Answer:
0.30924
Approximately ≈ 0.3092
Step-by-step explanation:
To solve for this question, we use the formula:
z = (x - μ)/σ
where x is the raw score
μ is the sample mean
σ is the sample standard deviation.
From the question,
x is the raw score = 260
μ is the sample mean = population standard deviation = 258
σ is the sample standard deviation
= σ/√N
N = 76 samples
σ = Population standard deviation
= 35/√76
= 4.0146919966
Hence,
z = (x - μ)/σ
= 260 - 258/ 4.0146919966
= 0.4981702212
Approximately = 0.498
We find the Probability using z score table for normal distribution
P(x = z) = P( x = 260)
= P( z = 0.498)
= 0.69076
The probability that a random customer will have more than $260 in his or her wallet is calculated as:
P(x>Z) = 1 - P( z = 0.498)
P(x>Z) = 1 - 0.69076
P(x>Z) = 0.30924
Approximately ≈ 0.3092
Will give brainliest. A farmer is painting a new barn. He will need to calculate the surface area of the barn to purchase the correct amount of paint. In which of the following units can the farmer expect to calculate the surface area? yd2 yd m3 m
Answer:
yd^2
Step-by-step explanation:
I took the test :)
The farmer calculate surface area in unit of [tex]yd^{2}[/tex]
Surface area :The surface area of any given object is the area or region occupied by the surface of the object.
Volume is the amount of space available in an object. Each shape has its surface area as well as volume.Surface area is the total area of the faces of a three-dimensional shape. Surface area is measured in square units.Thus , The farmer calculate surface area in unit of [tex]yd^{2}[/tex]
Learn more about the surface area here:
https://brainly.com/question/16519513
Find the distance of the translation.
Round your answer to the nearest hundredth.
What is the equation of the following line? Be sure to scroll down first to see all answer options.
A.
y = 3x
B.
y = -3x
C.
y = 2x
D.
y = 6x
E.
y = 1/3x
F.
y = - 1/3x
Answer:
y=1/3x
Step-by-step explanation:
change in y/ change in x
2-0/6-0= 2/6=1/3
since its a positive slope, it’s 1/3
Answer:
E. [tex]y=\frac{1}{3}x[/tex]
Step-by-step explanation:
Take the two points shown:
[tex](0,0)(6,2)[/tex]
Use these to make an equation in slope-intercept form:
[tex]y=mx+b[/tex]
m is the slope and b is the y-intercept (where x is equal to 0).
Use the slope formula:
[tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\frac{rise}{run}[/tex]
Rise over run is the change in the y-axis over the change in the x-axis, otherwise known as the slope. Insert coordinate points:
[tex](0_{x1},0_{y1})\\\\(6_{x2},2_{y2})\\\\\frac{2-0}{6-0}[/tex]
Simplify:
[tex]\frac{2-0}{6-0} =\frac{2}{6} =\frac{1}{3}[/tex]
The slope is [tex]\frac{1}{3}[/tex]. Insert this into the equation:
[tex]y=\frac{1}{3}x+b[/tex]
Now find the y-intercept. Take one of the coordinate points and insert:
[tex](6_{x},2_{y})\\\\2=\frac{1}{3}(6)+b[/tex]
Solve for b. Simplify multiplication:
[tex]\frac{1}{3}*\frac{6}{1}=\frac{6}{3}=2\\\\ 2=2+b[/tex]
Use reverse operations to isolate the variable:
[tex]2-2=2-2+b\\\\0=b[/tex]
The y-intercept is equal to 0. Insert this into the equation:
[tex]y=\frac{1}{3}x+0[/tex]
or
[tex]y=\frac{1}{3}x[/tex]
:Done
Find three different numbers such that the
HCF of each pair of these numbers is greater
than 1 but the HCF of all three numbers is 1.
[Hint: For instance, the numbers 6, 10 and
15 satisfy the conditions.]
6, 10, 15
15,21,35
35, 55, 77
77, 91, 143
143, 187, 221
I can go on forever
There are different possibilities
Musah stands at the centre of a rectangular field. He first takes 50 steps north, then 25 steps
west and finally 50 steps on a bearing of 3150
.
i. Sketch Musah’s movement
Answer:
Step-by-step explanation:
Following the cardinal points as regards location of points, the sketch of Musah's movement can be as what is attached to this answer.
