacitor is discharging and the energy is stored in the inductor until when the charge in the capacitors zero, all the energy is stored in the inductor. So, the expression for the energy stored in the inductor is,

[tex]U'=\dfrac{L I^{2}}{2}[/tex]

here, L is the inductance and I is the current.

Note :- The period of the system is T for time t = 0 all energy is stored in the capacitor and for t = T / 2 all energy is stored in the inductor.

Thus, we conclude that after t = 0 the maximum energy stored in the magnetic field of the inductor is equal to [tex]U'=\dfrac{L I^{2}}{2}[/tex] for the time period, half of period of oscillation  (t = T/2).

Learn more about the capacitance here:

https://brainly.com/question/12644355

A resistor made of Nichrome wire is used in an application where its resistance cannot change more than 1.35% from its value at 20.0°C. Over what temperature range can it be used (in °C)?

Answers

Answer:

Pls seeattached file

Explanation:

A resistor made of Ni chrome wire is used in an application where its resistance cannot be more than 1.35 % so its temperature range will be from 33.75 to -33.75 °C.

What is Resistance?

Electrical resistance, or resistance to electricity, is a force that opposes the flow of current. Ohms are used to expressing resistance values.

When there is an electron difference between two terminals, electricity will flow from high to low. In opposition to that flow is resistance. As resistance rises, the current declines. On the other side, when the resistance falls, the current rises.

According to the question,

R = R₀ (1 + α ΔT)

(1 + 0.0135)R₀ = R₀(1 + α ΔT)

ΔT = (1 + 0.0135) / α

= 0.0135 / 0.0004

= 33.75 °C.

ΔT = [(1 - 0.0135) -1]/0.004

= -33.75 °C

To get more information about Resistance :

https://brainly.com/question/11431009

#SPJ5

A deep-space vehicle moves away from the Earth with a speed of 0.870c. An astronaut on the vehicle measures a time interval of 3.10 s to rotate her body through 1.00 rev as she floats in the vehicle. What time interval is required for this rotation according to an observer on the Earth

Answers

Answer:

t₀ = 1.55 s

Explanation:

According to Einstein's Theory of Relativity, when an object moves with a speed comparable to speed of light, the time interval measured for the event, by an observer in  motion relative to the event is not the same as measured by an observer at rest.

It is given as:

t = t₀/[√(1 - v²/c²)]

where,

t = time measured by astronaut in motion = 3.1 s

t₀ = time required according to observer on earth = ?

v = relative velocity = 0.87 c

c = speed of light

3.1 s = t₀/[√(1 - 0.87²c²/c²)]

(3.1 s)(0.5) = t₀

t₀ = 1.55 s

Answer:

The time interval required for this rotation according to an observer on the Earth = [tex]6.29sec[/tex]

Explanation:

Time interval required for this rotation according to an observer on the Earth is given as [tex]\delta t[/tex]

where,

[tex]t_o = 3.1\\\\v = 0.87[/tex]

[tex]\delta t = \frac{t_o}{\sqrt{1-\frac{v^2}{c^2}}}\\\\\delta t = \frac{3.1}{\sqrt{1-(\frac{0.87c}{c})^2}}\\\\\delta t = 6.29sec[/tex]

For more information visit

Rank the following types of electromagnetic waves by the wavelength of the wave.

a. Microwaves
b. X-rays
c. Radio waves
d. Visible light

Answers

Explanation:

In order of Increasing Wavelength of the Electromagnetic Spectrum :

B) X rays

D) Visible light

A) Microwave

C) Radio Waves

Electromagnetic waves in order of decreasing wavelength  is X-rays,visible light,microwaves and radio waves.

What are electromagnetic waves?

The electromagnetic radiation consists of waves made up of electromagnetic field which are capable of propogating through space and carry the radiant electromagnetic energy.

The radiation are composed of electromagnetic waves which are synchronized oscillations of electric and magnetic fields . They are created due to change which is periodic in electric as well as magnetic fields.

In vacuum ,all the electromagnetic waves travel at the same speed that is with the speed of air.The position of an electromagnetic wave in an electromagnetic spectrum is characterized by it's frequency or wavelength.They are emitted by electrically charged particles which undergo acceleration and subsequently interact with other charged particles.

