A solution of LiCl in water has XLiCl = 0.0800. What is the molality? A solution of LiCl in water has XLiCl = 0.0800. What is the molality? 4.44 m LiCl 8.70 m LiCl 4.83 m LiCl 4.01 m LiCl

Answers

Answer 1

Answer:

mol LiCl = 4.83 m

Explanation:

GIven:

Solution of LiCl in water XLiCl = 0.0800

Mol of water in kg = 55.55 mole

Find:

Molality

Computation:

mole fraction = mol LiCl / (mol water + mol LiCl)

0.0800 = mol LiCl / (55.55 mol + mol LiCl)

0.0800 mol LiCl + 4.444 mol = mol LiCl

mol LiCl - 0.0800 mol LiCl = 4.444 mol

0.92 mol LiCl = 4.444 mol

mol LiCl = 4.83 m


Related Questions

What is the balanced equation for the reaction of aqueous cesium sulfate and aqueous barium perchlorate?

Answers

Answer:

The balanced chemical reaction is given as:

[tex]Cs_2SO_4(aq)+Ba(ClO_4)_2(aq)\rightarrow BaSO_4(s)+2CsClO_4(aq)[/tex]

Explanation:

When aqueous cesium sulfate and aqueous barium perchlorate are mixed together it gives white precipitate barium sulfate and aqueous solution od cesium perchlorate.

The balanced chemical reaction is given as:

[tex]Cs_2SO_4(aq)+Ba(ClO_4)_2(aq)\rightarrow BaSO_4(s)+2CsClO_4(aq)[/tex]

According to reaction, 1 mole of cesium sulfate reacts with 1 mole of barium perchlorate to give 1 mole of a white precipitate of barium sulfate and 2 moles of cesium perchlorate.

Two elements represents by the letter Q and R atomic number 9 and 12 respectively. Write the electronic configuration of R​

Answers

Answer:

Atomic no = 12 = Mg

Explanation:

It is given that,

The atomic number of two elements that are represented by letter Q and R are 9 and 12.

We need to write the electronic configuration of R. Atomic number shows the number of protons in atom.

For R, atomic number = 12

Its electronic configuration is : 2,8,2

It has two valance electrons in its outermost shell. The element is Magnesium (Mg).

What would happen to the measured cell potentials if 30 mL solution was used in each half-cell instead of 25 mL

Answers

Answer:

The answer is "[tex]\bold{\log \frac{[0] mole}{[R]mole}}[/tex]"

Explanation:

[tex]E_{cell} =E_{cell}^{\circ} - \frac{0.0591}{n}= \log\frac{[0]}{[R]}\\[/tex]

In the above-given equation, we can see from [tex]E_{ceu}[/tex], of both oxidant [tex]conc^n[/tex]as well as the reactant were connected. however, weight decreases oxidant and reduction component concentration only with volume and the both of the half cells by the very same factor  and each other suspend

[tex]\to \log \frac{\frac{\text{oxidating moles}}{25 \ ml}}{\frac{\text{moles of reduction}}{25 ml}} \ \ = \ \ \log \frac{\frac{\text{oxidating moles}}{30 \ ml}}{\frac{\text{moles of reduction}}{30 ml}} \\\\\\[/tex]

[tex]\to {\log \frac{[0] mole}{[R]mole}}[/tex]

The cell potential of the electrochemical reaction has been the same when the volume has been reduced from 30 mL to 25 mL in each half cells.

The cell potential has been given as the difference in the potential of the two half cells in the electrochemical reaction.

The two cells has been set with the concentration of solutions in the oxidation and reduction half cells.

Cell potential change

The cell potential has been changed when there has been a change in the potential of the half cells.

The volume of 30 mL to the solution has been, resulting in the cell potential difference of x.

With the volume of 25 mL, there has been the difference in the potential being similar to the 30 mL solution, i.e. x.

Thus, the cell potential of the electrochemical reaction has been the same when the volume has been reduced from 30 mL to 25 mL in each half cells.

Learn more about cell potential, here:

https://brainly.com/question/1313684

Calculate the amount of heat that must be absorbed by 10.0 g of ice at –20°C to convert it to liquid water at 60.0°C. Given: specific heat (ice) = 2.1 J/g·°C; specific heat (water) = 4.18 J/g·°C; ΔH fus = 6.0 kJ/mol.

Answers

Answer:

The amount of heat to absorb is 6,261 J

Explanation:

Calorimetry is in charge of measuring the amount of heat generated or lost in certain physical or chemical processes.

The total energy required is the sum of the energy to heat the ice from -20 ° C to ice of 0 ° C, melting the ice of 0 ° C in 0 ° C water and finally heating the water to 60 ° C.

So:

Heat required to raise the temperature of ice from -20 °C to 0 °C

Being the sensible heat of a body the amount of heat received or transferred by a body when it undergoes a temperature variation (Δt) without there being a change of physical state (solid, liquid or gaseous), the expression is used:

Q = c * m * ΔT

Where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation (ΔT=Tfinal - Tinitial).