Please help soon as possible! This is urgent! Match each expression with the correct description.
Answer:
Hey there!
q is 1, and n=-2.
q-n=1-(-2), which is 3.
n-q=-2=1, which is -3.
q is 1.
Thus, the least value is n-q, and the greatest value is q-n. Closest to zero would be q.
Let me know if this helps :)
Answer:
Least: n-q
Greatest: q-n
Closest to zero: q
Which of the following is equivalent to –2i(6 – 7i)?
Answer:
[tex]\boxed{\sf \bf \ \ -2i(6-7i)=-14-12i \ \ }[/tex]
Step-by-step explanation:
Hello, please consider the following.
[tex]-2i(6-7i)=-12i+14i^2=-14-12i[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Answer:
A
Step-by-step explanation:
Answer = A
what does this answer 23498731345 times 36 over 2
Answer:422977164210 or it could be [tex]4.2297716421(10) ^{11}[/tex]
Step-by-step explanation:
In the nation of Gondor, the EPA requires that half the new cars sold will meet a certain particulate emission standard a year later. A sample of 64 one-year-old cars revealed that only 24 met the particulate emission standard. The test statistic to see whether the proportion is below the requirement is
Complete Question
In the nation of Gondor, the EPA requires that half the new cars sold will meet a certain particulate emission standard a year later. A sample of 64 one-year-old cars revealed that only 24 met the particulate emission standard. The test statistic to see whether the proportion is below the requirement is:
A -1.645
B -2.066
C -2.000
D-1.960
Answer:
The correct option is C
Step-by-step explanation:
From the question we are told that
The population mean is [tex]p = 0.50[/tex]
The sample size is [tex]n = 64[/tex]
The number that met the standard is [tex]k = 24[/tex]
Generally the sample proportion is mathematically evaluated as
[tex]\r p = \frac{24}{64}[/tex]
[tex]\r p =0.375[/tex]
Generally the standard error is mathematically evaluated as
[tex]SE = \sqrt{ \frac{p(1- p )}{n} }[/tex]
=> [tex]SE = \sqrt{ \frac{0.5 (1- 0.5 )}{64} }[/tex]
=> [tex]SE = 0.06525[/tex]
The test statistics is evaluated as
[tex]t = \frac{ \r p - p }{SE}[/tex]
[tex]t = \frac{ 0.375 - 0.5 }{0.0625}[/tex]
[tex]t = -2[/tex]
Kim is earning money for a trip. She has saved and she earns per hour babysitting. The total amount of money earned (y) after (x) number of hours worked is given by the equation . How many hours will she need to work in order to earn for her trip?
Answer:
what is the amount of money Kim earn per hour of babysitting? Also I need to know how much trip cost to find out how many hours she need to work.
Step-by-step explanation:
The ball bearing have volumes of 1.6cm cube and 5.4cm cube . Find the ratio of their surface area.
Answer:
64 : 729
Step-by-step explanation:
Ratio of surface area
= (ratio of linear dimensions) ^2
= 1.6^2 : 5.4^2
= 256 : 2916
= 64 : 729
[tex] {4}^{3} [/tex]
evaluate this expression
Answer:
64
Step-by-step explanation:
Answer:
64
Step-by-step explanation:
4^3
= 4 * 4 * 4
= 16 * 4
= 64
a sample of 25 workers with employer provided health insurance paid an average premium of $6600 eith a sample standard deviation of $800. Construct a 95% confidence interval for the mean premium amount paid by all workers who have employer provided health insurance g
Answer:
$6284.4≤μ≤$6313.6
Step-by-step explanation:
Using the formula for calculating confidence interval as shown:
CI = xbar ± Z×S/√n
xbar is the average premium
Z is the z-score at 95% confidence
S is the standard deviation
n is the sample size
Given parameters
xbar = $6600
Z score at 95% CI = 1.96
S = $800
n = 25
Substituting this parameters in the formula we have;
CI = 6600±1.96×800/√25
CI = 6600±(1.96×800/5)
CI = 6600±(1.96×160)
CI = 6600±313.6
CI = (6600-313.6, 6600+313.6)
CI = (6284.4, 6913.6)
Hence the 95% confidence interval for the mean premium amount paid by all workers who have employer provided health insurance is $6284.4≤μ≤$6313.6
What is the circumference of the following circle?
