Answer:
a)density = mass /volume
b)to find volume put water into a container .measure the level of water , put the coins into the beaker containing water , measure the level of water again, subtract the new volume withe the first one . the result is the volume of coins
Choose the appropriate explanation how such a low value is possible given Saturn's large mass - 100 times that of Earth.
a. This low value is possible because the magnetic field of Saturn is so strong.
b. This low value is possible because the magnetic field of Saturn is so weak.
c. This low value is possible because the density of Saturn is so high.
d. This low value is possible because the density of Saturn is so low.
Answer:
Explanation:
That is an amazing fact.
The minus sign is what you have to pay attention to. The earth has a mass of 100 times that of Saturn. As someone on here once noted, Saturn has such a low density that it would float in water.
The answer is D
A cylindrical swimming pool has a radius 2m and depth 1.3m .it is completely filled with salt water of specific gravity 1.03.The atmospheric preassure is 1.013 x 10^5 Pa.
a.calculate the density of salt water.
Answer:
the density of the salt water is 1030 kg/m³
Explanation:
Given;
radius of the cylindrical pool, r = 2 m
depth of the pool, h = 1.3 m
specific gravity of the salt water, γ = 1.03
The atmospheric pressure, P₀ = 1.013 x 10⁵ Pa
Density of fresh water, [tex]\rho _w[/tex] = 1000 kg/m³
The density of the salt water is calculated as;
[tex]Specific \ gravity \ of \ salt\ water \ (\gamma _s_w) = \frac{density \ of \ salt \ water \ (\rho_{sw})}{density \ of \ fresh \ water \ (\rho_{w})} \\\\1.03 = \frac{\rho_{sw}}{1000 \ kg/m^3}\\\\\rho_{sw} = 1.03 \times 1000 \ kg/m^3\\\\\rho_{sw} = 1030 \ kg/m^3[/tex]
Therefore, the density of the salt water is 1030 kg/m³
If an object with constant mass is accelerating, what does Newton's second
law imply?
A. It will continue to accelerate until it meets an opposing force.
B. The object is exerting an opposite but equal force.
C. A force must be acting on the object.
D. The object will be difficult to decelerate.
Answer:
C. A force must be acting on the object.
Explanation:
This is due to the action of its momentum direction.
[tex].[/tex]
basic source of magnetism is a) charged particles alone b)Movement of charged particles c) Magnetic dipoles d)magnetic domains
Answer:
C . Magnetic dipoles is the correct
Answer:
b). movement of charged particles.
Explanation:
These charges create the nagnetic dipoles.
Two train 75 km apart approach each other on parallel tracks, each moving at
15km/h. A bird flies back and forth between the trains at 20km/h until the trains pass
each other. How far does the bird fly?
Answer:
The correct solution is "37.5 km".
Explanation:
Given:
Distance between the trains,
d = 75 km
Speed of each train,
= 15 km/h
The relative speed will be:
= [tex]15 + (-15)[/tex]
= [tex]30 \ km/h[/tex]
The speed of the bird,
V = 15 km/h
Now,
The time taken to meet will be:
[tex]t=\frac{Distance}{Relative \ speed}[/tex]
[tex]=\frac{75}{30}[/tex]
[tex]=2.5 \ h[/tex]
hence,
The distance travelled by the bird in 2.5 h will be:
⇒ [tex]D = V t[/tex]
[tex]=15\times 2.5[/tex]
[tex]=37.5 \ km[/tex]
A block of mass 0.260 kg is placed on top of a light, vertical spring of force constant 5 200 N/m and pushed downward so that the spring is compressed by 0.090 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise
After being released, the restoring force exerted by the spring performs
1/2 (5200 N/m) (0.090 m)² = 12.06 J
of work on the block. At the same time, the block's weight performs
- (0.260 kg) g (0.090 m) ≈ -0.229 J
of work. Then the total work done on the block is about
W ≈ 11.83 J
The block accelerates to a speed v such that, by the work-energy theorem,
W = ∆K ==> 11.83 J = 1/2 (0.260 kg) v ² ==> v ≈ 9.54 m/s
Past the equilibrium point, the spring no longer exerts a force on the block, and the only force acting on it is due to its weight, hence it has a downward acceleration of magnitude g. At its highest point, the block has zero velocity, so that
0² - v ² = -2gy
where y is the maximum height. Solving for y gives
y = v ²/(2g) ≈ 4.64 m
Calculate the kinetic energy of a mass 2kg moving with a velocity of 0.1m/s
ANSWER-:
1/2 mv²
K.E = 1/2 mv²
K.E = 0.01 J.