In this case, m= 10 g, specific heat of the ice= 2.1 [tex]\frac{J}{g*C}[/tex] and ΔT=0 C - (-20 C)= 20 C

Replacing: Q= 10 g*2.1 [tex]\frac{J}{g*C}[/tex] *20 C and solving: Q=420 J

Heat required to convert 0 °C ice to 0 °C water

The heat Q necessary to melt a substance depends on its mass m and on the called latent heat of fusion of each substance:

Q= m* ΔHfusion

In this case, being 1 mol of water= 18 grams: Q= 10 g*[tex]6.0 \frac{kJ}{mol} *\frac{1 mol of water}{18 g}[/tex]= 3.333 kJ= 3,333 J (being kJ=1,000 J)

Heat required to raise the temperature of water from 0 °C to 60 °C

In this case the expression used in the first step is used, but being: m= 10 g, specific heat of the water= 4.18 [tex]\frac{J}{g*C}[/tex] and ΔT=60 C - (0 C)= 60 C

Replacing: Q= 10 g*4.18 [tex]\frac{J}{g*C}[/tex] *60 C and solving: Q=2,508 J

Finally, Qtotal= 420 J + 3,333 J + 2,508 J

Qtotal= 6,261 J

The amount of heat to absorb is 6,261 J

The amount of heat to absorb is 6,261 J.

Calculation for heat:

Heat required to raise the temperature of ice from -20 °C to 0 °C.

The formula for specific heat is used to calculate the amount of heat

Q = c * m * ΔT

Where,

Q =heat exchanged by a body,

m= mass of the body

c= specific heat

ΔT= change in temperature

Given:

m= 10 g,

specific heat of the ice= 2.1

ΔT=0 C - (-20 C)= 20 C

On substituting the values:

Q= 10 g*2.1  *20 C

Q=420 J

Heat required to convert 0 °C ice to 0 °C water.

The heat Q necessary to melt a substance depends on its mass m and on the called latent heat of fusion of each substance:

Q= m* ΔHfusion

Heat required to raise the temperature of water from 0 °C to 60 °C

m= 10 g,

Specific heat of the water= 4.18  

ΔT=60 C - (0 C)= 60 C

On substituting:

Q= 10 g*4.18  *60 C

Q=2,508 J

Thus, Qtotal= 420 J + 3,333 J + 2,508 J

Qtotal= 6,261 J

The amount of heat to absorb is 6,261 J

Find more information about Specific heat here:

brainly.com/question/13439286

In which of the following compounds does the carbonyl stretch in the IR spectrum occur at the lowest wavenumber?

a. Cyclohexanone
b. Ethyl Acetate
c. λ- butyrolactone
d. Pentanamide
e. Propanoyl Chloride

Answers

Answer:

a. Cyclohexanone

Explanation:

The principle of IR technique is based on the vibration of the bonds by using the energy that is in this region of the electromagnetic spectrum. For each bond, there is a specific energy that generates a specific vibration. In this case, you want to study the vibration that is given in the carbonyl group C=O. Which is located around 1700 cm-1.

Now, we must remember that the lower the wavenumber we will have less energy. So, what we should look for in these molecules, is a carbonyl group in which less energy is needed to vibrate since we look for the molecule with a smaller wavenumber.

If we look at the structure of all the molecules we will find that in the last three we have heteroatoms (atoms different to carbon I hydrogen) on the right side of the carbonyl group. These atoms allow the production of resonance structures which makes the molecule more stable. If the molecule is more stable we will need more energy to make it vibrate and therefore greater wavenumbers.

The molecule that fulfills this condition is the cyclohexanone.

See figure 1

I hope it helps!

What's the mass in grams of 0.442 moles of calcium bromide, CaBr2? The atomic
weight of Ca is 40.1 and the atomic weight of Br is 79.9.
A) 452.3 g
B) 53.04 g
C) 44.2 g
D) 88.4 g

Answers

Answer:

Below

Explanation:

Let n be the quantity of matter in the Calcium Bromide

● n = m/ M

M is the atomic weight and m is the mass

M of CaBr2 is the sum of the atomic wieght of its components (2 Bromes atoms and 1 calcium atom)

M = 40.1 + 2×79.9

● 0.422 = m/ (40.1+2×79.9)

●0.422 = m/ 199.9

● m = 0.422 × 199.9

● m = 84.35 g wich is 88.4 g approximatively

88.4 g approximatively is  the mass in grams of 0.442 moles of calcium bromide, CaBr2 ,therefore option (d) is correct.

What do you mean by mass ?

Mass is the amount of matter that a body possesses. Mass is usually measured in grams (g) or kilograms (kg) .

To calculate mass in grams of 0.442 moles of calcium bromide, CaBr2,

Let n be the quantity of matter in the Calcium Bromide

M is the atomic weight and m is the mass

n = m/ M

M of CaBr2 is the sum of the atomic weight of its components

Mass of  Ca = 40.1 , Mass of Br = 79.9

M = 40.1 + 2×79.9

  0.422 = m/ (40.1+2×79.9)

  0.422 = m/ 199.9

  m = 0.422 × 199.9

  m = 84.35 g which is 88.4 g approximatively .

Thus ,88.4 g approximatively is  the mass in grams of 0.442 moles of calcium bromide, CaBr2 , hence option (d) is correct .

Learn more about  mass ,here:

https://brainly.com/question/6240825

#SPJ2

Im really confused and select all that apply questions scare me.