Learn more about electromagnetic waves,here:

https://brainly.com/question/3001269

#SPJ2

To get an idea of the order of magnitude of inductance, calculate the self-inductance in henries for a solenoid with 1500 loops of wire wound on a rod 13 cm long with radius 2 cm

Answers

Answer:

The self-inductance in henries for the solenoid is 0.0274 H.

Explanation:

Given;

number of turns, N = 1500 turns

length of the solenoid, L = 13 cm = 0.13 m

radius of the wire, r = 2 cm = 0.02 m

The self-inductance in henries for a solenoid is given by;

[tex]L = \frac{\mu_oN^2A}{l}[/tex]

where;

[tex]\mu_o[/tex] is permeability of free space = [tex]4\pi*10^{-7} \ H/m[/tex]

A is the area of the solenoid = πr² = π(0.02)² = 0.00126 m²

[tex]L = \frac{4\pi *10^{-7}(1500)^2*(0.00126)}{0.13} \\\\L = 0.0274 \ H[/tex]

Therefore, the self-inductance in henries for the solenoid is 0.0274 H.

How much work is needed to pump all the water out of a cylindrical tank with a height of 10 m and a radius of 5 m

Answers

Answer:

Explanation:

volume of water being lifted

= π r² h , where r is radius of cylinder and h is height of cylinder

= 3.14 x5² x 10

= 785 m³

mass of water = 785 x 10³ kg

mass of this much of water is lifted so that its centre of mass is lifted by height

10 / 2 = 5m .

So work done = mgh , m is mass of water , h is displacement of centre of mass and g is acceleration due to gravity

= 785 x 10³ x 9.8 x 5

= 38.465 x 10⁶ J  

When light of wavelength 233 nm shines on a metal surface the maximum kinetic energy of the photoelectrons is 1.98 eV. What is the maximum wavelength (in nm) of light that will produce photoelectrons from this surface

Answers

Answer:

λmax = 372 nm

Explanation:

First we find the energy of photon:

E = hc/λ

where,

E = Energy of Photon = ?

λ = Wavelength of Light = 233 nm = 2.33 x 10⁻⁷ m

c = speed of light = 3 x 10⁸ m/s

h = Planks Constant = 6.626 x 10⁻³⁴ J.s

Therefore,

E = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(2.33 x 10⁻⁷ m)

E = 8.5 x 10⁻¹⁹ J

Now, from Einstein's Photoelectric Equation:

E = Work Function + Kinetic Energy

8.5 x 10⁻¹⁹ J = Work Function + (1.98 eV)(1.6 x 10⁻¹⁹ J/1 eV)

Work Function = 8.5 x 10⁻¹⁹ J - 3.168 x 10⁻¹⁹ J

Work Function = 5.332 x 10⁻¹⁹ J

Since, work function is the minimum amount of energy required to emit electron. Therefore:

Work Function = hc/λmax

λmax = hc/Work Function

where,

λmax = maximum wavelength of light that will produce photoelectrons = ?

Therefore,

λmax = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(5.332 x 10⁻¹⁹ J)

λmax = 3.72 x 10⁻⁷ m

λmax = 372 nm

If the
refractive index of benzere is 2.419,
what is the speed of light in benzene?

Answers

Answer:

[tex]v=1.24\times 10^8\ m/s[/tex]

Explanation:

Given that,

The refractive index of benzene is 2.419

We need to find the speed of light in benzene. The ratio of speed of light in vacuum to the speed of light in the medium equals the refractive index. So,

[tex]n=\dfrac{c}{v}\\\\v=\dfrac{c}{n}\\\\v=\dfrac{3\times 10^8}{2.419}\\\\v=1.24\times 10^8\ m/s[/tex]

So, the speed of light in bezene is [tex]1.24\times 10^8\ m/s[/tex].

A car travels at 45 km/h. If the driver breaks 0.65 seconds after seeing the traffic light turn yellow, how far will the car continue to travel before it begins to slow?

Answers

Answer:

8.1 m

Explanation:

Convert km/h to m/s.