Answer:
The answer is 157 inStep-by-step explanation:
Circumference of a circle = 2πr
where
r is the radius
From the above question
radius = 25 in.
Substitute this value into the above formula
That's
Circumference = 2(25)π
= 50π
= 157.079
We have the final answer as
Circumference = 157 inHope this helps you
which graph shows a reflection across the line Y = X
Answer:
B
Step-by-step explanation:
"A" is not a reflection, it looks like a translation.
"C" is not a reflection, it is a rotation.
So, B is a reflection.
Answer:
[tex]\large \boxed{\mathrm{Graph \ C}}[/tex]
Step-by-step explanation:
The reflection is across the line y = x.
All options show reflection. Option C shows reflection across the line y = x.
In the reflection, the points on the triangle will also be reflected.
Point S is reflected across the line y=x, the reflected point is S’.
Point R is reflected across the line y=x, the reflected point is R’.
Point Q is reflected across the line y=x, the reflected point is Q’.
A television screen has a length to width ratio of 8 to 5 and a perimeter of 117 inches. What is the diagonal measure of the screen (to the nearest tenth of an inch)?
Answer:
[tex]D = 42.5\ inch[/tex]
Step-by-step explanation:
Given
[tex]L = Length[/tex] and [tex]W = Width[/tex]
[tex]L:W = 8: 5[/tex]
[tex]Perimeter = 117[/tex]
Required
Determine the Diagonal
First, the dimension of the screen has to be calculated;
Recall that; [tex]L:W = 8: 5[/tex]
Convert to division
[tex]\frac{L}{W} = \frac{8}{5}[/tex]
Multiply both sides by W
[tex]W * \frac{L}{W} = \frac{8}{5} * W[/tex]
[tex]L = \frac{8W}{5}[/tex]
The perimeter of a rectangle:
[tex]Perimeter = 2(L+W)[/tex]
Substitute [tex]L = \frac{8W}{5}[/tex]
[tex]Perimeter = 2(\frac{8W}{5}+W)[/tex]
Take LCM
[tex]Perimeter = 2(\frac{8W + 5W}{5})[/tex]
[tex]Perimeter = 2(\frac{13W}{5})[/tex]
Substitute 117 for Perimeter
[tex]117 = 2(\frac{13W}{5})[/tex]
[tex]117 = \frac{26W}{5}[/tex]
Multiply both sides by [tex]\frac{5}{26}[/tex]
[tex]\frac{5}{26} * 117 = \frac{26W}{5} * \frac{5}{26}[/tex]
[tex]\frac{5 * 117}{26} = W[/tex]
[tex]\frac{585}{26} = W[/tex]
[tex]22.5 = W[/tex]
[tex]W = 22.5[/tex]
Recall that
[tex]L = \frac{8W}{5}[/tex]
[tex]L = \frac{8 * 22.5}{5}[/tex]
[tex]L = \frac{180}{5}[/tex]
[tex]L = 36[/tex]
The diagonal of a rectangle is calculated using Pythagoras theorem as thus;
[tex]D = \sqrt{L^2 + W^2}[/tex]
Substitute values for L and W
[tex]D = \sqrt{36^2 + 22.5^2}[/tex]
[tex]D = \sqrt{1296 + 506.25}[/tex]
[tex]D = \sqrt{1802.25}[/tex]
[tex]D = \sqrt{1802.25}[/tex]
[tex]D = 42.4529150943[/tex]
[tex]D = 42.5\ inch[/tex] (Approximated)
Lila is camping with her family. She wants to hike to the lake, go fishing, and hike back before 6:05 P.M. It will take 1 hour and 10 minutes to hike to the lake and 1 hour and 50 minutes to hike back. Lila wants to fish for 3 hours and 10 minutes. What is the latest time Lila can start the hike to the lake?
Lila will need to start the hike at 11: 55 a.m. to be back at exactly 6: 05 p.m. or at 11: 54 a.m. to be before 6: 05 p.m (6: 04 p.m.)
Explanation:
To solve this question, the first step is to calculate how much time does hiking to the lake, go fishing, and go back takes in total. This can be calculated by adding the time of the three activities. This means 1 hour 10 minutes + 3 hours 10 minutes + 1 hour 50 minutes which is equal to 6 hours 10 minutes. The detailed process is shown below.