Answers

Answer:

The 3rd one

Explanation:

A hypothetical metal crystallizes with the face-centered cubic unit cell. The radius of the metal atom is 198 picometers and its molar mass is 195.08 g/mol. Calculate the density of the metal in g/cm3.

Answers

Answer:

7.38 g/cm³ is the density of the metal

Explanation:

In a Face-centered cubic unit cell you have 4 atoms. Also, the edge length is √8×r (r is radius of the atom).

To solve this problem, we need first to calculate the volume of the unit cell and then, with molar mass calculate the mass of 4 atoms. As density is the ratio between mass and volume we can obtain this value.

Volume of the unit cell

Volume = a³

a = √8×r

(r = 198x10⁻¹²m)

a = 5.6x10⁻¹⁰ m

Volume = 1.756x10⁻²⁸ m³

1m = 100cm → 1m³ = (100cm)³:

1.756x10⁻²⁸ m³× ((100cm)³ / 1m³) =

1.756x10⁻²² cm³ → Volume of the unit cell in cm³Mass of the unit cell:

There are 4 atoms of gold:

4 atoms × (1mol / 6.022x10²³ atoms) = 6.64x10⁻²⁴ moles of gold

As 1 mole weighs 195.08g:

6.64x10⁻²⁴ moles of gold × (195.08g / mol) =

1.296x10⁻²¹g is the mass of the unit cellDensity of the metal:

1.296x10⁻²¹g / 1.756x10⁻²² cm³ =

7.38 g/cm³ is the density of the metal

The density of the metal is 7.40 g/cm³

In cubic crystal system, face-centered cubic FFC is the name given to sort of atom arrangement observed in which structure is made up of atoms organized in a cube with a portion of an atom in each corner and six extra atoms in the center of each cube face.

It is expressed by using the formula:

[tex]\mathbf{\rho = \dfrac{Z \times M}{N_A\times a^}}[/tex]

where;

[tex]\rho[/tex] = density of the metalZ = atoms coordination no = 4 (for FCC)Molar mass (M) = 195.8 g/molAvogadro's constant (NA) = 6.022 × 10²³ /mola = edge length

For face-centered cubic FFC;

The edge length  [tex]\mathbf{a =2 \sqrt{2}\times r }[/tex]

[tex]\mathbf{a =2 \sqrt{2}\times 198 \ pm }[/tex]

[tex]\mathbf{a =560.0285 \ pm }[/tex]

a = 5.60 × 10⁻⁸ cm

Replacing it into the previous equation, we have:

[tex]\mathbf{\rho = \dfrac{4 \times 195.8}{6.022 \times 10^{23} \times( 5.60 \times 10^{-8} )^3}}[/tex]

[tex]\mathbf{\rho = 7.40\ g/cm^3 }[/tex]

Learn more about face-centered cubic arrangement here:

https://brainly.com/question/14786352?referrer=searchResults

Assume that you are provided with the following materials:
• Strips of metallic zinc, metallic copper, metallic iron
• 1M aqueous solutions of ZnSO4, CuSO4, FeSO4, and aqueous iodine(I2)
• Other required materials to create Voltaic cells such as beakers, porous containers, graphite rods, a voltmeter, and a few wires with alligator clips.
In this modified version of the lab, after thoroughly studying the lab hand out and watching the videos,identify 4 different combinations of Voltaic cells that are possible to be created with the above materials.For each cell created, include the following details.
A) Which electrode was the anode,and which was the Cathode?
B) The anode and cathode half reactions.
C) Balanced equation for each cell you propose to construct.
D) Calculated Eocelle Short hand notation (line notation) for each cell (be sure to include the inactive electrode if needed).

Answers

Answer:

See explanation

Explanation:

First voltaic cell;

Zn(s)|Zn^2+(aq)||Cu^2+(aq)|Cu(s)

Anode;

Zinc

Cathode;

Copper

Oxidation half equation;

Zn(s)------> Zn^2+(aq) + 2e

Reduction half equation;

Cu^2+(aq) +2e -----> Cu(s)

Overall; Zn(s) + Cu^2+(aq) -----> Zn^2+(aq) + Cu(s)

E°cell = 0.34 -(-0.76) =1.1 V

Second voltaic cell;

Zn(s)|Zn^2+(aq)||Fe^2+(aq)|Fe(s)

Anode;

Zinc

Cathode;

Iron

Oxidation half equation;

Zn(s)------> Zn^2+(aq) + 2e

Reduction half equation;

Fe^2+(aq) +2e -----> Fe(s)

Overall; Zn(s) + Fe^2+(aq) -----> Zn^2+(aq) + Fe(s)

E°cell = (-0.44) -(-0.76) = 0.32 V

Third voltaic cell;

Fe(s)|Fe^2+(aq)||Cu^2+(aq)|Cu(s)

Anode;

Iron

Cathode;

Copper

Oxidation half equation;

Fe(s)------> Fe^2+(aq) + 2e

Reduction half equation;

Cu^2+(aq) +2e -----> Cu(s)

Overall; Fe(s) + Cu^2+(aq) -----> Fe^2+(aq) + Cu(s)

E°cell = 0.34 -(-0.44) = 0.78 V

Fourth voltaic cell

Cu(s)|Cu^2+(aq)||I2(aq)|C(s)|I^-(aq)

Anode;

Copper

Cathode;

Graphite rod

Oxidation half equation;

Cu(s)------> Cu^2+(aq) + 2e

Reduction half equation;

I2(aq) +2e -----> 2I^-(aq)

Overall; Cu(s) + I2(aq) -----> Cu^2+(aq) + 2I^-(aq)

E°cell = 0.54 -0.34 = 0.20 V

How many atoms are in 65.0g of zinc?​

Answers

from

1moles=iatom

Mole=mass÷avogardos

Where

Avogadro's= 6.02×10²³

So moles = 65.0÷6.02×10²³

Atoms of zinc = 391.6 ×10²³

The number of atoms present in the given mass of Zinc that is 65.0gm is [tex]5.99\times10^{ 23}[/tex].