Hence, the kinetic energy of a body is 0.01 Joule.
!! HOPE ITS HELP U !!
Kelsey the triathelete swims 1.5 km east, then bikes 40 km north, and then runs 10 km west. Which choice gives the
correct solution for the resultant?
R2 = 402 – 8,52
R2 = 402 - 102 - 2(40)(1.5) cos 10
R2 = 102 - 40
R2 = 10- - 402 – 2(1.5)(10) cos 40
Answer:
Hey,. its a simple question. hope you learn from the solution. check attached picture
Explanation:
How much charge is stored on two parallel-plate capacitors by the 12V battery if one is filled with air and the other is filled with a dielectric (k=3.00)
The question is incomplete, the complete question is;
how much charge is stored on the parallel-plate capacitors by the 12.0 V battery? One is filled with air, and the other is filled with a dielectric for which k = 3.00; both capacitors have a plate area of 5.00×10 −3 m 2 and a plate separation of 2.00 mm.
The capacitance of the capacitor is the quantity of charge stored by the capacitor.
Given that;
C1= εo k * A/d
εo = permittivity of free space
C1 = 8.85 x 10-12 farad per meter *1 * 5.00×10 −3 m 2/2 * 10^-3
= 2.21 * 10^-11 F
C2 = 8.85 x 10-12 * 3 * 5.00×10 −3 m 2/2 * 10^-3
= 6.63 * 10^-11 F
q1 = C1V1 = 2.21 * 10^-11 C * 12 V
= 2.65 * 10^-10 C
q2 = C2V2 = 6.63 * 10^-11 F * 12 V
= 7.96 * 10^-10 C
qtotal = 2.65 * 10^-10 C + 7.96 * 10^-10 C
qtotal = 1.061 * 10^-9C
https://brainly.com/question/17176550
Two motors in a factory are running at slightly different rates. One runs at 825.0 rpm and the other at 786.0 rpm. You hear the sound intensity increase and then decrease periodically due to wave interference. How long does it take between successive instances of the sound intensity increasing
Answer:
[tex]T=1.54s[/tex]
Explanation:
From the question we are told that:
Speed of Motor 1 [tex]\omega_1=825rpm=>2 \pi 13.75[/tex]
Speed of Motor 2 [tex]\omega_1=786rpm=>2 \pi 13.1[/tex]
Therefore
Frequency of Motor 1 [tex]f_1=13.75[/tex]
Frequency of Motor 2 [tex]f_2= 13.1[/tex]
Generally the equation for Time Elapsed is mathematically given by
[tex]T=\frac{1}{df}[/tex]
Where
[tex]df=f_1-f_2[/tex]
[tex]df=13.75-13.1[/tex]
[tex]df=0.65Hz[/tex]
Therefore
[tex]T=\frac{1}{65}[/tex]
[tex]T=1.54s[/tex]
You are to connect resistors R1 andR2, with R1 >R2, to a battery, first individually, then inseries, and then in parallel. Rank those arrangements according tothe amount of current through the battery, greatest first. (Useonly the symbols > or =, for exampleseries>R1=R2>parallel.)
Answer:
The current is more in the parallel combination than in the series combination.
Explanation:
two resistances, R1 and R2 are connected to a battery of voltage V.
When they are in series,
R = R1 + R2
In series combination, the current is same in both the resistors, and it is given by Ohm's law.
