The velocity with which the car and man will start moving is d.) 3.02 m/s. Hence, option d) is the correct answer. The formula for the momentum is p= mv.
Initially, the momentum of the man is given by: mv = 70 kg × (18 km/h) × (1 h/3600 s) × (1000 m/1 km)
= 35/18 m/s × 70 kg
= 1225/18 kg m/s
The momentum of the car is given by: p = mv
= 0 kg × v
= 0
Since the total momentum before the man jumps into the car is zero and the total momentum after the man jumps into the car is conserved, the total momentum is given by: mv + mv' = 0
where v' is the velocity of the car and man after they combine. Rearranging the equation above gives: v' = -mv / m' where m is the mass of the man and m' is the combined mass of the car and man: v' = -70 kg × 35/18 m/s / (70 kg + 100 kg)
= -35/26 m/s
≈ -1.35 m/s
Note that the negative sign implies that the velocity of the man is opposite to that of the car. The magnitude of the velocity is obtained by taking the absolute value: v' = 35/26 m/s ≈ 1.35 m/s
Therefore, the velocity with which the car and man will start moving is 3.02 m/s (to two decimal places).
To know more about velocity, refer
https://brainly.com/question/80295
#SPJ11
3. A grating with 1555 lines/cm is illuminated with light of wavelength 565 nm. What
is the highest-order number that can be observed with this grating? (Hint:
Remember that sin can never be greater than 1 for a diffraction grating. )
important!
The highest-order number that can be observed with this grating using diffraction formula is 1/1555.
It is determined using the formula for diffraction: mλ = d sinθ. Where m is the order number, λ is the wavelength of light, d is the grating spacing, and θ is the angle of diffraction. In this case, the grating has 1555 lines/cm, which means the grating spacing is 1/1555 cm.
To determine the highest-order number, calculate m × (565 × 10^-9 meters) = (1/1555 cm) × sinθ, where θ must be less than or equal to 90 degrees to satisfy sinθ ≤ 1. Given the wavelength of light as 565 nm (or 565 × 10^-9 meters), we can proceed with the calculation. Since sinθ ≤ 1, the highest-order number (m) can be determined by substituting θ = 90 degrees into the equation: m = (1/1555 cm) × sin(90 degrees).
To know more about grating, visit
https://brainly.com/question/30460514
#SPJ11
Suitable cross section shape of a dam wall diagram
Trapezoidal shapes are used for dams with a height of 20 to 80 meters. Rectangular shapes are used for dams with a height of more than 80 meters. The cross-sectional shape of a dam wall is an important consideration in the design of a dam as it affects the safety and stability of the dam wall.
The cross-section shape of a dam wall is determined by the hydraulic forces that the dam will experience. The suitable cross-section shape of a dam wall diagram should have a wide base with a gradual reduction in width as it approaches the top. It should be designed in such a way that the dam can withstand the force of water pressure and the load of the content loaded. The width of the base should be at least 2 to 3 times the height of the dam. Additionally, the dam wall should have a curvature at the upstream face that minimizes the water pressure at the base of the wall. The most common types of dam cross-section shapes include triangular, trapezoidal, and rectangular shapes. Triangular shapes are preferred for small dams with a height of less than 20 meters. Trapezoidal shapes are used for dams with a height of 20 to 80 meters. Rectangular shapes are used for dams with a height of more than 80 meters. The cross-sectional shape of a dam wall is an important consideration in the design of a dam as it affects the safety and stability of the dam wall.
To know more about hydraulic forces Visit:
https://brainly.com/question/25012437
#SPJ11
During an investigation, equal volumes of hot and cold baking soda solution and calcium chloride solution were mixed in four cups. A record of the investigation is shown below:
Investigation Record
Cup Baking Soda Solution Calcium Chloride Solution
W Hot Cold
X Cold Cold
Y Cold Hot
Z Hot Hot
Baking soda reacts with calcium chloride to form bubbles. In which cup will bubbles form the fastest?
Cup W
Cup X
Cup Y
Cup Z
Baking soda reacts with calcium chloride to form bubbles fastest in Cup Z
Does temperature affect rate of reaction?The rate of a chemical reaction is impacted by temperature. In general, a rise in temperature causes the rate of response to rise, whereas a fall in temperature causes the rate to fall.
The collision theory helps explain how temperature affects reaction rate. This hypothesis states that for a reaction to take place, reactant molecules must collide with enough force and in the proper direction. Temperature affects the frequency and energy of particle collisions, which in turn affects the rate of response.
