Answer:
The margin of error is [tex]E = 1.96 * \frac{ 0.92}{\sqrt{28 } }[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 28[/tex]
The sample mean is [tex]\= x = 2.4 \ hr[/tex]
The standard deviation is [tex]\sigma = 0.92 \ hr[/tex]
Given that the confidence level is 95% the the level of significance can be evaluated as
[tex]\alpha = 100 -95[/tex]
[tex]\alpha = 5 \%[/tex]
[tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table,the value is [tex]Z_{\frac{\alpha }{2} } = Z_{\frac{0.05}{2} } = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]E = 1.96 * \frac{ 0.92}{\sqrt{28 } }[/tex]
[tex]E = 0.3408[/tex]
Suppose we want to choose 6 colors, without replacement, from 14 distinct colors. (a) How many ways can this be done, if the order of the choices matters? (b) How many ways can this be done, if the order of the choices does not matter?
Answer:
(a) 2,162,160
(b) 3,003
Step-by-step explanation:
(a) order matters
You can choose from 14 for the first pick. Then you have 13 left for the second pick. Then you have 12 left for the third pick. Keep going until you have 9 left for the 6th pick. The number when order matters is:
total = 14 * 13 * 12 * 11 * 10 * 9 = 2,162,160
(b) Order does not matter
Start with the same number as above for picking 6 out of 14. Since order does not matter, we divide by the number of ways you can arrange 6 items.
Since there are 6! ways of arranging 6 items,
total = 2,162,160/6! = 3,003
The number of ways when the order matters are 121080960.
The number of ways when order does not matters are 3003.
Given,
Choose 6 colors, without replacement, from 14 distinct colors.
We have to find:
- How many ways can this be done, if the order of the choices matters.
- How many ways can this be done if the order of the choices does not matter.
What are permutation and combination?We use permutation when the order of the arrangements matters.
It is given by:
[tex]^ nP_r[/tex] = n! / r!
We use combination when order does not matter.
It is given by:
[tex]^nC_{r}[/tex] = n! / r! (n-r)!
Find the number of ways when order matters.
We have,
n = 14 and r = 6
[tex]^{14}P_{6}[/tex]
= 14! / 6!
= (14 x 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6!) / 6!
= 4 x 13 x 12 x 11 x 10 x 9 x 8 x 7
= 121080960
Find the number of ways when order does not matter.
We have,
n = 14 and r = 6
[tex]^{14}C_{6}[/tex]
= 14! / 6! 8!
= 14 x 13 x 12 x 11 x 10 x 9 / 6 x 5 x 4 x 3 x 2
= 7 x 13 x 11 x 3
= 3003
Thus,
The number of ways when the order matters are 121080960.
The number of ways when order does not matters are 3003.
Learn more about combination here:
https://brainly.com/question/28134115
#SPJ2
HELP PLEASE PLEASE :(
Answer:
16
Step-by-step explanation:
It’s a ratio.
x/12=21/28
21x=12*28
21x=336
x=336/21
x=16
If f(x)=4x-6 and g(x) vx+2 what is (f*g)(7)
Answer: The value of (f*g)(7) is 66.
Step-by-step explanation:
Given functions: [tex]f(x)= 4x-6\text{ and } g(x)=\sqrt{x+2}[/tex]
Since, product of two functions: [tex](u*v)(x)=u(x)\times v(x)[/tex]
[tex](f*g)(x)=f(x)\times g(x)\\\\=4x-6\times \sqrt{x+2}\\\\\Rightarrow\ (f*g)(x)=(4x-6) \sqrt{x+2}[/tex]
[tex](f*g)(7)=(4(7)-6)\sqrt{7+2}\\\\=(28-6)\sqrt{9}\\\\=22\times 3=66[/tex]
Hence, the value of (f*g)(7) is 66.
A researcher measures daily driving distance from college and weekly cost of gas for a group of commuting college students. What kind of correlation is likely to be obtained for these two variables?
Answer:
There is a positive correlation between these two variables.
