A pump lifts 400 kg of water per hour a height of 4.5 m .
Part A
What is the minimum necessary power output rating of the water pump in watts?
Express your answer using two significant figures.
Part B
What is the minimum necessary power output rating of the water pump in horsepower?
Express your answer using two significant figures.

Answers

Answer 1

Answer:

Power = Work / Time

P = 400 kg * 9.8 m/s * 4.5 m / 3600 sec = 4.9 J/s = 4.9 Watts

Also, 4.9 Watts / (746 Watts / Horsepower) = .0066 Hp


Related Questions

Find the amount og work done

Answers

Answer:

100j

Explanation:


Question 8 a-e plz

Answers

Answer:

(a) t = 0 s

(b) t = 0 s, 30 s, 55 s

(c) t = 40 s to t = 60 s

(d) t = 10 s to t = 15 s

(e) a = 6 m/s^2

Explanation:

(a) The car is at starting position at t = 0 s and v = 0 m/s.

(b) The velocity of car is zero when the time is t = 0 s, 30 s and 55 s.

(c) from t = 40 s to 60 s the car is moving in the negative direction.

(d) The fastest speed is 60m/s from t = 10 s to t = 15 s.

(e) The slope of the velocity time graph gives acceleration.

a = (60 - 0) / (10 - 0) = 6 m/s^2

A 15.0-m uniform ladder weighing 500 N rests against a frictionless wall. The ladder makes a 60.08 angle with the horizontal. (a) Find the horizontal and vertical forces the ground exerts on the base of the ladder when an 800-N firefighter has climbed 4.00 m along the ladder from the bottom. (b) If the ladder is just on the verge of slipping when the firefighter is 9.00 m from the bottom, what is the coefficient of static friction between ladder and ground

Answers

Answer:

a)  fr = 266.92 N,   fy = 1300 N,  b)    μ = 0.36

Explanation:

a) This is a balancing act.

Let's write the rotational equilibrium relations, where the turning point is the bottom of the ladder and the counterclockwise rotations are positive

             -w x - W x₂ + R y = 0         (1)

usemso trigonometry to find distances

            cos 60.08 = x / 7.5

            x = 7.5 cos 60.08

            x = 3.74 m

fireman

           cos 60.08 = x₂ / 4

           x2 = 4 cos 60

           x2 = 2 m

wall support

           sin 60.08 = y / 15

           y = 15 are 60.08

           y = 13 m

we substitute in equation 1

           R y = w x + W x2

            R = (w x + W x2) / y

            R = (500 3.74 +800 2) / 13

            R = 266.92 N

now let's write the expressions for the translational equilibrium

X axis

           R -fr = 0

           R = fr

           fr = 266.92 N

Y Axis  

           Fy - w-W = 0

           fy = 500 + 800

           fy = 1300 N

b) ask the friction coefficient

the firefighter's distance is

          cos 60.08 = x₃ / 9.00

          x₃ = 9 cos 60

          x₃ = 5.28 m

from equation 1

          R = (w x + W x₃) / y

          R = 500 3.74 + 800 5.28) / 13

          R = 468.769 N

we saw that

          fr = R = 468.769

The expression for the friction force is

          fr = μ N

in this case the normal is the ratio to pesos

        N = Fy

       N = 1300 N

        μ N = fr

        μ = fr / N

        μ = 468,769 / 1300

         μ = 0.36

Traveling waves propagate with a fixed speed usually denoted as v (but sometimes c). The waves are called __________ if their waveform repeats every time interval T.

a. transverse
b. longitudinal
c. periodic
d. sinusoidal

Answers

Answer:

periodic

Explanation:

Water is falling on the blades of a turbine at a rate of 100 kg/s from a certain spring. If the height of spring be 100m, then the power transferred to the turbine will be: a) 100 KW b) 10 KW c) 1 KW d) 100 W​

Answers

Answer:

Natae Si Jordan Kaya Sya Napaihe

Explanation:

haha

As you move farther away from a source emitting a pure tone, the ___________ of the sound you hear decreases.

Answers

Answer:

frequency

Explanation:

The phenomenon of apparent change in frequency due to the relation motion between the source and the observer is called Doppler's effect.

So, when we move farther, the frequency of sound decreases. The formula of the Doppler's effect is  

[tex]f' = \frac{v + v_o}{v+ v_s} f[/tex]

where, v is the velocity of sound, vs is the velocity of source and vo is the velocity of observer, f is the true frequency. f' is the apparent frequency.