V = I (R1 + R2)
[tex]I = \frac{V}{R_1 + R_2}[/tex]..... (1)
When they are connected in parallel.
the voltage is same in each resistor.
The effective resistance is R.
[tex]R = \frac{R_1R_2}{R_1 + R_2}[/tex]
So, the current is
[tex]I = \frac{V(R_1+R_2)}{R_1 R_2}[/tex]..... (2)
So, the current is more is the parallel combination.
Polarized sunglasses:
a. block most sunlight because sunlight is polarized
b. are better but work the same way as non-polarized sunglasses
c. are polarized to filter out certain wavelengths of light
d. block reflected light because reflected light is partially polarized.
Polarized sunglasses creates filter of vertical openings for light. The light rays will reach the eyes of human vertically only.
The sun rays will not reach human eye directly which will create a shield for sun light burden on human eye.
Polarized sunglasses are best used for blocking and eliminating certain wavelengths of light.
Therefore the correct answer is option C. Polarizes Sunglasses are polarized and it filter out certain wavelengths of light.
Learn more at https://brainly.com/question/24372632
answer bhejo please please please
Answer:
Various uses of water :
1. Water is used for daily purpose like cooking , bathing , cleaning and drinking.
2. Water used as a universal solvent.
3. water maintains the temperature of our body.
4. Water helps in digestion in our body.
5 .water is used in factories and industries.
6. Water is used to grow plants , vegetables and crops.
Light of the same wavelength passes through two diffraction gratings. One grating has 4000 lines/cm, and the other one has 6000 lines/cm. Which grating will spread the light through a larger angle in the first-order pattern
Answer:
6000 lines/cm
Explanation:
From the question we are told that:
Grating 1=4000 lines/cm
Grating 2=6000 lines/cm
Generally The Spread of fringes is Larger when the Grating are closer to each other
Therefore
Grating 2 will spread the the light through a larger angle in the first-order pattern because its the closest with 6000 lines/cm
Cho lực F ⃗=6x^3 i ⃗-4yj ⃗ tác dụng lên vật làm vật chuyển động từ A(-2,5) đến B(4,7). Vậy công của lực là:
The work done by [tex]\vec F[/tex] along the given path C from A to B is given by the line integral,
[tex]\displaystyle \int_C \mathbf F\cdot\mathrm d\mathbf r[/tex]
I assume the path itself is a line segment, which can be parameterized by
[tex]\vec r(t) = (1-t)(-2\,\vec\imath + 5\,\vec\jmath) + t(4\,\vec\imath+7\,\vec\jmath) \\\\ \vec r(t) = (6t-2)\,\vec\imath+(2t+5)\,\vec\jmath \\\\ \vec r(t) = x(t)\,\vec\imath + y(t)\,\vec\jmath[/tex]
with 0 ≤ t ≤ 1. Then the work performed by F along C is
[tex]\displaystyle \int_0^1 \left(6x(t)^3\,\vec\imath-4y(t)\,\vec\jmath\right)\cdot\frac{\mathrm d}{\mathrm dt}\left[x(t)\,\vec\imath + y(t)\,\vec\jmath\right]\,\mathrm dt \\\\ = \int_0^1 (288(3t-1)^3-8(2t+5)) \,\mathrm dt = \boxed{312}[/tex]
On her camping trip, Penelope was in charge of collecting firewood. The firewood she found had a mass of 120 g and a volume of 480 cm3. What is the density of the firewood? Explain the steps you took to solve this problem.
Answer:
D = .25g/cm³
Explanation:
D = m/V
D = 120g/480cm³
D = .25g/cm³
What is the volume of a metal block 3cm long by 2cm wide by 4cm high? What would be the volume of a block twice as long, wide, and high?