Step-by-step explanation:
Positive correlation is an association amid two variables in which both variables change in the same direction.
A positive correlation occurs when one variable declines as the other variable declines, or one variable escalates while the other escalates.
As the distance covered by the vehicle increases the amount of gas consumed also increases. Thus, the weekly cost of gas will also increase.
Thus, there is a positive correlation between these two variables.
(-1, 4) and (-2, 2).
Answer:
Slope : 2
slope-intercept: y = 2x + 6
Point-slope (as asked): y - 4 = 2 (times) (x + 1)
standered: 2x - y = -6
Step-by-step explanation:
State the correct polar coordinate for the graph shown:
Answer:
Solution : ( - 5, 5π / 4 )
Step-by-step explanation:
There are four cases to consider here, the first two with respect to r > 0, the second two with respect to r < 0. r is the directed distance from the pole, and theta is the directed angle from the positive x - axis. Let's start by listing coordinates when r is positive. r here is 5 units from the positive x - axis.
( 5, θ ) theta here is between 30 and 60 degrees, so we can say it's about 45 degrees.
( 5, θ ) theta here is the remaining negative side of 360 - 45 = 315. That would make it - 315.
And when r is negative ( r < 0 ),
( - 5, θ ) now the point is going to lie on the ray pointing in the opposite direction of the terminal side of theta. This will be 45 degrees more than 180, or 180 + 45 = 225 degrees.
Right away we know that ( - 5, 225° ) is our solution, we don't have to consider the second case. Converting 225 to radians in terms of π will be 5π / 4 radians, giving us a solution of ( - 5, 5π / 4 ) or option b.
6. If x + 2 is the only factor of the polynomial P(x),then P(2) is:
Options:
A. Cannot be determined
B. Not Zero
C. R(2)
D. Zero
Answer:
P(x) = x + 2p(2) = 2 + 2 p(2) = 4So option B is the answer.
If x + 2 is the only factor of the polynomial P(x) then we need to find the P(2) is Not Zero. Therefore, the option B is the correct answer.
What is standard form of a polynomial?Suppose the considered polynomial is of only one variable.
Then, the standard form of that polynomial is the one in which all the terms with higher exponents are written on left side to those which have lower exponents.
Given information;
If x + 2 is the only factor of the polynomial P(x) then we need to find the P(2) :
P(x) = x + 2
p(2) = 2 + 2
p(2) = 4
The P(2) is Not Zero.
Therefore, the option B is the correct answer.
Learn more about standard form of a polynomial here:
https://brainly.com/question/15313798
#SPJ5
A random sample of 11 students produced the following data, where x is the hours spent per month playing games, and y is the final exam score (out of a maximum of 50 points). The data are presented below in the table of values.
x y
14 46
15 49
16 37
17 42
18 37
19 31
20 25
21 23
22 20
23 15
24 12
What is the value of the intercept of the regression line, b, rounded to one decimal place?
Answer:
b = - 3.7
Step-by-step explanation:
here are the data values:
x y XY X²
14 46 644 196
15 49 735 225
16 37 592 256
17 42 714 289
18 37 666 324
19 31 589 361
20 25 500 400
21 23 483 441
22 20 440 484
23 15 345 529
24 12 288 576
now we are required to find the summation (total) of all values of X, Y, XY and X².
∑X = 209
∑Y = 337
∑XY = 5996
∑X² = 4081
The formular for finding b is given as:
b = n∑XY - (X)(Y) / n∑X² - (∑X)²
= 11(5996) - (209)(337) / 11(4081) - (209)²
= 65956 - 70433 / 44891 - 43681
= -4477/ 1210
= -3.7
The question asked us to find the value of b but we can go further to find the equation of the regression line:
a = ∑Y - b∑X / n
= 337 - (-3.7)(209)/ 11
=1110.3/11
= 100.94
the equation is:
Y = 100.94 - 3.7X
I hope you find my solution useful!
=
if P(x)=1+6x-5x^2 represents the profit in selling x thousand Boombotix speakers, how many speakers should be sold to maximize profit?