Atoms are the basic building blocks of matter. They are the smallest units of an element that retain the chemical properties of that element.

Now, to determine the number of atoms in a given number of moles, we can use Avogadro's number, which is approximately  [tex]6.022 \times10^{23}[/tex]atoms per mole.

First, we calculate the number of moles of zinc in 65.0g by dividing the given mass by the molar mass of zinc. The molar mass of zinc (Zn) is 65.38 g/mol.

Number of moles = Mass / Molar mass

Number of moles = 65.0g / 65.38 g/mol ≈ 0.9942 mol

Next, multiply the number of moles by Avogadro's number to find the number of atoms.

Number of atoms =[tex]Number of moles \times Avogadro's number[/tex]

Number of atoms = [tex]0.9942[/tex]mol × [tex]6.022 \times10^{23}[/tex] atoms/mol

Therefore, approximately [tex]5.99\times10^{ 23}[/tex] atoms are present in 65.0g of zinc.

Learn more about atoms here:

https://brainly.com/question/1566330

#SPJ2

An electrolysis cell has two electrodes. Which statement is correct? A. Reduction takes place at the anode, which is positively charged. B. Reduction takes place at the cathode, which is positively charged. C. Reduction takes place at the dynode, which is uncharged. D. Reduction takes place at the cathode, which is negatively charged. E. Reduction takes place at the anode, which is negatively charged.

Answers

Answer:

D. Reduction takes place at the cathode, which is negatively charged.

Explanation:

In an electrolytic cell there are two electrodes; the cathode and the anode. The anode is the positive electrode while the cathode is the negative electrode. Oxidation occurs at the anode while reduction occurs at the cathode.

At the anode, species give up electrons and become positively charged ions while at the cathode species accept electrons and become reduced.

Come up with a definition for density

Answers

Density measures how tightly packed particles are.

If particles are tightly packed together, they will be more dense.

If they are loosely together, they will be less dense.

However, a common mistake is thinking that if something

is more dense it means that it's heavier.

However, that's not the case.

It has to do with how particles are packed in an object.

Measures how tightly packed particles are

0.25 L of aqueous solution contains 0.025g of HCLO4 (strong acid) what will be the Ph of the solution g

Answers

Answer:

The pH of the solution will be 3

Explanation:

The strength of acids is determined by their ability to dissociate into ions in aqueous solution. A strong acid is any compound capable of completely and irreversibly releasing protons or hydrogen ions, H⁺. That is, an acid is said to be strong if it is fully dissociated into hydrogen ions and anions in solution.

Being pH=- log [H⁺] or pH= - log [H₃O⁺] and being a strong acid, all the HClO₃ dissociates:

HClO₄      +    H₂O        →      H₃O⁺      +      ClO₄-  

So: [HCLO₄]= [H₃O⁺]

The molar concentration is:

[tex]molar concentration=\frac{number of moles of solute}{volume solution}[/tex]

The molar mass of HClO₄ being 100 g / mole, then if 100 grams of the compound are present in 1 mole, 0.025 grams in how many moles are present?

[tex]moles of HClO_{4} =\frac{0.025 grams*1 mole}{100 grams}[/tex]

moles of HClO₄= 0.00025

Then:

[tex][HClO_{4}]=\frac{0.00025 moles}{0.25 L}[/tex]

[tex][HClO_{4}]=0.001 \frac{ moles}{ L}[/tex]

Being [HCLO₄]= [H₃O⁺]:

pH= - log 0.001

pH= 3

The pH of the solution will be 3

An atom of 120In has a mass of 119.907890 amu. Calculate the mass defect (deficit) in amu/atom. Use the masses: mass of 1H atom

Answers

Answer:

a

Explanation:

answer is a on edg

What is the ph of 0.36M HNO3 ?

Answers

Answer:

0.44

Explanation:

We know that the pH of any acid solution is given by the negative logarithm of its hydrogen ion concentration. Hence, if I can obtain the hydrogen ion concentration of any acid, I can obtain its pH.

For the acid, HNO3, [H^+] = [NO3^-]= 0.36 M

pH= -log [H^+]

pH= - log[0.36]

pH= 0.44

What is the final volume V2 in milliliters when 0.551 L of a 50.0 % (m/v) solution is diluted to 23.5 % (m/v)?

Answers

Answer:

[tex]V_2=1.17L[/tex]

Explanation:

Hello,

In this case, for dilution processes, we must remember that the amount of solute remains the same, therefore, we can write:

[tex]V_1C_1=V_2C_2[/tex]

Whereas V accounts for volume and C for concentration that in this case is %(m/v). In such a way, the final volume V2 turns out:

[tex]V_2=\frac{V_1C_1}{C_2}= \frac{0.551L*50.0\%}{23.5\%}\\ \\V_2=1.17L[/tex]

Best regards.