Answer:
Volume of a metal block = 24 cm^3
Volume of a block twice as long, wide and high = 192 cm^3
Explanation:
Volume of a block is measured in l*w*h and in the first block, the sides are 3, 2 and 4 and 3*2*4 = 24
Second block, just double each of the lengths to get 6*4*8 = 192
When you are standing on Earth, orbiting the Sun, and looking at a broken cell phone on the ground, there are gravitational pulls on the cell phone from you, the Earth, and the Sun. Rank the gravitational forces on the phone from largest to smallest. Assume the Sun is roughly 109 times further away from the phone than you are, and 1028 times more massive than you. Rank the following choices in order from largest gravitational pull on the phone to smallest. To rank items as equivalent, overlap them.
a. Pull phone from you
b. Pull on phone from earth
c. Pull on phone from sun
Answer:
The answer is "Option b, c, and a".
Explanation:
Here that the earth pulls on the phone, as it will accelerate towards Earth when we drop it.
We now understand the effects of gravity:
[tex]F \propto M\\\\F\propto \frac{1}{r^2}\\\\or\\\\F \propto \frac{M}{r^2}\\\\Sun (\frac{M}{r^2}) = \frac{10^{28}}{(10^9)^2} = 10^{10}[/tex]
The force of the sun is, therefore, [tex]10^{10}[/tex] times greater and the proper sequence, therefore, option steps are:
b. Pull-on phone from earth
c. Pull-on phone from sun
a. Pull phone from you
What is the magnitude of the force between a 25μC charge exerts on a -10μC charge 8.5cm away?
Answer:
Force,
[tex]F = \frac{kQ_{1} Q_{2} }{ {r}^{2} } \\ F = \frac{(9 \times {10}^{9}) \times (25 \times {10}^{ - 6}) \times (10 \times {10}^{ - 6} ) }{ {(0.85)}^{2} } \\ \\ F = 3.114 \: newtons[/tex]
The magnitude of the force between a 25μC charge exerts on a -10μC charge 8.5cm away would be 311.4 N.
What is Coulomb's Law?Coulomb's law can be stated as the product of the charges and the square of the distance between them determine the force of attraction or repulsion acting in a straight line between two electric charges.
The math mathematical expression for the coulomb's law given as
F= k Q₁Q₂/r²
where F is the force between two charges
k is the electrostatic constant which is also known as the coulomb constant,it has a value of 9×10⁹
Q₁ and Q₂ are the electric charges
r is the distance between the charges
As given in the problem two charges a 25μC charge exerts on a -10μC charge 8.5cm away
By substituting the respective values in the above formula of Coulomb law
F =9×10⁹×(25×10⁻⁶)×(-10×10⁻⁶)/(8.5×10⁻²)²
F= -311.4 N
A negative sign represents that the force is attractive in nature
Thus, the magnitude of the force is 311.4 N.
Learn more about Coulomb's law from here
https://brainly.com/question/506926
#SPJ2
Define wave length as applied to wave motion
Answer: Wavelength can be defined as the distance between two successive crests or troughs of a wave. It is measured in the direction of the wave.
Explanation:
Wavelength refers to the length or distance between two identical points of neighboring cycles of a wave signal traveling in space or in any physical medium. ... The wavelength of a signal is inversely proportional to its frequency, that is, the higher the frequency, the shorter the wavelength.