Answer:
600
Step-by-step explanation:
[tex]p(x) = 1 + 6x - 5x^2[/tex]
x max = [tex]-b/2a[/tex]
a = -5
b = 6
-6/2(-5) = 6/10 = 3/5 = .6
.6 thousand = 600
600 speakers should be sold.
Alternatively, you can check the vertex of the parabola formed.
Consider a bag of jelly beans that has 30 red, 30 blue, and 30 green jelly beans. a) How many color combinations of 15 beans have at least 6 green beans
Answer:
680
Step-by-step explanation:
Number of red beans = 30
Number of Blue beans = 30
Number of green beans = 30
How many color combinations of 15 beans have at least 6 green beans?
Since at least 6 of the beans must be green,
Then (15 - 6) = 9
Then, the remaining 9 could be either red, blue or green.
Therefore, C(9 + (9 - 1), 3)
C(17, 3) = 17C3
nCr = n! ÷ (n-r)! r!
17C3 = 17! ÷ (17 - 3)! 3!
17C3 = 17! ÷ 14!3!
17C3 = (17 * 16 * 15) / (3 * 2)
17C3 = 4080 / 6
17C3 = 680 ways
Using the combination formula, it is found that there are 17,157,323,000,000,000 color combinations of 15 beans have at least 6 green beans.
The order in which the beans are chosen is not important, hence, the combination formula is used to solve this question.
Combination formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by:
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
Th total number of combinations of 15 beans from a set of 30 + 30 + 30 = 90 is:
[tex]C_{90,15} = \frac{90!}{15!75!} = 45795674000000000[/tex]
With less than 6 green, we have:
0 green:
[tex]C_{30,0}C_{60,15} = \frac{60!}{15!45!} = 53194089000000[/tex]
1 green:
[tex]C_{30,1}C_{60,14} = \frac{30!}{1!29!} \times \frac{60!}{14!46!} = 520376960000000[/tex]
2 green:
[tex]C_{30,2}C_{60,13} = \frac{30!}{2!28!} \times \frac{60!}{13!47!} = 2247585600000000[/tex]
3 green:
[tex]C_{30,3}C_{60,12} = \frac{30!}{3!27!} \times \frac{60!}{12!48!} = 5681396900000000[/tex]
4 green:
[tex]C_{30,4}C_{60,11} = \frac{30!}{4!26!} \times \frac{60!}{11!49!} = 9391696900000000[/tex]
5 green:
[tex]C_{30,5}C_{60,10} = \frac{30!}{5!25!} \times \frac{60!}{10!50!} = 10744101000000000[/tex]
Hence, the total for the number of combinations with less than 5 green is:
[tex]53194089000000 + 520376960000000 + 2247585600000000 + 5681396900000000 + 9391696900000000 + 10744101000000000 = 28638351000000000[/tex]
Subtracting the total amount of combinations from the number with less than 5 green, the number of combinations with at least 6 green is:
[tex]T = 45795674000000000 - 28638351000000000 = 17157323000000000[/tex]
There are 17,157,323,000,000,000 color combinations of 15 beans have at least 6 green beans.
A similar problem is given at https://brainly.com/question/24437717
A Markov chain has 3 possible states: A, B, and C. Every hour, it makes a transition to a different state. From state A, transitions to states B and C are equally likely. From state B, transitions to states A and C are equally likely. From state C, it always makes a transition to state A.
(a) If the initial distribution for states A, B, and C is P0 = ( 1/3 , 1/3 , 1/3 ), find the distribution of X2
(b) Find the steady state distribution by solving πP = π.
Answer:
A) distribution of x2 = ( 0.4167 0.25 0.3333 )
B) steady state distribution = [tex]\pi a \frac{4}{9} , \pi b \frac{2}{9} , \pi c \frac{3}{9}[/tex]
Step-by-step explanation:
Hello attached is the detailed solution for problems A and B
A) distribution states for A ,B, C:
Po = ( 1/3, 1/3, 1/3 ) we have to find the distribution of x2 as attached below
after solving the distribution
x 2 = ( 0.4167, 0.25, 0.3333 )
B ) finding the steady state distribution solving
[tex]\pi p = \pi[/tex]
below is the detailed solution and answers
algebra and trigonometry difference
Answer:
Algebra deals with knowing the value of unknown variables and functional relationships, while trigonometry touches on triangles, sides and angles and the relationship between them.