During 57 seconds of use, 330 C of charge flow through a microwave oven. Compute the size of the electric current.

Answers

Answer:

5.78amps

Explanation:

Given data

Time t= 57 seconds

Charge Q= 330C

Current I= ??

The expression for the electric current is given as

Q= It

Substituting we have

330= I*57

I= 330/57

I=5.78 amps

Hence the current is 5.78amps

When an apple falls towards the earth,the earth moves up to meet the apple. Is this true?If yes, why is the earth's motion not noticeable?

Answers

Answer:

because the mass of the apple is very less compared to the mass of earth. Due to less mass the apple cannot produce noticable acceleration in the earth but the earth which has more mass produces noticable acceleration in the apple. thus we can see apple falling on towards the earth but we cannot see earth moving towards the apple.

Solids diffuse because the particles cannot move.
A. Can
B. Not enough info
C. Cannot
D. Sometimes will

Answers

Solids cannot diffuse.

Answer: C. Cannot
They don’t space to move.

A football quarterback runs 15.0 m straight down the playing field in 3.00 s. He is then hit and pushed 3.00 m straight backward in 1.71 s. He breaks the tackle and runs straight forward another 24.0 m in 5.20 s. Calculate his average velocity (in m/s) for the entire motion. (Assume the quarterback's initial direction is positive. Indicate the direction with the sign of your answer.)

Answers

Answer:

Average Velocity = 3.63 m/s

Explanation:

First, we will calculate the total displacement of the quarterback, taking forward direction as positive:

Total Displacement = 15 m - 3 m + 24 m = 36 m

Now, we will calculate the total time taken for this displacement:

Total Time = 3 s + 1.71 s + 5.2 s = 9.91 s

Therefore, the average velocity will be:

[tex]Average\ Velocity = \frac{Total\ Displacement}{Total\ Time}\\\\Average\ Velocity = \frac{36\ m}{9.91\ s}[/tex]

Average Velocity = 3.63 m/s

Thermometers and Temperature Scales
While traveling outside the United States, you feel sick. A companion gets you a thermometer, which says your temperature is 40.9. What scale is that on? What is your Fahrenheit temperature? Should you seek medical help?

Answers

Answer:

105.62°F

Explanation:

When the body temperature having fever is measured to be 40.9 on a scale then it must be a Celsius scale thermometer because 37°C is the normal temperature of a healthy human. In case of fever the given temperature is measured on a standard Celsius scale.

The relation between Fahrenheit and Celsius scale is:

[tex]\frac{C}{5}=\frac{F-32}{9}[/tex]

[tex]F=\frac{9C}{5} +32[/tex]

[tex]F=105.62^{o}F[/tex]

It is a high fever and an immediate medical help must be taken.

what is the time taken by moving body with acceleration 0.1m/s2 if the initial or finak velocities are 20m/s and 30m/s respectively?​

Answers

Answer:

t= 100s

Explanation:

use v=v0+at

plug in givens and solve for t

30=20+0.1*t

t= 100s

What would the radius (in mm) of the Earth have to be in order for the escape speed of the Earth to equal (1/21) times the speed of light (300000000 m/s)? You may ignore all other gravitational interactions for the rocket and assume that the Earth-rocket system is isolated. Hint: the mass of the Earth is 5.94 x 1024kg and G=6.67×10−11Jmkg2G=6.67\times10^{-11}\frac{Jm}{kg^2}G=6.67×10−11kg2Jm​

Answers

Answer:

The expected radius of the Earth is 3.883 meters.

Explanation:

The formula for the escape speed is derived from Principle of Energy Conservation and knowing that rocket is initially at rest on the surface of the Earth and final energy is entirely translational kinetic, that is:

[tex]U = K[/tex] (1)

Where:

[tex]U[/tex] - Gravitational potential energy, in joules.

[tex]K[/tex] - Translational kinetic energy, in joules.

Then, we expand the formula by definitions of potential and kinetic energy:

[tex]\frac{G\cdot M\cdot m}{r} = \frac{1}{2}\cdot m \cdot v^{2}[/tex] (2)

Where:

[tex]G[/tex] - Gravitational constant, in cubic meters per kilogram-square second.

[tex]M[/tex] - Mass of the Earth. in kilograms.