45 km/h × (1000 m/km) × (1 h / 3600 s) = 12.5 m/s

Distance = speed × time

d = (12.5 m/s) (0.65 s)

d = 8.125 m

The highest mountain on mars is olympus mons, rising 22000 meters above the martian surface. If we were to throw an object horizontaly off the mountain top, how long would it take to reach the surface? (Ignore atmospheric drag forces and use gMars=3.72m/s^2

a. 2.4 minutes
b. 0.79 minutes
c. 1.8 minutes
d. 3.0 minutes

Answers

Answer:

  t = 1.81 min ,     the correct answer is c

Explanation:

This is a missile throwing exercise

The object is thrown horizontally, so its vertical speed is zero (voy = 0), let's use the equation

             y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²

the final height is y = 0 and the initial height is y₀ = 22000 m

            0 = y₀ + 0 - ½ g t²

             

            t = √y 2y₀ / g

let's calculate

           t = √(2  22000 / 3.72)

           t = 108.76 s

let's reduce to minutes

           t = 108.76 s (1 min / 60 s)

           t = 1.81 min

The correct answer is c

If the magnetic field of an electromagnetic wave is in the +x-direction and the electric field of the wave is in the +y-direction, the wave is traveling in the

Answers

Answer:

The wave is travelling in the ±z-axis direction.

Explanation:

An electromagnetic wave has an oscillating magnetic and electric field. The electric and magnetic field both oscillate perpendicularly one to the other, and the wave travels perpendicularly to the direction of oscillation of the  electric and magnetic field.

In this case, if the magnetic field is in the +x-axis direction, and the electric field is in the +y-axis direction, we can say with all assurance that the wave will be travelling in the ±z-axis direction.

A nearsighted person has a far point that is 4.2 m from his eyes. What focal length lenses in diopters he must use in his contacts to allow him to focus on distant objects?

Answers

Answer:

-0.24diopters

Explanation:

The lens is intended that makes an object at infinity appear to be 4.2 m away, so do=infinity, dI = - 4.2m (minus sign because image is on same side of lens as object)

So 1/do +1/di = 1/f

1/infinity + 1/-4.2 = 1/f

1/f = 1/-4.2 = -0.24diopters

1. Suppose that a solid ball, a solid disk, and a hoop all have the same mass and the same radius. Each object is set rolling without slipping up an incline with the same initial linear (translational) speed. Which goes farthest up
the incline?
a. the ball
b. the disk
c. the hoop
d. the hoop and the disk roll to the same height, farther
than the ball
e. they all roll to the same height
2. Suppose that a solid ball, a solid disk, and a hoop all have the same mass and the same radius. Each object is set rolling with slipping up an incline with the same initial linear (translational) speed. Which goes farthest up
the incline?
a. the ball
b. the disk
c. the hoop
d. the hoop and the disk roll to the same height, farther
than the ball
e. they all roll to the same height

Answers

Answer:

The hoop

Explanation:

Because it has a smaller calculated inertia of 2/3mr² compares to the disc

What is the minimum thickness of coating which should be placed on a lens in order to minimize reflection of 566 nm light? The index of refraction of the coating material is 1.46 and the index of the glass is 1.71.

Answers

Answer:

The  thickness is   [tex]t = 1.415 *10^{-7 } \ m[/tex]

Explanation:

From the question we are told that

    The wavelength is  [tex]\lambda = 566 \ nm = 566 *10^{-9} \ m[/tex]

     The  index of refraction of glass is  [tex]n_g = 1.71[/tex]

     The index of refraction of the coating is  [tex]n= 1.46[/tex]

Generally the condition for destructive interference is  

         [tex]2 t = (m + \frac{1}{2} ) * \frac{\lambda }{n }[/tex]

Here m is the order of the interference pattern and given from the question that we are considering minimizing  reflection  m = 0

t = thickness of the coating

substituting values

         [tex]2 t = (0 + \frac{1}{2} ) * \frac{ 566 *10^{-9}}{ 1.46 }[/tex]

    =>    [tex]t = 1.415 *10^{-7 } \ m[/tex]

           

Light of wavelength 500 nm falls on two slits spaced 0.2 mm apart. If the spacing between the first and third dark fringes is to be 4.0 mm, what is the distance from the slits to a screen?