Algebra is more on polynomial equations, x and y while trigonometry more on sine, cosine, tangent, and degrees.
Trigonometry is much more complicated than algebra but algebra has its uses in our daily lives, be it calculating distance from point to another or determining the volume of milk in a milk container.
Step-by-step explanation:
Answer:
Although both Algebra II and Trigonometry involve solving mathematical problems, Algebra II focuses on solving equations and inequalities while Trigonometry is the study of triangles and how sides are connected to angles.
hope this answer helps u
pls mark as brainliest .-.
a sheet metal worker earns $26.80 per hour after receiving a 4.5% raise. what was the sheet metal worker's hourly pay before raise? Round your answer to the nearest cent
Answer
$25.59
Step-by-step explanation:
subtract by percentage or you can also do:
100% - 4.5% = 95.5%
95.5% x $26.80 = $25.594
IF ROUNDED: $25.59
Answer:
$25.65
Step-by-step explanation:
Let the original hourly rate be r.
Then 1.045r + $26.80/hr.
Dividing both sides by 1.045, we get:
$26.80/hr
r = ------------------ = $25.65 This was the before-raise pay rate.
1.045
(math and social studies) The two lines are messing me up and I'm not sure
Answer:
2009
Step-by-step explanation:
A deficit would be the least amount coming in (Revenues). and the most going out (Expenditures). So you look for the biggest gap. It appears the gap is largest in 2009.
Divide. Write the quotient in lowest terms. 3 3/4 ÷ 5/7
Rewrite 3 3/4 as an improper fraction
3 3/4 = 15/4
Now you have
15/5 / 5/7
When you divide fractions, change the division to multiplication and flip the second fraction over:
15/4 x 7/5
Now multiply the top numbers together and the bottom numbers together:
( 15 x 7) / (4 x 5) = 105/20
Write as a proper fraction:
105/20 = 5 1/4
Kelvin wants to know whether he skied without falling more than twice as long as anyone else in his family. His dad tells him that he can check by using the inequality 2f < 223, where f is the time skied in seconds for each person. Plug the values for the time skied by each person into the inequality to find the answer.
Lori 55
Vanessa 265
Devon 172
Celia 112
Arnold 356
Answer:
Kelvin did not skied without falling more than twice as long as anyone else in his family.
Step-by-step explanation:
The inequality representing the event where Kelvin skied without falling more than twice as long as anyone else in his family is:
[tex]2f<223[/tex]
Here 223 is the time for Kelvin.
Check for Lori as follows:[tex]2f<223[/tex]
[tex]2\times 55=110<223[/tex]
Kelvin skied without falling more than twice as long as Lori.
Check for Vanessa as follows:[tex]2f<223[/tex]
[tex]2\times 265=530>223[/tex]
Kelvin skied without falling less than twice as long as Vanessa.
Check for Devon as follows:[tex]2f<223[/tex]
[tex]2\times 172=344>223[/tex]
Kelvin skied without falling less than twice as long as Devon.
Check for Celia as follows:[tex]2f<223[/tex]
[tex]2\times 112=224>223[/tex]
Kelvin skied without falling less than twice as long as Celia.
Check for Arnold as follows:[tex]2f<223[/tex]
[tex]2\times 356=712>223[/tex]
Kelvin skied without falling less than twice as long as Arnold.
Thus, Kelvin did not skied without falling more than twice as long as anyone else in his family.
Answer:
Yes, Kevin skied 2x as long as Lori.
Step-by-step explanation:
Kevin's time was 223 seconds; Lori's time was 110 seconds.
110^2 = 220 or 110 multiplied by 2 equals 220 or 110 x 2 = 220 or
110 * 2 = 220
Thus, Kevin indeed, skied twice as long as Lori.