[tex]m[/tex] - Mass of the rocket, in kilograms.

[tex]r[/tex] - Radius of the Earth, in meters.

[tex]v[/tex] - Escape velocity, in meters per second.

Then, we derive an expression for the escape velocity by clearing it within (2):

[tex]\frac{GM}{r} = \frac{1}{2}\cdot v^{2}[/tex]

[tex]v = \sqrt{\frac{2\cdot G \cdot M}{r} }[/tex] (3)

If we know that [tex]v = \frac{1}{21}\cdot c[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex], [tex]M = 5.94\times 10^{24}\,kg[/tex], [tex]G = 6.67\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}}[/tex] and [tex]M = 5.94\times 10^{24}\,kg[/tex], then the expected radius of the Earth is:

[tex]\frac{GM}{r} = \frac{1}{2}\cdot v^{2}[/tex]

[tex]r = \frac{2\cdot G \cdot M}{v^{2}}[/tex]

[tex]r = \frac{2\cdot \left(6.67\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}} \right)\cdot (5.94\times 10^{24}\,kg)}{\left[\frac{1}{21}\cdot \left(3\times 10^{8}\,\frac{m}{s} \right) \right]^{2}}[/tex]

[tex]r = 3.883\,m[/tex]

The expected radius of the Earth is 3.883 meters.

Julie drives 100 mi to Grandmother's house. On the way to Grandmother's, Julie drives half the distance at 40.0 mph and half the distance at 60.0 mph . On her return trip, she drives half the time at 40.0 mph and half the time at 60.0 mph.

Required:
a. What is Julie's average speed on the way to grandmother's house?
b. What is her average speed in the return trip?

Answers

Answer:

a. The average speed on her way to Grandmother's house is 48.08 mph

b. The average speed in the return trip is 50 mph.

Explanation:

The average speed (S) can be calculated as follows:

[tex] S = \frac{D}{T} [/tex]

Where:

D: is the total distance

T: is the total time

a. To find the total distance in her way to Grandmother's house, we need to find the total time:

[tex]T_{i} = t_{1_{i}} + t_{2_{i}} = \frac{d_{1_{i}}}{v_{1_{i}}} + \frac{d_{2_{i}}}{v_{2_{i}}}[/tex]

Where v is for velocity

[tex] T = \frac{d_{1_{i}}}{v_{1_{i}}} + \frac{d_{2_{i}}}{v_{2_{i}}} = \frac{(100/2) mi}{40.0 mph} + \frac{(100/2) mi}{60.0 mph} = 1.25 h + 0.83 h = 2.08 [/tex]    

Hence, the average speed on her way to Grandmother's house is:

[tex]S_{i} = \frac{D}{T_{i}} = \frac{100 mi}{2.08 h} = 48.08 mph[/tex]

b. Now, to calculate the average speed of the return trip we need to calculate the total time:                        

[tex]D = v_{1_{f}}\frac{T_{f}}{2} + v_{2_{f}}\frac{T_{f}}{2} = \frac{T_{f}}{2}(v_{1_{f}} + v_{2_{f}})[/tex]

[tex]100 mi = \frac{T_{f}}{2}(40 mph + 60 mph)[/tex]

[tex] T_{f} = \frac{200 mi}{40 mph + 60 mph} = 2 h [/tex]

Therefore, the average speed of the return trip is:

[tex]S_{f} = \frac{D}{T_{f}} = \frac{100 mi}{2 h} = 50 mph[/tex]

I hope it helps you!                                                      

A person jumps out of an airplane above the surface of the Earth, and falls a distance h before opening their parachute. Once the prachute is open the person coasts to the ground a distance d at constant velocity.

a. The work done on the person by the Earth is:
b. The change in gravitational potential energy of the person + Earch system is:

Answers

Answer:

a)   W_total = mg (2h + d)   , b)     E_total = - mg (h + d)

Explanation:

a) We must solve this problem in two parts, the first for the accelerated movement and the second for the movement with constant speed