Learn more about rate of reaction:https://brainly.com/question/13693578
#SPJ4
A letter congratulating a teach on winning a physical ed award
[Your Name], [Your Address], [City, State, ZIP], [Email Address], [Phone Number], [Date], [Teacher's Name], [School Name], [School Address], [City, State, ZIP], Dear [Teacher's Name]. Wishing you continued success and fulfillment in all your future endeavors. Warmest regards, [Your Name]
Subject: Congratulations on Winning the Physical Education Award I hope this letter finds you in good health and high spirits. I am writing to extend my heartfelt congratulations to you on winning the prestigious Physical Education Award. Your remarkable achievement is a testament to your dedication, passion, and outstanding contributions to the field of physical education. As a teacher, you have consistently demonstrated an unwavering commitment to promoting health and wellness among your students. Your innovative teaching methods, enthusiasm, and ability to inspire have undoubtedly had a profound impact on the lives of countless young individuals. Your remarkable success in receiving this award is well-deserved recognition for your exceptional work and accomplishments. Your ability to create an inclusive and engaging learning environment has not only helped students develop physical skills but has also fostered a sense of teamwork, discipline, and self-confidence among them. Your tireless efforts in organizing various sporting events, implementing effective training programs, and encouraging students to adopt an active lifestyle have significantly contributed to the overall well-being of the school community. Your passion for physical education is evident in the way you go above and beyond to ensure that each student feels valued and motivated to pursue their personal fitness goals. Your dedication and commitment as an educator have not only positively impacted the students but have also served as an inspiration to your colleagues. Your willingness to share your expertise, collaborate with others, and continuously strive for excellence is commendable. Once again, congratulations on this well-deserved recognition. Your hard work and dedication are truly exemplary, and I have no doubt that you will continue to make a significant difference in the lives of your students. May this award serve as a reminder of your accomplishments and as encouragement to pursue your passion for physical education.
Learn more about award here:
https://brainly.com/question/23729848
#SPJ11
A 500 kg Pacer is zipping through a parking lot at 10 m/s, its driver not paying enough attention, when it runs straight into a brick wall. Is momentum conserved in this collision? Explain why or why not.
In this collision between the Pacer and the brick wall, momentum is not conserved. Momentum is a fundamental principle in physics that states that the total momentum of a system remains constant if no external forces are acting on it. However, in this case, the collision involves an external force acting on the Pacer, namely the brick wall.
When the Pacer hits the wall, it experiences a sudden change in velocity, causing a rapid deceleration. As a result, a large force is exerted on the Pacer and the momentum of the Pacer decreases significantly.
Since momentum is the product of mass and velocity, any change in mass or velocity will result in a change in momentum. In this collision, the Pacer's momentum decreases to zero due to the force exerted by the wall, which absorbs the momentum.
Therefore, the collision between the Pacer and the brick wall does not conserve momentum because an external force acts on the system, causing a change in momentum.
Learn more about the principle of momentum and its conservation in different scenarios here:
brainly.com/question/29044668
#SPJ11.
A boy ties a stone to the end of a string which he then whirls above his head round a circular path of radius 2 metre. If the stone makes 10 oscillations in 4 seconds, calculate the angular and linear speed of the stone.
The angular and linear speed are 5π rads/ seconds and 10π meter/ seconds.
How to calculate the angular and the linear speedIn order to calculate the angular speed of the boy, we will use the equation below.
w =2πn/ T
Where
radius is 2 meter
number of oscillation is 10.
time is 4 s
So, we have
w = 2π * 10/4
w = 5π rads/ seconds.
To calculate the linear speed.
v = r *w
v = 2 * 5π
v = 10π meter/ seconds
Therefore, the angular and linear speed are 5π rads/ seconds and 10π meter/ seconds.
Learn more about speed below.
https://brainly.com/question/10100
#SPJ4
The distribution of the mass of the milky way galaxy is determined by.
The distribution of the mass of the Milky Way galaxy is determined by measuring the velocity of objects orbiting around it. This is done through the application of Kepler's laws of planetary motion.
There are several methods used to determine the mass distribution of the Milky Way galaxy. One of the most widely used methods is to measure the velocity of objects orbiting around the center of the galaxy. By applying Kepler's laws of planetary motion, which relate the period and radius of an orbiting object to its mass and the mass of the object it is orbiting, astronomers can infer the mass of the Milky Way and its distribution throughout the galaxy. This method is particularly useful for measuring the mass of dark matter in the galaxy, as dark matter cannot be directly observed but exerts a gravitational force on other objects.Another method used to measure the mass distribution of the Milky Way is to study the motion of stars within the galaxy. By analyzing the velocities and positions of stars, astronomers can infer the mass distribution of the galaxy and the presence of dark matter. This method is useful for studying the distribution of mass in the inner regions of the galaxy, where the velocity of stars is affected by the gravitational pull of the central black hole.The distribution of mass in the Milky Way can also be studied by analyzing the gravitational lensing of distant objects. This occurs when light from a distant object is bent by the gravitational field of a massive object, such as a galaxy or cluster of galaxies. By studying the shape and position of the lensed images, astronomers can infer the mass distribution of the galaxy causing the lensing.