Use the model to show to help find the sum 0.34 plus 0.49
Answer/Step-by-step explanation:
The idea to use in solving this problem using the model, is to express the number of shaded boxes in fraction form.
Thus, the blue red shaded boxes has 34 boxes shaded out of 100 boxes. This represents [tex] \frac{34}{100} [/tex]. This will give us 0.34.
The other shaded boxes represents [tex] \frac{49}{100} = 0.49 [/tex].
Using the model, we can solve 0.34 + 0.49.
Add both fractions together.
[tex] \frac{34}{100} + \frac{49}{100} = \frac{34+49}{100} [/tex]
[tex] \frac{83}{100} = 0.83 [/tex]
About how many feet are in 3.6 kilometers? 1 m = 39.37 in
Answer:
11811 feet
Step-by-step explanation:
Hope it helps!
There are about 11,812 feet in 3.6 kilometers.
To convert kilometers to feet, we need to use the conversion factor:
1 kilometer = 3,280.84 feet.
Now, to find how many feet are in 3.6 kilometers,
we can multiply 3.6 by the conversion factor:
So, 3.6 kilometers x 3,280.84 feet/kilometer
= 11,811.504 feet.
Thus, Rounded to a whole number, there are about 11,812 feet in 3.6 kilometers.
Learn more about Unit Conversion here:
https://brainly.com/question/14573907
#SPJ6
If AD=2/3AB, the ratio of the length of BC to the length of DE is A. 1/6 B. 1/4 C. 3/2 D. 3/4
Answer:
The correct answer is c
Step-by-step explanation:
Answer:
C.) 3/2
Explanation:
PLATO
Find the distance between the points. Give an exact answer and an approximation to three decimal places.
(3.1,0.3) and (2.7. - 4.9)
The exact distance is
(Simplify your answer. Type an exact ans
Answer: sqrt(27.2) =approx 5.215
Step-by-step explanation:
The distance between 2 points can be calculated using Phitagor theorem
L= sqrt( (x1-x2)²+(y1-y2)²)
Where x1, y1 are the coordinates of the first point and x2, y2 are the coordinates of the 2-nd point.
L=sqrt((3.1-2.7)²+(0.3-(-4.9))²)= sqrt(0.4²+5.2²)=sqrt(27.2) - this is exact answer.
sqrt(27.2)=5.21536...=approx 5.215
Solve for x: 3(x + 1)= -2(x - 1) + 6.
Answer:
x=1
Step-by-step explanation:
3(x + 1)= -2(x - 1) + 6.
Distribute
3x+3 = -2x+2+6
Combine like terms
3x+3 = -2x+8
Add 2x to each side
3x+3+2x = 8
5x+3 = 8
Subtract 3 from each side
5x =5
Divide by 5
x =1
Algebra Review
Write an algebraic expression for each verbal expression.
1. the sum of one-third of a number and 27
2. the product of a number squared and 4
3. Write a verbal expression for 5n^3 +9.
Answer:
Step-by-step explanation:
1. The sum of one-third of a number and 27
= [tex]\frac{1}{3}\times x +27\\= 1/3x +27[/tex]
2. The product of a number squared and 4
[tex]Let\:the\:unknown\: number\: be \:x\\\\x^2\times4\\\\= 4x^2[/tex]
3.Write a verbal expression for 5n^3 +9.
The sum of the product and of 5 and a cubed number and 9
Twelve apples cost $2.00. How much will 50 apples cost?
Answer:
$8.33
Step-by-step explanation:
[tex]Solve \:using \: proportion\\\\12\:apples = \$ 2\\50\:apples = \$ x\\Cross \: Multiply\\\\12x = 100\\\\\\\frac{12x}{12} = \frac{100}{12} \\\\x = \$ 8.333[/tex]
Answer:
About $8.33.