Let's look for work for the part that is in free fall

        y = y₀ + v₀ t - ½ g t²

when he jumps out of a plane his vertical speed is zero

        y =y₀ - ½ g t²

        dy = 0 - ½ g 2t dt

the work in this first part is

        W₁ = ∫ F dy

        W₁ = mg ∫ g t dt

        W₁ = m g² t² / 2

the time it takes to travel the distance y₀-y = h is

         y₀-y = ½ g t²

         

         t =[tex]\sqrt{2h/g}[/tex]

we substitute

          W₁ = m g² 2h / g

          W₁ = m g 2h

now we look for the work for the part with constant speed

since the velocity is constant let's use the uniform motion ratio

          W₂ = F d

           W₂ = mg d

       

the total work is

           W_total = W₁ + W₂

           W_total = 2mgh + m gd

           W_total = mg (2h + d)

b) The change in gravitational potential energy

           U = mg Δy

in the part with accelerated movement

           U₁ = mg h

in the part with uniform movement

            U₂ = mg d

the total potential energy is

           E_total = U₁ + U₂

           E_total = - mg (h + d)

PLEASE HELP ME WITH THIS ONE QUESTION
The half-life of Barium-139 is 4.96 x 10^3 seconds. A sample contains 3.21 x 10^17 nuclei. How much of the sample is left after 1.98 x 10^4 seconds?

Answers

[tex]A=2.01×10^{16}\:\text{nuclei}[/tex]

Explanation:

Given:

[tex]\lambda = 4.96×10^3 s[/tex]

[tex]A_0 = 3.21x10^{17}[/tex] nuclei

t = 1.98×10^4 s

[tex]A=A_02^{-\frac{t}{\lambda}}[/tex]

[tex]A=(3.21×10^{17}\:\text{nuclei}) \left(2^{-\frac{1.98×10^4}{4.96×10^3}} \right)[/tex]

[tex]\:\:\:\:\:\:\:=2.01×10^{16}\:\text{nuclei}[/tex]

Notice that all the initial spring potential energy was transformed into gravitational potential energy. If you compressed the spring to a distance of 0.200 mm , how far up the slope will an identical ice cube travel before reversing directions

Answers

Answer:

The correct answer will bs "2.41 m".

Explanation:

According to the question,

M = 50 g

or,

   = 0.050 kg

[tex]\Theta = 25^{\circ}[/tex]

k = 25.9 N/m

Δx = 0.200 m

Let the traveled distance be "x".

By using trigonometry, the height will be:

⇒ [tex]h = l Sin \Theta[/tex]

hence,

⇒ [tex]Potential \ energy \ at \ the \ top=Spring \ potential \ energy[/tex]

                                       [tex]Mgh=\frac{1}{2} k(\Delta x)^2[/tex]

By putting the values, we get

             [tex]0.050\times 9.8\times lSin 25^{\circ}=\frac{1}{2}\times 25.0\times (0.200)^2[/tex]

                                              [tex]l=2.41 \ m[/tex]      

I need help on this physics problem.

Answers

Answer:

the speed of the nerve impulse in miles per hour is 201.59 mi/hr

Explanation:

Given;

the speed of the nerve impulse, v = 90.1 m/s

To convert this speed in meters per second to miles per hour, we use the following method;

1,609 meter = 1 mile

3,600 s = 1 hour

[tex]v(mi/h) = 90.1 \ \frac{m}{s} \times \frac{1 \ mile}{1,609 \ m} \times \frac{3,600 \ s}{1 \ hour} = (\frac{90.1 \times 3,600}{1,609} )\frac{mi}{hr} = 201.59 \ mi/hr[/tex]

Therefore, the speed of the nerve impulse in miles per hour is 201.59 mi/hr

Why don’t you see tides ( like those of the ocean ) in your swimming pool ?

Answers

In smaller bodies, like your backyard swimming pool, or your own body, the differences of the earth's gravitational force over such small volumes are so slight as to have negligible affect. ... Therefore the tidal bulges move north and south with respect to earth's geography over the course of a year.

An airplane increases its speed at the average rate of 15 m/s2. How much time does it take to increase its speed from 100 m/s to 160 m/s

Answers

Answer:

4 s

Explanation:

Acceleration (a) = 15 m/s²Initial velocity (u) = 100 m/sFinal velocity (v) = 160 m/s

We are asked to calculate time taken (t).