Answers

Answer:

L = 0.8 m

Explanation:

Since, the distance between first and third dark fringes is 4 mm. Therefore, the fringe spacing between consecutive dark fringes will be:

Δx = 4 mm/2 = 2 mm = 2 x 10⁻³ m

but,

Δx = λL/d

λ = wavelength of the light = 500 nm = 5 x 10⁻⁷ m

d = slit spacing = 0.2 mm = 0.2 x 10⁻³ m

L = Distance between slits and screen = ?

Therefore, using the values, we get:

2 x 10⁻³ m = (5 x 10⁻⁷ m)(L)/(0.2 x 10⁻³)

L = (2 x 10⁻³ m)(0.2 x 10⁻³ m)/(5 x 10⁻⁷ m)

L = 0.8 m

Matter's resistance to a change in motion is called _____ and is directly proportional to the mass of an object

Answers

Answer:

Matter's resistance to a change in motion is called INERTIA and is directly proportional to the mass of an object.

Explanation:

In a double-slit experiment the distance between slits is 5.0 mm and the slits are 1.4 m from the screen. Two interference patterns can be seen on the screen: one due to light of wavelength 450 nm, and the other due to light of wavelength 590 nm. What is the separation in meters on the screen between the m = 5 bright fringes of the two interference patterns?

Answers

Answer:

 Δy = 1 10⁻⁴ m

Explanation:

In double-slit experiments the constructive interference pattern is described by the equation

           d sin θ = m λ

In this case we have two wavelengths, so two separate patterns are observed, let's use trigonometry to find the angle

         tan θ = y / L

as the angles are small,

         tan θ = sin θ / cos θ = sin θ

substituting

         sin θ = y / L

         d y / L = m λ

         y = m λ / d L

let's apply this formula for each wavelength

λ = 450 nm = 450 10⁻⁹ m

m = 5

d = 5.0 mm = 5.0 10⁻³ m

      y₁ = 5 450 10⁻⁹ / (5 10⁻³  1.4)

      y₁ = 3.21 10⁻⁴ m

we repeat the calculation for lam = 590 nm = 590 10⁻⁹ m

      y₂ = 5 590 10⁻⁹ / (5 10⁻³  1.4)

      y₂=  4.21 10⁻⁴ m

the separation of these two lines is

        Δy = y₂ - y₁

        Δy = (4.21 - 3.21) 10⁻⁴ m

        Δy = 1 10⁻⁴ m

Krishna and Seldon now try a homework problem. A policeman sitting in his unmarked police car sees an approaching motorcyclist go through a red light two blocks away. He turns on his siren at a frequency of 1000 Hz as the motorcyclist heads directly toward him at 61 mph (27.27 m/s). What frequency does the motorcyclist hear? (Enter your answer to at least the nearest integer. Assume the speed of sound in air is 331 m/s.) Hz What frequency does the motorcyclist hear when stopped with the police car approaching at 61 mph (27.27 m/s)? (Enter your answer to at least the nearest integer. Assume the speed of sound in air is 331 m/s.) Hz

Answers

Answer:

Explanation:

We shall apply formula of Doppler's effect

Here source is fixed and observer is approaching the source

f = f₀ x [(V + v ) / V ]

f₀ is original and f is apparent frequency , V is velocity of sound and v is velocity of motorcyclist .

f = 1000 x [(331 + 27.27 ) / 331 ]

= 1082 .4 Hz

This is the frequency heard by motorcyclist .

When police car is approaching him when he is stopped

f = f₀ x [V /(V - v ) ]

v is velocity of police car .

= 1000  x 331 / (331 - 27.27)

= 1090 Hz  

An unstable particle at rest spontaneously breaks into two fragments of unequal mass. The mass of the first fragment is 3.00 10-28 kg, and that of the other is 1.86 10-27 kg. If the lighter fragment has a speed of 0.844c after the breakup, what is the speed of the heavier fragment

Answers

Answer: Speed = [tex]3.10^{-31}[/tex] m/s

Explanation: Like in classical physics, when external net force is zero, relativistic momentum is conserved, i.e.:

[tex]p_{f} = p_{i}[/tex]

Relativistic momentum is calculated as:

p = [tex]\frac{mu}{\sqrt{1-\frac{u^{2}}{c^{2}} } }[/tex]

where:

m is rest mass

u is velocity relative to an observer

c is light speed, which is constant (c=[tex]3.10^{8}[/tex]m/s)