Refer to the figure.
30. How many planes are shown in the figure?
31. How many planes contain points B, C, and E?
32. Name three collinear points.
3. Where could you add point G on plane N
so that A, B, and G would be collinear?
4. Name a point that is not coplanar with
A, B, and C.
5. Name four points that are coplanar.
BN

Answers

Answer:

  30. 5 planes are shown

  31. 1 plane

  32. CEF

  33. on line AB

  34. E or F

   35. ABCD or BCEF or CDEF or ACEF

Explanation:

30. Each of the surfaces of the rectangular pyramid is a plane. There are 5 planes.

__

31. 3 points define one plane only.

__

32. The only points shown on the same line segment are points E, F, and C.

__

33. If G is to be collinear with A and B, it must lie on line AB.

__

34. The only points shown that are not on plane N are points E and F. Either of those will do.

__

35. There are three planes that have 4 points shown on them. The four points that are on the same plane are any of ...

ABCDBCEFCDEF

Plane ACEF is not shown on the diagram, but we know that those 4 points are also coplanar. (Any point not on line CE, together with the three points on that line, will define a plane with 4 coplanar points.)

place the following substances in Order of decreasing boiling point H20 N2 CO

Answers

Answer:

-195.8º < -191.5º < 100º

Explanation:

Water, or H20, starts boiling at 100ºC.

Nitrogen, or N2, starts boiling at -195.8ºC.

Carbon monoxide, or C0, starts boiling at -191.5ºC.

When we place these in order from decreasing boiling point:

-195.8º goes first, then -191.5º, and 100º goes last.

Answer:

therefore, N2, CO, H20

Decreasing boiling point

Explanation:

the bond existing in H2O is hydrogen bond

bond existing in N2 is covalent bond, force existing is dipole-dipole-interaction

bond existing in CO is covalent bond , force existing between is induced -dipole- induced dipole-interaction

hydrogen bond is the strongest , followed by dipole-dipole-interaction and induced -dipole- induced dipole-interaction

the stronger the bond , the higher the boiling point

therefore, N2, CO, H20

-------------------------------------->

Decreasing boiling point

please help guys the question is

give reasons

a. we have to separate the mixture

b. All impure substances are not harmful.

c. A mixture of iron fillings and sand can be separated by using a magnet

d. A sentences "shake before well use" is written on the bottle of the medicine.

Answers

Answer:

(a )people separate mixtures in order to ger a specific substance that they need.

"How much NH4Cl, when present in 2.00 liters of 0.200 M ammonia, will give a solution with pH = 8.20? For NH3, Kb = 1.8 x 10-5"

Answers

Answer:

245.66g of NH₄Cl is the mass we need to add to obtain the desire pH

Explanation:

The mixture of NH3/NH4Cl produce a buffer. We can find the pH of a buffer using H-H equation:

pH = pKa + log [A⁻] / [HA]

Where [A⁻] is the molar concentration of the base, NH₃, and [HA] molar concentration of the acid, NH₄⁺. This molar concentration can be taken as the moles of each chemical

First, we need to find pKa of NH₃ using Kb. Then, the moles of NH₃ and finally replace these values in H-H equation to solve moles of NH₄Cl we need to obtain the desire pH.

pKa NH₃/NH₄⁺

pKb = - log Kb

pKb = -log 1.8x10⁻⁵ = 4.74

pKa = 14 - pKb

pKa = 14 - 4.74

pKa = 9.26

Moles NH₃

2.00L ₓ (0.200mol NH₃ / L) = 0.400 moles NH₃

H-H equation:

pH = pKa + log [NH₃] / [NH₄Cl]

8.20 = 9.26 + log [0.400 moles] / [NH₄Cl]

-1.06 =  log [0.400 moles] / [NH₄Cl]

0.0087 =  [0.400 moles] / [NH₄Cl]

[NH₄Cl] = 0.400 moles / 0.0087

[NH₄Cl] = 4.59 moles of NH₄Cl we need to add to original solution to obtain a pH of 8.20. In grams (Using molar mass NH₄Cl=53.491g/mol):

4.59 moles NH₄Cl ₓ (53.491g / mol) =

245.66g of NH₄Cl is the mass we need to add to obtain the desire pH

NEED HELP ASAP
In 1988, three gray whales were trapped in Arctic ice. Television crews captured the frantic
attempts of hundreds of people to save the whales. Eventually, a Soviet icebreaker and U.S.
National Guard helicopters arrived to help free the whales. The cost of the rescue mission
exceeded $5 million.
i. Write a scientific question related to the whale story. (1 point)

Answers

How much was the cost for rescuing each whale?

A piece of plastic sinks in oil but floats in water. Place these three substances in order from lowest density to greatest density.

Answers

Answer:

[tex]\rho _{oil}<\rho _{plastic}<\rho _{water}[/tex]

Explanation:

Hello,

In this case, since water and oil are immiscible due to the oil's nonpolarity and water's polarity, when mixed, the oil remains on the water since it is less dense than water. In such a way, for a plastic sunk in the oil and floating on the water (in middle of them) we can conclude that the plastic have a mid density, therefore, the required organization is:

[tex]\rho _{oil}<\rho _{plastic}<\rho _{water}[/tex]

Best regards.