Add the hours: 1 + 3 + 1 = 5
Add the minutes: 10+50 +10 = 70
Also, because the total of minutes is above 60 (each hour has 60 minutes) it is necessary to subtract 60 minutes and add 1 hour.
5 hours + 1 hour and 70 minutes - 60 minutes = 6 hours and 10 minutes
Now, to solve the question subtract the time of the activities to the time Lila needs to complete all the activities.
6: 05 p.m. - 6 hours and 10 minutes = 11: 55 a.m
You can get this result by substracting first the hours and then the minutes
6: 05 p.m. - 6 hours = 12: 05 p.m.
12: 05 - 10 minutes = 11: 55 a.m.
According to this, Lila will need to start the hike at 11: 55 a.m. to be back at exactly 6: 05 p.m. or at 11: 54 a.m. to be before 6: 05 a.m because if she starts at 11: 54 a.m. she will be back at 6:04, which is a minute before 6:05 p.m.
-40=-8(x+2) solve the equation
Answer:
x = 3
Step-by-step explanation:
-40 = -8 (x + 2)
-8 (x + 2) = -40 --- divide both sides by - 8
-8 (x + 2) -40
-------------- = ----------
-8 -8
x + 2 = 5 --- subtract 2 from both sides
x + 2 - 2 = 5 - 2 then simplify
x = 3
Answer:
x=3
Step-by-step explanation:
First, write out the equation as you have been given it:
[tex]-40=-8(x+2)[/tex]
Then distribute the -8 to the terms inside the parenthesis:
[tex]-40=-8x-16[/tex]
Next, add 16 to both sides:
[tex]-40+16=-8x-16+16\\-24=-8x[/tex]
Finally, divide both sides by -8:
[tex]\frac{-24}{-8}=\frac{-8x}{-8}\\3=x[/tex]
Therefore, x=3.
An octagonal pyramid ... how many faces does it have, how many vertices and how many edges? A triangular prism ... how many faces does it have, how many vertices and how many edges? a triangular pyramid ... how many faces does it have, how many vertices and how many edges?
1: 8 faces and 9 with the base 9 vertices and 16 edges
2: 3 faces and 5 with the bases 6 vertices and 9 edges
3: 3 faces and 4 with the base 4 vertices and 6 edges
Hope this can help you.
1: 8 faces and 9 with the base 9 vertices and 16 edges
2: 3 faces and 5 with the bases 6 vertices and 9 edges
3: 3 faces and 4 with the base 4 vertices and 6 edges
Given m = - 1/4 & the point (4, 5)which of the following is the point slope form of the equation?
Answer:
y - 5 = -1/4(x - 4)
Step-by-step explanation:
Point slope form is y - y1 = m(x - x1), where (x1, y1) is a point on the line and m is the slope.
To find the point slope form, plug in the point given and the slope.
y - y1 = m(x - x1)
y - 5 = -1/4(x - 4)
Draw a Venn diagram and use the given information to fill in the number of elements in each region.
Answer: Check out the diagram below for the filled in boxes
14 goes in the first box (inside A, but outside B)
7 goes in the overlapping circle regions
5 goes in the third box (inside B, outside A)
3 goes in the box outside of the circles
==============================================================
Explanation:
[tex]n(A \cup B) = 26[/tex] means there are 26 items that are in A, B or both.
n(A) = 21 means there are 21 items in A
n(B) = 12 means there are 12 items in B
We don't know the value of [tex]n(A \cap B)[/tex] which is the number of items in both A and B at the same time. This is the intersecting or overlapping regions of the two circles. Let [tex]x = n(A \cap B)[/tex]
It turns out that adding n(A) to n(B), then subtracting off the stuff they have in common, leads to n(A u B) as shown below.
--------
[tex]n(A \cup B) = n(A) + n(B) - n(A \cap B)\\\\26 = 21+12 - x\\\\26 = 33 - x\\\\x+26 = 33\\\\x = 33-26\\\\x = 7\\\\n(A \cap B) = 7\\\\[/tex]
So there are 7 items in both regions.
This means there are [tex]n(A) - n(A \cap B) = 21 - 7 = 14[/tex] items that are in set A only. In other words, 14 items are in circle A, but not in circle B.
Notice how the values 14 and 7 add back up to 14+7 = 21, which represents everything in set A.