Step-by-step explanation:
Write a proportion. Make sure the values line up horizontally:
[tex]\frac{12\text{ apples}}{\$2} =\frac{50\text{ apples}}{\$x}[/tex]
Cross multiply:
[tex]100=12x\\x=25/3\approx\$8.33[/tex]
Find the product of the roots of the equation
xl-5x - 36 = 0
Answer:
Step-by-step explanation:
Hello, I assume that you mean
[tex]x^2-5x-36[/tex]
The product is -36.
[tex]x_1 \text{ and } x_2 \text{ are the two roots, we can write}\\\\(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1\cdot x_2[/tex]
So in this example, it means that the sum is 5 and the product is -36.
Thank you
which expression is equivalent to(x²y)³?
Answer:
x^6 y^3
Step-by-step explanation:
(x²y)³
We know that (ab) ^c = a^c * b^c
(x²y)³ = x^2 ^3 * y^3
We know that a^b^c = a^(b*c)
(x²y)³ = x^2 ^3 * y^3 = x^( 2*3) y^3 = x^6 y^3
Find the distance between points P(5, 1) and Q(3, 4) to the nearest tenth.
3.6
5
9.4
13
Answer:
≈ 3.6
Step-by-step explanation:
Calculate the distance d using the distance formula
d = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]
with (x₁, y₁ ) = (P(5, 1) and (x₂, y₂ ) = Q(3, 4)
d = [tex]\sqrt{(3-5)^2+(4-1)^2}[/tex]
= [tex]\sqrt{(-2)^2+3^2}[/tex]
= [tex]\sqrt{4+9}[/tex]
= [tex]\sqrt{13}[/tex] ≈ 3.6 ( to the nearest tenth )
Answer:
3.6
Step-by-step explanation:
Look above bru
find the domain of the graphed function.
The cost in dollars y of producing x computer
desks is given by y = 40x + 4000
X
100
200
300
a. Complete the table
y
b. Find the number of computer desks that can be produced for $6200. (Hint: Find x when y = 6200.)
a. Complete the table.
х
100
200
300
y
b. For $6200,_ computer desks can be produced
Answer:
a.
y= 40x +4000
x= 100 --> y= 40(100)+4000= 4000+4000=8000
x=200 --> y= 40(200)+4000= 6000+4000= 10000
x=300 --> y= 40(300)+4000= 12000+4000= 16000
(in $)
b.
y= 40x+4000
6200= 40x+4000
6200-4000= 40x
2200= 40x
2200/40= x
55= x
(in unit)
Step-by-step explanation:
I hope this helps
if u have question let me know in comments ^_^
The size of a television is the length of the diagonal of its screen in inches. The aspect ratio of the screens of older televisions is 4:3, while the aspect ratio of newer wide-screen televisions is 16:9. Find the width and height of an newer 75-inch television whose screen has an aspect ratio of 16:9
Answer:
The Width = 65.44 inches
The Height = 36.81 inches
Step-by-step explanation:
We are told in the question that:
The width and height of an newer 75-inch television whose screen has an aspect ratio of 16:9
Using Pythagoras Theorem we known that:
Width² + Height² = Diagonal²
Since we known that the size of a television is the length of the diagonal of its screen in inches.
Hence, for this new TV
Width² + Height² = 75²
We are given ratio: 16:9 as aspect ratio
Width = 16x
Height = 9x
(16x)² +(9x)² = 75²
= 256x² + 81x² = 75²
337x² = 5625
x² = 5625/337
x² = 16.691394659
x = √16.691394659
x = 4.0855103303
Approximately x = 4.09
For the newer 75 inch tv set
The Height = 9x
= 9 × 4.09
= 36.81 inches
The Width = 16x
= 16 × 4.09
= 65.44 inches.
What is the rise over run for the slope -11/9
Answer: 11 down and 9 right
Step-by-step explanation:
Slope IS rise over run where the top number of the fraction (numerator) determines the vertical distance --> positive is up, negative is down
and the bottom number of the fraction (denominator) determines the horizontal distance --> positive is right, negative is left.
Given slope = -11/9
the numerator is -11 so the "rise" is DOWN 11 units
the denominator is 9 so the "run" is RIGHT 9 units