For a particular reaction at 235.8 °C, ΔG=−936.92 kJ/mol , and ΔS=513.79 J/(mol⋅K) . Calculate ΔG for this reaction at −9.9 °C.

Answers

Answer:

-138.9 kJ/mol

Explanation:

Step 1: Convert 235.8°C to the Kelvin scale

We will use the following expression.

K = °C + 273.15 = 235.8°C + 273.15 = 509.0 K

Step 2: Calculate the standard enthalpy of reaction (ΔH°)

We will use the following expression.

ΔG° = ΔH° - T.ΔS°

ΔH° = ΔG° / T.ΔS°

ΔH° = (-936.92kJ/mol) / 509.0K × 0.51379 kJ/mol.K

ΔH° = -3.583 kJ (for 1 mole of balanced reaction)

Step 3: Convert -9.9°C to the Kelvin scale

K = °C + 273.15 = -9.9°C + 273.15 = 263.3 K

Step 4: Calculate ΔG° at 263.3 K

ΔG° = ΔH° - T.ΔS°

ΔG° = -3.583 kJ/mol - 263.3 K × 0.51379 kJ/mol.K

ΔG° = -138.9 kJ/mol

The electrolysis of molten AlCl 3 for 2.50 hr with an electrical current of 15.0 A produces ________ g of aluminum metal.

Answers

Can we actually get more information

is the general formula of a certain hydrate. When 256.3 g of the compound is heated to drive off the water, 214.2 g of anhydrous compound is left. Further analysis shows that the percentage composition of the anhydrate is 21.90% Ca, 43.14% Se, and 34.97% O.. (Hint: Treat the anhydrous compound and water just as you have treated elements in calculating in the formula of the hydrate.) (Use an asterisk to enter the dot in the formula. If a subscript is 1, omit it.) Find the empirical formula of the anhydrous compound. Find the empirical formula of the hydrate.

Answers

Answer:

The general formula of the hydrate is Caa Seb Oc. nH2O. Based on the given information, the weight of the hydrated compound is 256.3 grams, the weight of the anhydrous compound is 214.2 grams.  

Therefore, the weight of water evaporated is 256.3 g - 214.2 g = 42.1 grams

The molecular weight of water is 18 gram per mole. So, the number of moles of water will be,  

Moles of water = weight of water/molecular weight

= 42.1 grams / 18 = 2.3

The given composition of calcium is 21.90 %. So, the concentration of calcium in anhydrous compound is,  

= 214.2 * 0.2190 = 46.91 grams

The given composition of Se is 43.14 %. So, the concentration of selenium in anhydrous compound is,

= 214.2 * 0.4314 = 92.40 grams

The given composition of oxygen is 34.97%, So, the concentration of oxygen in anhydrous compound is,  

= 214.2 * 0.3497 = 74.91 grams

The molecular weight of Ca is 40.078, the obtained concentration is 46.91 grams, stoichiometry will be, 46.91/40.078 = 1.17

The molecular weight of Se is 78.96, the obtained concentration is 92.40, stoichiometry will be,  

92.40/78.96 = 1.17

The molecular weight of Oxygen is 15.999, the concentration obtained is 74.91, the stoichiometry will be,  

74.91/15.999 = 4.68.  

Thus, the formula becomes, Ca1.17. Se1.1e O4.68. 2.3H2O, the closest actual component is CaSeO4.2H2O

A saturated sodium carbonate solution at 0°C contains 7.1 g of dissolved sodium carbonate per 100. mL of solution. The solubility product constant for sodium carbonate at this temperature is

Answers

Answer:

[tex]Ksp=1.2[/tex]

Explanation:

Hello,

In this case, as the saturated solution has 7.1 grams of sodium carbonate, the solubility product is computed by firstly computing the molar solubility by using its molar mass (106 g/mol):

[tex]Molar \ solubility=\frac{7.1gNa_2CO_3}{0.1L}*\frac{1molNa_2CO_3}{106gNa_2CO_3}=0.67M[/tex]

Next, as its dissociation reaction is:

[tex]Na_2CO_3(s)\rightleftharpoons 2Na^+(aq)+CO_3^{2-}(aq)[/tex]

The equilibrium expression is:

[tex]Ksp=[Na^+]^2[CO_3^{2-}][/tex]

And the concentrations are related with the molar solubility (2:1 mole ratio between ionic species):

[tex]Ksp=(2*0.67)^2*(0.67)\\\\Ksp=1.2[/tex]

Best regards.

When we react a weak acid with a strong base of equal amounts and concentration, the component of the reaction that will have the greatest effect on the pH of the solution is:______.
a. the acid.
b. the base.
c. the conjugate acid.
d. the conjugate base.

Answers

Answer:

d. the conjugate base.

Explanation:

The general reaction of a weak acid, HA, with a strong base YOH, is:

HA + YOH → A⁻ + H₂O + Y⁻

Where A⁻ is the conjugate base of the weak acid and Y⁻ usually is a strong electrolyte.