By using the first equation of motion,

[tex]\longrightarrow[/tex] v = u + at

[tex]\longrightarrow[/tex] 160 = 100 + 15t

[tex]\longrightarrow[/tex] 160 - 100 = 15t

[tex]\longrightarrow[/tex] 60 = 15t

[tex]\longrightarrow[/tex] 60 ÷ 15 = t

[tex]\longrightarrow[/tex] 4 s = t

what is the dimensional formula of force and torque​

Answers

Answer:

Units. Torque has the dimension of force times distance, symbolically T−2L2M. Although those fundamental dimensions are the same as that for energy or work, official SI literature suggests using the unit newton metre (N⋅m) and never the joule. The unit newton metre is properly denoted N⋅m.

Dimension: M L2T−2

In SI base units: kg⋅m2⋅s−2

Other units: pound-force-feet, lbf⋅inch, ozf⋅in

Answer:

hope it is helpful to you

A submarine has a "crush depth" (that is, the depth at which
water pressure will crush the submarine) of 400 m. What is
the approximate pressure (water plus atmospheric) at this
depth? (Recall that the density of seawater is 1025 kg/m3, g=
9.81 m/s2, and 1 kg/(m-s2) = 1 Pa = 9.8692 x 10-6 atm.)

Answers

Answer:

P =40.69 atm

Explanation:

We need to find the approximate pressure at a depth of 400 m.

It can be calculated as follows :

P = Patm + ρgh

Put all the values,

[tex]P=1\ atm+1025 \times 9.81\times 400\times 9.8692\times 10^{-6}\ atm/Pa\\\\P=40.69\ atm[/tex]

So, the approximate pressure is equal to 40.69 atm.

The electric potential ( relative to infinity ) due to a single point charge Q is 400 V at a point that is 0.6 m to the right of Q. The electric potential (relative to infinity) at a point that is 0.90 m to the left of 0 is:_____.
A. + 400 V.
B. -400 V.
C. + 200 V.

Answers

Answer:

The potential at a distance of 0.9 m is 266.67 V.

Explanation:

Charge = Q

Potential is 400 V at a distance 0.6 m .

Let the potential is V at a distance 0.9 m.

Use the formula of potential.

[tex]V = \frac{Kq}{r}\\\\\frac{V}{400}=\frac{0.6}{0.9}\\\\V = 266.67 V[/tex]

Assume that I = E/(R + r), prove that 1/1 = R/E + r/E​

Answers

[tex]\implies {\blue {\boxed {\boxed {\purple {\sf { \frac{1}{I} = \frac{R}{E} + \frac{r}{E} }}}}}}[/tex]

[tex]\large\mathfrak{{\pmb{\underline{\orange{Step-by-step\:explanation}}{\orange{:}}}}}[/tex]

[tex]I = \frac{ E}{ R + r} \\[/tex]

[tex] ➺\:\frac{I}{1} = \frac{E}{R + r} \\[/tex]

Since [tex]\frac{a}{b} = \frac{c}{d} [/tex] can be written as [tex]ad = bc[/tex], we have

[tex]➺ \: I \: (R + r) = E \times 1[/tex]

[tex]➺ \: \frac{1}{I} = \frac{R + r}{E} \\ [/tex]

[tex]➺ \: \frac{1}{I} = \frac{R}{E} + \frac{r}{E} \\ [/tex]

[tex]\boxed{ Hence\:proved. }[/tex]

[tex]\red{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: Mystique35ヅ}}}}}[/tex]

What has a wind speed of 240 kph or greater?​

Answers

Answer:

SUPER TYPHOON (STY), a tropical cyclone with maximum wind speed exceeding 220 kph or more than 120 knots.

Two cylindrical resistors are made from copper. The first one is of length L and of radius r . The 2nd resistor is of length 6L and of radius 2r. The ratio of these two resistances R1/R2 is:

Answers

Answer:

[tex]R1/R2=\frac{2}{3}[/tex]

Explanation:

From the question we are told that:

1st's Length [tex]l=L[/tex]

1st's radius [tex]r=r[/tex]

2nd's Length [tex]l=6L[/tex]

2nd's radius [tex]r=2r[/tex]

Generally the equation for Resistance R is mathematically given by

 [tex]R=\frac{\rho L}{\pi r^2}[/tex]

Therefore

 [tex]R_1=\frac{\rho L}{\pi r^2}[/tex]

And

 [tex]R_2=\frac{\rho 6L}{\pi (2r)^2}[/tex]

Therefore

 [tex]R1/R2=\frac{\frac{\rho L}{\pi r^2}}{\frac{\rho 6L}{\pi (2r)^2}}[/tex]

 [tex]R1/R2=\frac{2}{3}[/tex]

write down the following units in the ascending of their value A) mm nm cm um B) 1m 1cm 1km 1mm. convert the following units into SI without changing their values? A)3500g B)2.5km C)2h​

Answers

Answer:

A) nm, um, mm, cm

B) 1mm, 1cm, 1m, 1km

A) 3500g, B) 2500m, C) 7200 seconds

Gsjskebjwkksmndkkwksjdkdkskkskskkehdhjdj

Answers

Answer:

I DON'T UNDERSTAND

Explanation:

GUESS A MISUNDERSTANDING PLZ PUT A UNDERSTANDABLE QUESTION.