Initial momentum is zero, then:

[tex]p_{f}[/tex] = 0

[tex]p_{1}-p_{2}[/tex] = 0

[tex]p_{1} = p_{2}[/tex]

To find speed of the heavier fragment:

[tex]\frac{mu_{1}}{\sqrt{1-\frac{u^{2}_{1}}{c^{2}} } }=\frac{mu_{2}}{\sqrt{1-\frac{u^{2}_{2}}{c^{2}} } }[/tex]

[tex]\frac{1.86.10^{-27}u_{1}}{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } }=\frac{3.10^{-28}.0.844.3.10^{8}}{\sqrt{1-\frac{(0.844c)^{2}}{c^{2}} } }[/tex]

[tex]\frac{1.86.10^{-27}u_{1}}{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } }=1.42.10^{-19}[/tex]

[tex]1.86.10^{-27}u_{1} = 1.42.10^{-19}.{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } }[/tex]

[tex](1.86.10^{-27}u_{1})^{2} = (1.42.10^{-19}.{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } })^{2}[/tex]

[tex]3.46.10^{-54}.u_{1}^{2} = 2.02.10^{-38}.(1-\frac{u_{1}^{2}}{9.10^{16}} )[/tex]

[tex]3.46.10^{-54}.u_{1}^{2} = 2.02.10^{-38} -[2.02.10^{-38}(\frac{u_{1}^{2}}{9.10^{16}} )][/tex]

[tex]3.46.10^{-54}.u_{1}^{2} = 2.02.10^{-38} -2.24.10^{-23}.u^{2}_{1}[/tex]

[tex]3.46.10^{-54}.u_{1}^{2}+2.24.10^{-23}.u^{2}_{1} = 2.02.10^{-38}[/tex]

[tex]2.24.10^{-23}.u^{2}_{1} = 2.02.10^{-38}[/tex]

[tex]u^{2}_{1} = \frac{2.02.10^{-38}}{2.24.10^{-23}}[/tex]

[tex]u_{1} = \sqrt{9.02.10^{-62}}[/tex]

[tex]u_{1} = 3.10^{-31}[/tex]

The speed of the heavier fragment is [tex]u_{1} = 3.10^{-31}[/tex]m/s.

A high school physics student claims her muscle car can achieve a constant acceleration of 10 ft/s/s. Her friend develops an accelerometer to confirm the feat. The accelerometer consists of a 1 ft long rod (mass=4 kg) with one end attached to the ceiling of the car, but free to rotate. During acceleration, the rod rotates. What will be the angle of rotation of the rod during this acceleration? Assume the road is flat and straight.

Answers

Answer: Ф = 17.2657 ≈ 17°

Explanation:

we simply apply ET =0 about the ending of the rod

so In.g.L/2sinФ - In.a.L/2cosФ = 0

g.sinФ - a.cosФ = 0

g.sinФ = a.cosФ

∴ tanФ = a/g

Ф =  tan⁻¹ a / g

Ф = tan⁻¹ ( 10 / 32.17405)

Ф = tan⁻¹ 0.31080948777

Ф = 17.2657 ≈ 17°

Therefore the angle of rotation of the rod during this acceleration is 17.2657 ≈ 17°

When a mercury thermometer is heated, the mercury expands and rises in the thin tube of glass. What does this indicate about the relative rates of expansion for mercury and glass

Answers

Answer:

This means that mercury has a higher or faster expansion rate than glass

Explanation:

This is because When a container expands, the reservoir in the glass expands at the same rate as the glass. Thus, if there is something in a glass and both expand at the same rate, they have no change - but if the contents expand faster, they will fill the container to a higher level, and if the contents expand slower, they will fill the container to a lower level (relative to the new size of the container).

3. What are the first steps that you should take if you are unable to get onto the Internet? (1 point)
O Check your router connections then restart your router.
O Plug the CPU to a power source and reboot the computer.
O Adjust the display properties and check the resolution.
Use the Control Panel to adjust the router settings.​

Answers

Answer:

Check your router connections then restart your router.

Explanation:

Answer:

Check your router connections then restart your router.

Explanation:

Most internet access comes from routers so the problem is most likely the router.