That means after he complete reaction you don't have weak acid nor strong base, just conjugate base that will be in equilibrium with water, thus (Strong electrolyte doesn't change pH:

A⁻ + H₂O ⇄ HA + OH⁻

As the equilibrium is producing OH⁻, the pH of the solution is being affected for the conjugate base

Right option:

d. the conjugate base.

The surface temperature on Venus may approach 753 K. What is this temperature in degrees Celsius?

Answers

Answer:

461.85 degrees Celsius

Calculate the [H+] and pH of a 0.0010 M acetic acid solution. The Ka of acetic acid is 1.76×10−5. Use the method of successive approximations in your calculations.

Answers

Answer:

[tex][H^+]=0.000123M[/tex]

[tex]pH=3.91[/tex]

Explanation:

Hello,

In this case, dissociation reaction for acetic acid is:

[tex]CH_3COOH\rightleftharpoons CH_3COO^-+H^+[/tex]

For which the equilibrium expression is:

[tex]Ka=\frac{[CH_3COO^-][H^+]}{[CH_3COOH]}[/tex]

Which in terms of the reaction extent [tex]x[/tex] could be written as:

[tex]1.74x10^{-5}=\frac{x*x}{[CH_3COOH]_0-x}=\frac{x*x}{0.0010M-x}[/tex]

Thus, solving by using a solver or quadratic equation we obtain:

[tex]x_1=0.000123M\\\\x_2=-0.000141M[/tex]

And clearly the result is 0.000123M, which also equals the concentration of hydronium ion in solution:

[tex][H^+]=0.000123M[/tex]

Now, the pH is computed as follows:

[tex]pH=-log([H^+])=-log(0.000123)\\\\pH=3.91[/tex]

Best regards.

The normal boiling point of a liquid is 282 °C. At what temperature (in °C) would the vapor pressure be 0.350 atm? (∆Hvap = 28.5 kJ/mol)

Answers

Answer:

The temperature at which the vapor pressure would be 0.350 atm is 201.37°C

Explanation:

The relationship between variables in equilibrium between phases of one component system e.g liquid and vapor, solid and vapor , solid and liquid can be obtained from a thermodynamic relationship called Clapeyron equation.

Clausius- Clapeyron Equation can be put in a more convenient form applicable to vaporization and sublimation equilibria in which one of the two phases is gaseous.

The equation for Clausius- Clapeyron Equation can be expressed as:

[tex]\mathtt{In \dfrac{P_2}{P_1}= \dfrac{\Delta \ H _{vap}}{R} \begin {pmatrix} \dfrac{T_2 -T_1}{T_2 \ T_1} \end {pmatrix} }[/tex]

where ;

[tex]P_1[/tex] is the vapor pressure at temperature 1

[tex]P_ 2[/tex] is the vapor pressure  at temperature 2

∆Hvap = enthalpy of vaporization

R = universal gas constant

Given that:

[tex]P_1[/tex] = 1 atm

[tex]P_ 2[/tex]  = 0.350 atm

∆Hvap = 28.5 kJ/mol = 28.5 × 10³ J/mol

[tex]T_1[/tex] = 282 °C  = (282 + 273) K = 555 K

R = 8.314 J/mol/k

Substituting the above values  into the Clausius - Clapeyron equation, we have:

[tex]\mathtt{In \dfrac{P_2}{P_1}= \dfrac{\Delta \ H _{vap}}{R} \begin {pmatrix} \dfrac{T_2 -T_1}{T_2 \ T_1} \end {pmatrix} }[/tex]

[tex]\mathtt{In \begin {pmatrix} \dfrac{0.350}{1} \end {pmatrix} } = \dfrac{28.5 \times 10^3 }{ 8.314 } \begin {pmatrix} \dfrac{T_2 - 555}{555T_2} \end {pmatrix} }[/tex]

[tex]\mathtt{In \begin {pmatrix} \dfrac{0.350}{1} \end {pmatrix} } = \dfrac{28.5 \times 10^3 }{ 8.314 } \begin {pmatrix} \dfrac{1}{555}- \dfrac{1}{T_2} \end {pmatrix} }[/tex]

[tex]- 1.0498= 3427.953 \begin {pmatrix} \dfrac{1}{555}- \dfrac{1}{T_2} \end {pmatrix} }[/tex]

[tex]\dfrac{- 1.0498}{3427.953}= \begin {pmatrix} \dfrac{1}{555}- \dfrac{1}{T_2} \end {pmatrix} }[/tex]

[tex]- 3.06246906 \times 10^{-4}= \begin {pmatrix} \dfrac{1}{555}- \dfrac{1}{T_2} \end {pmatrix} }[/tex]

[tex]\dfrac{1}{T_2} = \begin {pmatrix} \dfrac{1}{555}+ (3.06246906 \times 10^{-4} ) \end {pmatrix} }[/tex]

[tex]\dfrac{1}{T_2} = 0.002108048708[/tex]

[tex]T_2 = \dfrac{1}{0.002108048708}[/tex]

[tex]\mathbf{T_2 }[/tex] =  474.37 K

To °C ; we have [tex]\mathbf{T_2 }[/tex] =   (474.37 - 273)°C

[tex]\mathbf{T_2 }[/tex] =  201.37 °C

Thus, the temperature at which the vapor pressure would be 0.350 atm is 201.37 °C

The temperature of the liquid at the given vapor pressure is 201.5 ⁰C.