An electron is released from rest at a distance of 9.00 cm from a fixed proton. How fast will the electron be moving when it is 3.00 cm from the proton
Answer:
the speed of the electron at the given position is 106.2 m/s
Explanation:
Given;
initial position of the electron, r = 9 cm = 0.09 m
final position of the electron, r₂ = 3 cm = 0.03 m
let the speed of the electron at the given position = v
The initial potential energy of the electron is calculated as;
[tex]U_i = Fr = \frac{kq^2}{r^2} \times r = \frac{kq^2}{r} \\\\U_i = \frac{(9\times 10^9)(1.602\times 10^{-19})^2}{0.09} \\\\U_i = 2.566 \times 10^{-27} \ J[/tex]
When the electron is 3 cm from the proton, the final potential energy of the electron is calculated as;
[tex]U_f = \frac{kq^2}{r_2} \\\\U_f = [\frac{(9\times 10^9)\times (1.602 \times 10^{-19})^2}{0.03} ]\\\\U_f = 7.669 \times 10^{-27} \ J \\\\\Delta U = U_f -U_i\\\\\Delta U = (7.699\times 10^{-27} \ J ) - (2.566 \times 10^{-27} \ J)\\\\\Delta U = 5.133 \times 10^{-27} \ J[/tex]
Apply the principle of conservation of energy;
ΔK.E = ΔU
[tex]K.E_f -K.E_i = \Delta U\\\\initial \ velocity \ of \ the \ electron = 0\\\\K.E_f - 0 = \Delta U\\\\K.E_f = \Delta U\\\\\frac{1}{2} mv^2 = \Delta U\\\\where;\\\\m \ is \ the \ mass \ of\ the \ electron = 9.1 1 \times 10^{-31} \ kg\\\\v^2 = \frac{ 2 \Delta U}{m} \\\\v = \sqrt{\frac{ 2 \Delta U}{m}} \\\\v = \sqrt{\frac{ 2 (5.133\times 10^{-27})}{9.11\times 10^{-31}}}\\\\v = \sqrt{11268.935} \\\\v = 106.2 \ m/s[/tex]
Therefore, the speed of the electron at the given position is 106.2 m/s
A 700N marine in basic training climbs a 10m vertical rope at constant speed in 8sec. what is power put
Answer:
875 Watts
Explanation:
P = W/t = mgh/t = 700(10)/8 = 875 Watts
a. The molecules of a magnet are independent...
Answer:
variable
Explanation:
A uniform disk turns at 3.6 rev/s around a frictionless spindle. A non rotating rod, of the same mass as the disk and length equal to the disk's diameter, is dropped onto the freely spinning disk . They then both turn around the spindle with their centers superposed.
What is the angular frequency in rev/s of the combination?
please express answer in proper significant figures and rounding.
Answer:
ω₁ = 2.2 rev/s
Explanation:
Conservation of angular momentum
moment of inertia uniform disk is ½mR²
moment of inertia uniform rod about an end mL²/3
We can think of our rod as two rods of mass m/2 and length R
L = ½mR²ω₀
L = (½mR² + 2(m/2)R²/3)ω₁
ω₁ = ω₀(½mR² / (½mR² + mR²/3))
ω₁ = ω₀(½ / (½ + 1/3))
ω₁ = 0.6ω₀
ω₁ = 2.16
A 207-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope about the rim of the disk and pulling on the rope. What constant force would have to be exerted on the rope to bring the merry-go-round from rest to an angular speed of 0.750 rev/s in 2.00 s
Answer:
366 N
Explanation:
τ = Iα
FR = ½mR²α
F = ½mR(Δω/t)
F = ½(207)(1.50)(0.75)(2π) /2.00
F = 365.79919...
if C is the vector sum of A and B C=A+B what must be true about directions and magnitude of A and B if C=A+B? what must be true about the directions and magnitude of A and B if C=0
The vector sum is the algebraic sum if the two vectors have the same direction.
The sum vector is zero if the two vectors have the same magnitude and opposite direction
Vector addition is a process that can be performed graphically using the parallelogram method, see attached, where the second vector is placed at the tip of the first and the vector sum goes from the origin of the first vector to the tip of the second.
There are two special cases where the vector sum can be reduced to the algebraic sum if the vectors are parallel
case 1. if the two vectors are parallel, the sum vector has the magnitude of the sum of the magnitudes of each vector
case 2. If the two vectors are antiparallel and the magnitude of the two vectors is the same, the sum gives zero.