Other Questions
Read the passage from Sugar Changed the World. Sugar was the connection, the tie, between slavery and freedom. In order to create sugar, Europeans and colonists in the Americas destroyed Africans, turned them into objects. Just at that very same moment, Europeansat home and across the Atlanticdecided that they could no longer stand being objects themselves. They each needed to vote, to speak out, to challenge the rules of crowned kings and royal princes. How could that be? Why did people keep speaking of equality while profiting from slaves? In fact, the global hunger for slave-grown sugar led directly to the end of slavery. Following the strand of sugar and slavery leads directly into the tumult of the Age of Revolutions. For in North America, then England, France, Haiti, and once again North America, the Age of Sugar brought about the great, final clash between freedom and slavery. Which sentence best states the authors' claim in this passage? Economic demand for sugar led to political pressure to end enslavement. The growing demand for sugar made the lives of enslaved people even worse. Turning Africans into objects was important for the sugar industry to succeed. Monarchies became increasingly strong and popular during the Age of Sugar. "Not my grandmother is a dinosaur mind it" Which figure of speech applies in this sentence The company currently markets McDog T-bone, Lapdog Lunchtreats, Rover's Potroast, and Puppy Porterhouse in the dog food market. Prime Cuts will be an addition to the 2. Solvex2 - 6x = -5 by completing the square , Show all work for the steps below . ( a ) Forx ? - 6x + = -5+ , what value of c is used to complete the square ? ( b ) Substitute the value for c in Part 2 ( a ) . Then complete the square to rewrite the equation as the square of a binomial . ( c ) Solve for x select the correct answer from each drop-down menu. Complete each sentence. 1. he finally found his (recoil, gesture, niche, affliction) as a writer what are the features of humanism? someone please expain how to do this, im really confused. Which continent sees the sun first, North America or South America? At minimum, how far above the floor should food be stored?O a. 2 inches (5 cm)O b. 4 inches (10 cm)O c. 6 inches (15 cm)O d. 8 inches (20 cm) Suppose the following data show the prices of 4 cars with similar characteristics that sold at a recent auction (in thousands of dollars): 6.6, 5, 10.7, 7.3. Calculate the standard deviation of the sample of selling prices. (please express your answer using 2 decimal places) The pregnancy length in days for a population of new mothers can be approximated by a normal distribution with a mean of days and a standard deviation of days. (a) What is the minimum pregnancy length that can be in the top % of pregnancy lengths? (b) What is the maximum pregnancy length that can be in the bottom % of pregnancy lengths? (a) The minimum pregnancy length is 280 days. Prepare journal entries to record each of the following four separate issuances of stock. A corporation issued 10,000 shares of $20 par value common stock for $240,000 cash. A corporation issued 5,000 shares of no-par common stock to its promoters in exchange for their efforts, estimated to be worth $45,500. The stock has a $1 per share stated value. A corporation issued 5,000 shares of no-par common stock to its promoters in exchange for their efforts, estimated to be worth $45,500. The stock has no stated value. A corporation issued 2,500 shares of $50 par value preferred stock for $170,500 cash. which expression is equivalent to(xy)? which statement is true about which branch of the United States government enforces the law Two years ago, a customer purchased 1,000 shares of ABC stock at $45 per share. The stock has appreciated in value and is currently worth $60,000. The company announces that it is spinning off a subsidiary, DEF, to its shareholders. The value of the new company being spun off equals 5% of the old company. The customer will have:___________ Why must corporate managers use multiple techniques of project evaluation? Which technique is most commonly used and why? Describe several ways you may be able to use the techniques above as you progress in your professional career. Explain why chlorine is a gas while iodine is a solid yet both are halogens. Select one: a. Both iodine and chlorine differ in strength of metallic bonds b. Chlorine has strong inter molecular forces than iodine c. Iodine molecules are large with strong inter molecular forces than chlorine HELP PLEASE PLEASE :( evaluate 15.2% of a 726 + 12.8% of 673 Kelvin wants to know whether he skied without falling more than twice as long as anyone else in his family. His dad tells him that he can check by using the inequality 2f < 223, where f is the time skied in seconds for each person. Plug the values for the time skied by each person into the inequality to find the answer.Lori55 Vanessa265 Devon172 Celia112 Arnold356