The distribution of the mass of the Milky Way galaxy is determined by several methods, including measuring the velocity of objects orbiting around the galaxy, studying the motion of stars within the galaxy, and analyzing the gravitational lensing of distant objects. These methods allow astronomers to infer the mass of the Milky Way and its distribution throughout the galaxy, including the presence of dark matter.
To know more about Kepler's laws visit:
brainly.com/question/25900771
#SPJ11
geostationary satellite are placed in orbit of radius 4.2*10^4km use this information to deduce of at that height
To deduce the orbital period of a geostationary satellite at a given height, we can use the formula for the orbital period of a satellite:
T = 2π√(r³/GM),
where T is the orbital period, r is the radius of the orbit, G is the gravitational constant (approximately 6.67430 x 10^(-11) m³/(kg·s²)), and M is the mass of the Earth (approximately 5.972 x 10^24 kg).
First, we need to convert the radius of the orbit from kilometers to meters:
r = 4.2 x 10^4 km * 10^3 m/km = 4.2 x 10^7 m.
Now, we can calculate the orbital period:
T = 2π√((4.2 x 10^7)^3 / (6.67430 x 10^(-11) * 5.972 x 10^24)).
Evaluating this expression, we can find the orbital period of the geostationary satellite at that height.
Please note that the above calculation assumes a circular orbit and neglects the effects of other celestial bodies and atmospheric drag, which could slightly affect the satellite's actual orbital period.
Learn more about geostationary satellites and orbital mechanics here:
brainly.com/question/11830463
#SPJ11.
If the surface of a moon is impacted by meteorites at a constant rate, the density, or quantity per unit of area, of impact craters on the moon’s surface will increase over time. How can this information be used to determine the relative age of a moon’s surface?.
The information about the increasing density of impact craters on a moon's surface over time can be used to determine the relative age of the moon's surface.
This concept is based on the principle of superposition, which states that in undisturbed layers of rock or regolith, the oldest layers are at the bottom, and the youngest layers are at the top. When meteorites impact the surface of the moon, they create craters. Over time, new craters form on top of older craters. Therefore, the density of impact craters on the moon's surface can be an indicator of its relative age. If a specific region of the moon has a high density of impact craters, it suggests that the region is older because it has been exposed to meteorite impacts for a longer time, accumulating more craters. On the other hand, a region with a lower density of impact craters indicates a relatively younger surface with less time for meteorite impacts to accumulate. By comparing the density of impact craters on different regions of the moon's surface, scientists can make relative age determinations. Areas with higher crater density are considered older, while areas with lower crater density are considered younger. It's important to note that this method of age determination assumes a constant rate of meteorite impacts over time and that there have been no major geological events or processes that could have reset or altered the surface. Additionally, the age determination based on crater density is a relative dating technique and does not provide an exact or absolute age for the moon's surface.
Learn more about moon's here:
https://brainly.com/question/30861325
#SPJ11
What is the energy of a photon with a frequency of 1. 7 × 1017 Hz? Planck’s constant is 6. 63 × 10–34 J•s. 1. 1 × 10–17 J 1. 1 × 10–16 J 8. 3 × 10–16 J 8. 3 × 10–15 J.
The energy of the photon is determined as 1.1 x 10⁻¹⁶ J.
What is the energy of the photon?The energy of the photon is calculated by applying the following formula as follows;
E = hf
where;
h is the Planck's constantf is the frequency of the photonThe given parameters include;
frequency of the photon = 1. 7 × 10¹⁷ Hz
Planck’s constant is 6. 63 × 10⁻³⁴ J•s
The energy of the photon is calculated as follows;
E = 6. 63 × 10⁻³⁴ J•s x 1. 7 × 10¹⁷ Hz
E = 1.1 x 10⁻¹⁶ J
Thus, the energy of the photon is determined as 1.1 x 10⁻¹⁶ J.
Learn more about energy of photon here: https://brainly.com/question/15946945
#SPJ4
Susie estimated that she can run for hours at a steady rate of 8mph. She enters a marathon, a distance of 26miles. How long should it take her to complete the race? Give answers in hours and minutes.