In summary in the sum of vectors If the vectors are parallel it is reduced to the algebraic sum, also in the case of equal magnitude and opposite direction the sum is the null vector
a) Magnitudes: [tex]\| \vec A\| \ge 0[/tex], [tex]\|\vec B\| \ge 0[/tex], [tex]\|\vec C\| \ge 0[/tex]; Directions: [tex]\theta_{A} \in (-\infty, +\infty)[/tex] for [tex]\|\vec A\|\ne 0[/tex]. Undefined for [tex]\|\vec A\| = 0[/tex], [tex]\theta_{B} \in (-\infty, +\infty)[/tex] for [tex]\|\vec B\|\ne 0[/tex]. Undefined for [tex]\|\vec B\| = 0[/tex], [tex]\theta_{C} \in (-\infty, +\infty)[/tex] for [tex]\|\vec C\|\ne 0[/tex]. Undefined for [tex]\|\vec C\| = 0[/tex].
b) Magnitudes: [tex]\|\vec A\| \ge 0[/tex], [tex]\|\vec B\| \ge 0[/tex], [tex]\|\vec C\| = 0[/tex]; Directions: [tex]|\theta_{A}-\theta_{B}| = 180^{\circ}[/tex], [tex]\theta_{C}[/tex] is undefined.
a) Let suppose that [tex]\vec A \ne \vec O[/tex], [tex]\vec B \ne \vec O[/tex] and [tex]\vec C \ne \vec O[/tex], where [tex]\vec O[/tex] is known as Vector Zero. By definitions of Dot Product and Inverse Trigonometric Functions we derive expression for the magnitude and directions of [tex]\vec A[/tex], [tex]\vec B[/tex] and [tex]\vec C[/tex]:
Magnitude ([tex]\vec A[/tex])
[tex]\|\vec A\| = \sqrt{\vec A\,\bullet\,\vec A}[/tex]
[tex]\| \vec A\| \ge 0[/tex]
Magnitude ([tex]\vec B[/tex])
[tex]\|\vec B\| = \sqrt{\vec B\,\bullet\,\vec B}[/tex]
[tex]\|\vec B\| \ge 0[/tex]
Magnitude ([tex]\vec C[/tex])
[tex]\|\vec C\| = \sqrt{\vec C\,\bullet \,\vec C}[/tex]
[tex]\|\vec C\| \ge 0[/tex]
Direction ([tex]\vec A[/tex])
[tex]\vec A \,\bullet \,\vec u = \|\vec A\|\cdot \|u\|\cdot \cos \theta_{A}[/tex]
[tex]\theta_{A} = \cos^{-1} \frac{\vec A\,\bullet\,\vec u}{\|\vec A\|\cdot \|u\|}[/tex]
[tex]\theta_{A} = \cos^{-1} \frac{\vec A\,\bullet\,\vec u}{\|\vec A\|}[/tex]
[tex]\theta_{A} \in (-\infty, +\infty)[/tex] for [tex]\|\vec A\|\ne 0[/tex]. Undefined for [tex]\|\vec A\| = 0[/tex].
Direction ([tex]\vec B[/tex])
[tex]\vec B\,\bullet \, \vec u = \|\vec B\|\cdot \|\vec u\| \cdot \cos \theta_{B}[/tex]
[tex]\theta_{B} = \cos^{-1} \frac{\vec B\,\bullet\,\vec u}{\|\vec B\|\cdot \|\vec u\|}[/tex]
[tex]\theta_{B} = \cos^{-1} \frac{\vec B\,\bullet\,\vec u}{\|\vec B\|}[/tex]
[tex]\theta_{B} \in (-\infty, +\infty)[/tex] for [tex]\|\vec B\|\ne 0[/tex]. Undefined for [tex]\|\vec B\| = 0[/tex].
Direction ([tex]\vec C[/tex])
[tex]\vec C \,\bullet\,\vec u = \|\vec C\|\cdot\|\vec u\|\cdot \cos \theta_{C}[/tex]
[tex]\theta_{C} = \cos^{-1}\frac{\vec C\,\bullet\,\vec u}{\|\vec C\|\cdot\|\vec u\|}[/tex]
[tex]\theta_{C} = \cos^{-1} \frac{\vec C\,\bullet\,\vec u}{\|\vec C\|}[/tex]
[tex]\theta_{C} \in (-\infty, +\infty)[/tex] for [tex]\|\vec C\|\ne 0[/tex]. Undefined for [tex]\|\vec C\| = 0[/tex].