Similarly, there are [tex]n(B) - n(A \cap B) = 12 - 7 = 5[/tex] items that are in circle B, but not in circle A. The values 5 and 7 in circle B add to 5+7 = 12, matching with n(B) = 12.
The notation n(A') means the number of items that are not in set A. We're given n(A') = 8. We already know that 5 is outside circle A. So if 5+y = 8, then y = 3 must be the missing value for the box that is outside both circles.
Again the diagram is posted below with the filled in values.
A Venn diagram is an overlapping circle to describe the logical relationships between two or more sets of items.
The filled Venn diagram is given below.
What is a Venn diagram?A Venn diagram is an overlapping circle to describe the logical relationships between two or more sets of items.
We have,
n(A) = 21
This is the total of all the items included in Circle A.
n(B) = 12
This is the total of all the items included in Circle A.
n(A') = 8
The items that are not in circle A.
n(A U B ) = 26
The items that are in both circle A and circle B.
Now,
n (A U B) = n(A) + n(B) - n(A ∩ B)
26 = 21 + 12 - n(A ∩ B)
n(A ∩ B) = 33 - 26
n(A ∩ B) = 7
Thus,
The filled Venn diagram is given below.
Learn more about the Venn diagram here:
https://brainly.com/question/1605100
#SPJ2
If you rent a car for one day and drive it for 100 miles the cost is 40 dollars if you drive it 220 miles the cost is 46 dollars what is the linear equation for this
Answer:
[tex] y = \dfrac{1}{20}x + 35 [/tex]
Step-by-step explanation:
Let y = cost.
Let x = number of miles.
We have two (x, y) points: (100, 40) and (220, 46).
Now we find the equation of the line that passes through those two points using the two-point form of the equation of a line.
[tex] y - y_1 = \dfrac{y_2 - y_1}{x_2 - x_1}(x - x_1) [/tex]
[tex] y - 40 = \dfrac{46 - 40}{220 - 100}(x - 100) [/tex]
[tex] y - 40 = \dfrac{6}{120}(x - 100) [/tex]
[tex] y - 40 = \dfrac{1}{20}(x - 100) [/tex]
[tex] y - 40 = \dfrac{1}{20}x - 5 [/tex]
[tex] y = \dfrac{1}{20}x + 35 [/tex]
will rate you brainliest need help
Answer:
x = 0.09
Step-by-step explanation:
[tex] {3}^{x + 2} = {2}^{3} [/tex]
Taking Logarith both sides, we get :
Using the properties of Logarithms:
[tex](x + 2) log(3) = 3 log(2) [/tex]
[tex](x + 2) = 1.91[/tex]
(taking log2= 0.3 and log3= 0.47)
x = 0.09
5. When looking at a map, a student realizes that Birmingham is nearly due west of Atlanta, and Nashville is nearly due north of Birmingham. If the distance from Atlanta to Birmingham is roughly 150 mi, and the distance from Birmingham to Nashville is roughly 200 mi, what is the estimated distance from Atlanta to Nashville?
Answer: 250 mi
Step-by-step explanation:
Here we can think in a triangle rectangle:
The distance from Birmingham to Atlanta is roughly 150 mi, and this is one of the cathetus.
And the distance from Birmingham to Nashville is roughly 200 mi, this is the other cathetus of the triangle.
Now, the distance from Atlanta to Nashville will be the hypotenuse of this triangle rectangle.
Now we can apply the Pythagorean's theorem:
A^2 + B^2 = H^2
Where A and B are the cathetus, and H is the hypotenuse:
Then:
H = √(A^2 + B^2)
H = √(150^2 + 200^2) mi = √(62,500) mi = 250 mi
Then the estimated distance from Atlanta to Nashville is 250 mi
In the figure above, ABCD is a parallelogram
with AB = BE = EC. If the area of right triangle
BEC is 8, what is the perimeter of polygon
ABECD?
The perimeter is 21.66
The figure is something like the one that is in the image below:
We want to find the total perimeter of the polygon ABECD
This will be:
AB + BE + EC + CD + DA
Remember that for a triangle rectangle of catheti A and B, the area is given by:
A*B/2
We know that the sides of the triangle rectangle are:
BE, EC, BC.