Need ur help,,, :-[ :-{
...... ............ .. .. ​

Answers

Answer:

Graph B express the magnetic relationship of magnetic flux and electronic flow

A cable is lifting a construction worker and a crate, as the drawing shows. The weights of the worker and crate are 965 and 1510 N, respectively. The acceleration of the cable is 0.620 m s 2 , upward. What is the tension in the cable (a) below the worker and ( b) above the worker

Answers

Answer:

Explanation:

a)

Below  the worker , the tension in cable  is pulling  the crate . Let the tension be T₁ .

weight of  crate is acting downwards .

Total weight  1510  N.

Net force acting on both = T₁ - 1510

Applying second law of Newton ,

T₁ - 1510 = 1510 / 9.8 x 0.62                [ 1510 / 9.8 = mass of  crate ]

T₁ - 1510 = 95.5

T₁  = 1605.5  N.

b )

Above the worker , the tension in cable  is pulling both the worker and the crate . Let the tension be T₂ .

weight of both worker and crate is acting downwards .

Total weight = 965 + 1510 = 2475 N.

Net force acting on both = T₂ - 2475

Applying second law of Newton ,

T₂ - 2475 = 2475 / 9.8 x 0.62  [ 2475 / 9.8 = mass of both worker and crate ]

T₂ - 2475 = 156.6

T₂  = 2631.6 N.

Other Questions
Which of the following statements about ethicsand the law are true? (select all that apply) A need is something that is ESSENTIAL, where without it you will not be able to live your day to day life. Whereas a want is something you desire and may not necessarily need it.Answer the questions below:List FIVE things that is a NEED TO YOU: Find the coordinates of the image of M (3, 4) after the translation (x, y) (x + 4, y). Determine the values of n and m so that the following system have infinite number of solutions Solve for Y equals -2 over 3x minus 1 When you subtract two positive integers is the result always a positive integer PLEASE HELP I GIVE BRAINLIEST!! Find the value of x If YWZ=17, what is WXY?34561773 i need an introduction of apple and microsoft A person of height 2m observes the angle of elevations of the top of a Pole 62m height which is in front of him and finds it to be 45. find the distance between the person end the pole . The active site of an enzyme is _____________. Group of answer choices the region of an enzyme that attaches to the product the region of a product that detaches from the enzyme the region of a substrate that is changed by an enzyme the region of an enzyme that attaches to a substrate the highly changeable portion of an enzyme that adapts to fit the substrates of various reactions 4log10 2 log10 48 + log10 300 2. ............. is a single-wheel bike.A. Mono wheel B. Hover scooter C. Segway D. Teleporter HELP WILL MARK BRAINLIEST!! GEOGRAPHY MODS?? HELP!!!!THERE ARE ONLY TWO ANSWERS TO ANSWER!!Based on the maps, which best describes how climate change affected Greenland between 2007 and 2012?A. The east coast was the primary area affected by the warm temperatures. B. The ice sheet reduced severely and rapidly due to warmer temperatures. Damon can flip 5 pancakes in 20 seconds,working at a constant rate. Hailey can flip2 pancakes in 10 seconds, working at herown constant rate. What is the total numberof pancakes the two of them can flip in 2minutes? 1s 2s22p63s23p4How many valence electrons does this atom have?26412 In the parallelogram below,z = [ ? ]1242z+16Helpp! Why is a dependent clause also known as a subordinate clause?A. because it is joined to a sentence by a colonB. because it is joined to a sentence by a subordinate conjunctionC. because it is a sentence fragmentD. because it is a run-on sentence In a sequence, the first term is 6 and the common difference is 4. The thirtieth (30th) term ofthis sequence is1) 1182) 1223) 12614) 130 how many feet is 2 1/2 miles