Please notice that [tex]\vec u[/tex] is the Vector Unit.
b) Let suppose that [tex]\vec A \ne \vec O[/tex] and [tex]\vec B \ne \vec O[/tex] and [tex]\vec C = \vec O[/tex]. Hence, [tex]\vec A = -\vec B[/tex]. In other words, we find that both vectors are antiparallel to each other, that is, that angle between [tex]\vec A[/tex] and [tex]\vec B[/tex] is 180°. From a) we understand that [tex]\|\vec A\| \ge 0[/tex], [tex]\|\vec B\| \ge 0[/tex], but [tex]\|\vec C\| = 0[/tex].
Then, we have the following conclusions:
Magnitude ([tex]\vec A[/tex])
[tex]\|\vec A\| \ge 0[/tex]
Magnitude ([tex]\vec B[/tex])
[tex]\|\vec B\| \ge 0[/tex]
Magnitude ([tex]\vec C[/tex])
[tex]\|\vec C\| = 0[/tex]
Directions ([tex]\vec A[/tex], [tex]\vec B[/tex]):
[tex]|\theta_{A}-\theta_{B}| = 180^{\circ}[/tex]
Direction ([tex]\vec C[/tex]):
Undefined
Which was a major effect of Pope Leo III crowning Charlemagne emperor of the Romans ?
Answer:
The crowning of Charlemagne by Pope Leo III was significant in a number of ways. For Charlemagne, it was necessary because it encouraged to give him higher reliability. It gave him the rank of a dictator, giving him the only ruler in Europe west of the Byzantine emperor in Constantinople.
Develop a hypothesis regarding one factor you think might affect the period of a pendulum or an oscillating mass on a spring. Potential factors include the mass, the spring constant, and the length of the pendulum's string. Write down your hypothesis. 2. Design a controlled experiment to test your hypothesis. Take extreme care to keep all factors constant except the variable you are testing.
Answer:
A hypothesis for the period of a pendulum is:
"The period of the pendulum varies with its length"
Explanation:
A hypothesis for the period of a pendulum is:
"The period of the pendulum varies with its length"
To test this hypothesis we can carry out a measurement of a simple pendulum keeping the angle fixed, in general the angle used is about 5º since when placing this value in radiand and the sine of this angle they differ little <5%. therefore measured the time of some oscillations, for example about 10 oscillations, changing the length of the pendulum to test the hypothesis.
If the hypothesis and the model used is correct, the relationship to be tested is
T² =(4π² /g) L
by making a graph of the period squared against the length if obtaining, os a line, the hypothesis is tested.
A woman pulls on a 6.00-kg crate, which in turn is connected to a 4.00-kg
crate by a light rope. The light rope remains taut. Compared to the 6.00-kg crate,
the lighter 4.00-kg crate
Please explain why any of these multiple choices is correct!
Answer:
B. is subject to a smaller net force but same acceleration.
Explanation:
F = m*a
So because our force applied is constant from the women pulling on the rope which means the acceleration is the same on both the 4kg create and the 6kg create. The only thing that changes here is the mass of the creates, so there is more tension force between the women and the 6kg create then there is between the 4kg create and the 6kg. It takes less force to move the 4kg create therefore the tension force is less between the two creates.
The net force on both crates is the same and the acceleration of both crates is the same.
The given parameters;
mass of the crate, m = 6 kgmass of the second crate, = 4 kgThe force on the 4kg crate is calculated as follows;
[tex]F_{4kg } = T + F[/tex]
The force on the 6kg crate is calculated as follows;
[tex]F_{6 kg} = -T + F[/tex]
The net force on both crates is calculated as follows;
[tex]\Sigma F= -T + F - (T + F)\\\\\Sigma F= -2T[/tex]
Thus, we can conclude that the net force on both crates is the same and the acceleration of both crates is the same.
Learn more here:https://brainly.com/question/14361879
what are the limitation of clinical thermometer
Answer:
Their main disadvantage is that they are fairly easy to break and if they do, it results in small splinters of glass and the release of mercury which is quite toxic if absorbed into the body.