Because BE = EC, these can not be the hypotenuse of the triangle, then the catheti are BE and EC
Knowing that the area of the triangle rectangle is 8, we can write:
EC*BE/2 = 8
and EC = BE = x
x^2/2 = 8
x^2 = 8*2 = 16
x = √16 = 4
Then the two catheti of the triangle rectangle are 4 units long.
EC = 4
BE = 4
and we know that:
AB = BE = EC
then:
AB = 4
and because this is a rectangle, we also have:
DC = AB = 4
now we want to find the last side of the figure, AD,
Which we already know is equal to the hypotenuse of the triangle.
Remember the Pythagorean's theorem, which says that the sum of the squares of the catheti is equal to the square of the hypotenuse.
Both catethus are equal to 4, then we have:
H^2 = 4^2 + 4^2 = 32
H = √32 = 5.66
then:
DA = 5.66
Now we have:
AB = BE = EC = DC = 4
DA = 5.66
Then the perimeter is:
AB + BE + EC + CD + DA
4 + 4 + 4 + 4+ 5.66 = 21.66
If you want to read more about this topic, you can read:
https://brainly.com/question/24307347
In a simple regression analysis with age as the only explanatory variable, the effects of other factors, such as faminc, are
Answer:
In the error term.
Step-by-step explanation:
A simple linear regression is a regression that has only one explanatory variable. It tries to establish the existing relationship between the variable of interest (dependent variable) and the explanatory variable (independent variable).
Since age is the only explanatory variable, other variables such as faminc would be in the error term. The error term exists because the explanatory variable is never able to on its own to predict the dependent variable perfectly.
A poker hand consisting of 7 cards is dealt from a standard deck of 52 cards. Find the probability that the hand contains exactly 3 face cards. Leave your answer as a reduced fraction.
Answer:
The probability is 2,010,580/13,378,456
Step-by-step explanation:
Here is a combination problem.
We want to 7 cards from a total of 52.
The number of ways to do this is 52C7 ways.
Also, we know there are 12 face cards in a standard deck of cards.
So we are selecting 3 face cards from this total of 12.
So also the number of cards which are not face cards are 52-12 = 40 cards
Out of all these 40, we shall be selecting exactly 4. The number of ways to do this 40C4
Thus, the required probability will be;
(40C4 * 12C3)/52C7 = (91,390 * 220)/133,784,560
= 20,105,800/133,784,560 = 2,010,580/13,378,456
The graph below shows the quadratic function f, and the table below shows the quadratic function g.
x -1 0 1 2 3 4 5
g(x) 13 8 5 4 5 8 13
Which statement is true?
A.
The functions f and g have the same axis of symmetry and the same y-intercept.
B.
The functions f and g have different axes of symmetry and different y-intercepts.
C.
The functions f and g have the same axis of symmetry, and the y-intercept of f is greater than the y-intercept of g.
D.
The functions f and g have the same axis of symmetry, and the y-intercept of f is less than the y-intercept of g.
Answer:
D
Step-by-step explanation:
The true statement is:
The functions f and g have the same axis of symmetry, and the y-intercept of f is greater than the y-intercept of g.
What is Function?A mathematical phrase, rule, or law that establishes the link between an independent variable and a dependent variable (the dependent variable). In mathematics, functions exist everywhere, and they are crucial for constructing physical links in the sciences.
As, per the graph and table is:
From the graph of f(x):
Axis of symmetry will be at x = 2
The maximum value of f(x) = 10
From the table of g(x):
Axis of symmetry will be at x = 2
The minimum value of g(x) = 4
thus, The functions f and g have the same axis of symmetry, and the y-intercept of f is greater than the y-intercept of g.
Learn more about Function here:
https://brainly.com/question/9753280
#SPJ7
What is the scale factor of this dilation?
Answer:
5/3
Step-by-step explanation:
on both sides we can see that the orginal length of 3 increased to five
therfore if we multiply 3 by 3/5 we get five which means the scale factor is 5/3
Jaime went to the mall with $42. If he bought a T-shirt and had $18 left, how much did the T-shirt cost Jaime in dollars?
Answer:
$24
Step-by-step explanation:
You simply do $42-$18
=24
Answer:
$24
Step-by-step explanation:
At the start, Jaime had $42. In order to find out how much the T-shirt he purchased costs, we must subtract 18 from 42.
42 - 18 = 24
Jaime spent $24 on the T-shirt.