The given parameters;

boiling point temperature, = 282 ⁰Cvapor pressure, P₂ = 0.35 atmenthalpy of vaporization, ∆Hvap = 28.5 kJ/mol

The temperature of the liquid will be determined by applying Clausius- Clapeyron Equation;

[tex]ln(\frac{P_2}{P_1} ) = \frac{\Delta H}{R} (\frac{T_2 -T_1}{T_1T_2} )[/tex]

where;

R is ideal gas constant = 8.314 J/mol.kT₁ is the initial temperature in Kelvin = 282 + 273 = 555 KP₁ is the initial pressure = 1 atm

[tex]ln(\frac{P_2}{P_1} ) = \frac{\Delta H}{R} (\frac{T_2 -T_1}{T_1T_2} )\\\\ln(\frac{0.35}{1} ) = \frac{28.5 \times 10^3}{8.314} (\frac{T_2 - 555}{555T_2} )\\\\-1.049 = 6.176- \frac{3427.95}{T_2} \\\\\frac{3427.95}{T_2} = 6.176 + 1.049\\\\\frac{3427.95}{T_2} = 7.225\\\\T_2 = \frac{3427.95}{7.225} \\\\T_2 = 474.5 \ K\\\\T_2 = 474.5 - 273 = 201.5 \ ^0C[/tex]

Thus, the temperature of the liquid at the given vapor pressure is 201.5 ⁰C.

Learn more here:https://brainly.com/question/1077674

Other Questions
isted below are amounts (in millions of dollars) collected from parking meters by a security service company and other companies during similar time periods. Do the limited data listed here show evidence of stealing by the security service company's employees? Security Service Company: 1.5 1.7 1.6 1.4 1.7 1.5 1.8 1.4 1.4 1.5 Other Companies: 1.8 1.9 1.6 1.7 1.8 1.9 1.6 1.5 1.7 1.8 Find the coefficient of variation for each of the two samples, then compare the variation. The coefficient of variation for the amount collected by the security service company is nothing%. (Round to one decimal place as needed.) What major geographical advantage does agriculture in the Coastal South have over most other regions of North America Assume you dissolve 0.235 g of the weak benzoic acid, C6H5CO2H in enough water to make 100.0 mL of the solution and then titrate the solution with 0.108 M NaOH. Benzoic acid is a monoprotic acid. 1. What is the pH of the original benzoic acid solution before the titration is started? 2. What is the pH when 7.00 mL of the base is added? (Hint: This is in the buffer region.) 3. What is the pH at the equivalence point? The two major river astems in China that flow from the wst to the Pacific Ocean Question 2: Jamie has a jar of coins containing the same number of nickels, dimes and quarters. The total value of the coins in the jar is 13.20. How many nickels does Jamie have? Plzzzzz help ASAP!!!!!! Solve: x/32=15/20 If the lead concentration in water is 1 ppm, then we should be able to recover 1 mg of lead from _____ L of water. history of clothing Need Assitance*Show Work* Sweet Leaf Tea,a Texas-based maker of bottled iced tea,is a small but fast-growing firm that has gained a loyal following for its use of fresh,organic ingredients in its beverages.Although beverage industry experts recommended that Sweet Leaf replace the organic cane sugar and honey it uses with less costly high-fructose corn syrup,Sweet Leaf refused because of the company's mission to provide a high-quality,organic beverage to consumers.The 11-year-old company has 50 employees,and its products are available in 30% of the U.S.market.Sweet Leaf Tea recently received multimillion dollar investments which will enable the business to expand its national presence. Which of the following,if true,would most likely undermine the argument that Sweet Leaf Tea should implement a corporate-level strategy of vertical integration?A) Sweet Leaf Tea lacks the facilities or knowledge to produce the raw ingredients for its beverages.B) Market research suggests that Sweet Leaf Tea customers primarily purchase only one flavor of tea.C) Most loyal customers of Sweet Leaf Tea purchase the beverage at neighborhood convenience stores.D) Sweet Leaf Tea has decided to lower its prices by replacing cane sugar with corn syrup in some of its beverages. As the language changed from Old to Middle to Modern English, many _________ were dropped. Each cylinder is 12 cm high with a diameter of 8 cm.Calculate the volume of each cylinder.Use 3 as a value for Give your answer using the correct units. Design a webpage on Artificial Intelligence/augmented reality DatePagein the past not tradethink ourour peopleyouWhy dolarge scale?in a PLEASE HELP ASAP! If t is a real number, what is the maximum possible value of the expression -t^2 + 8t -4? Explain the concept of an opportunity cost with an appropriate example Which two of the following are ways in which Englands monarchy changed after the Glorious Revolution? A) The idea of divine right ended in England. B)Women were not allowed to reign as monarchs. C)Parliament became the supreme legal body. D)The House of Lords was abolished. E)Monarchs faced limits on the length of their reign. (-6x)(y)(-z) what is the product? Tara placed a grape in a solution, after sometime she noticed that the grape started to shrink. a.Name the solution and explain.b.Then Tara placed the raisin in a solution and noticed it started to swell up. Name the solution and explain What is the solution of the linear equation? LaTeX: 5k\:+\:3.8\:=\:3k\:+\:95 k + 3.8 = 3 k + 9 Group of answer choices 26 6.4 .065 2.6