To determine the time it would take Susie to complete the marathon, we can use the formula: Time = Distance / Speed
Given that the distance of the marathon is 26 miles and Susie's steady rate is 8 mph, we can substitute these values into the formula. Time = 26 miles / 8 mph. To calculate the time, we divide 26 miles by 8 mph: Time = 3.25 hours. Since there are 60 minutes in an hour, we can convert the decimal part of the time to minutes: 0.25 hours * 60 minutes/hour = 15 minutes. Therefore, it would take Susie approximately 3 hours and 15 minutes to complete the marathon.
To learn more about Speed, https://brainly.com/question/28224010
#SPJ11
Dolasetron (anzemet) is an antiemetic. The concentration is 20 mg/ml. A nauseous 7 weekold 4 kg pitbull puppy named ""Spot"" needs a dose at 0.6 mg/kg IV. How many mg will ""Spot""be given? How many ml?
Dolasetron (anzemet) is an antiemetic for a nauseous 7 weekold 4 kg pitbull puppy named "Spot" will be given a dose of 2.4 mg of dolasetron (anzemet).
To calculate the dose of dolasetron for "Spot," we multiply the weight of the puppy (4 kg) by the dose per kilogram (0.6 mg/kg). This gives us 2.4 mg. Therefore, "Spot" will be given a dose of 2.4 mg of dolasetron.
To calculate the volume in milliliters (ml) needed for this dose, we need to consider the concentration of dolasetron, which is 20 mg/ml. Since we have 2.4 mg of dolasetron, we divide this by the concentration to obtain the volume. Therefore, "Spot" will be given a dose of 0.12 ml of dolasetron.
In summary, "Spot" will be given a dose of 2.4 mg and the corresponding volume is 0.12 ml of dolasetron.
To know more about , weight, click here brainly.com/question/31409659
#SPJ11
A small sphere of mass 2. 5 × 10–5 kg carries a total charge of 6. 0 × 10–8 c. The sphere hangs from a silk thread between two large parallel conducting plates. The excess charge on each plate is equal in magnitude, but opposite in sign. If the thread makes an angle of 30° with the positive plate as shown, what is the magnitude of the charge density on each plate?.
The magnitude of the charge density on each plate for the given mass, charge and angle is 1.38 × 10⁻⁴ C/m².
The angle at which the sphere makes with the vertical = 90 – 30 = 60°. Therefore, the force on the sphere is the weight of the sphere – the tension in the thread, Tsinθ which acts towards the negative plate.The force towards the positive plate is qE. Therefore we have,
Tsin60° = mg – qE ...(1)
qE = mg – Tsin60° ...(2)
E is the electric field at a point between the plates.
For the electric field between the plates, we have,d = 4.0 mm = 4.0 × 10⁻³ mV = 500 VQ = 6.0 × 10⁻⁸ C.
Electric field strength = V/d = 500/(4.0 × 10⁻³) = 1.25 × 10⁵ V/m
Charge density = σ
Charge density of the positive plate = charge density of the negative plate= σ
Charge on a sphere is given by q = 4πε₀r²σ
Sphere charge = q = 6.0 × 10⁻⁸ C
Radius of the sphere = r
Mass of the sphere, m = 2.5 × 10⁻⁵ kg
Charge density, σ = q/4πε₀r²
Therefore, σ = 6.0 × 10⁻⁸ / (4π × 8.85 × 10⁻¹² × (6.25 × 10⁻⁶)²)
σ = 1.38 × 10⁻⁴ C/m²
The charge density on the positive plate is the same as that of the negative plate.
Therefore, the magnitude of the charge density on each plate is 1.38 × 10⁻⁴ C/m².
To know more about electric field visit:
brainly.com/question/11482745
#SPJ11
If the magnetic field in an electromagnetic field is doubled, by what factor does the electric field change?.
If the magnetic field in an electromagnetic field is doubled, the electric field remains unaffected. Therefore, the factor by which the electric field changes is 1, i.e., there is no change in the electric field.
What is an electromagnetic field?An electromagnetic field refers to a combination of an electric field and a magnetic field. It is a field of energy produced by an electric charge in motion. These two fields are perpendicular to each other and exist perpendicular to the direction of the electromagnetic wave.
Magnetic fields can be generated from the presence of an electrical current. Conversely, a magnetic field may induce a current in a conductor if there is a time-varying magnetic flux that traverses a surface. On the other hand, an electric field is created by any charged particle, such as an electron, proton, or even a macroscopic charged object, like a balloon that has been rubbed on someone's hair.
learn more about Magnetic fields here
https://brainly.com/question/14411049
#SPJ11
A 5-kg object is moving to the right at 4 m/s and collides with another object moving to the left at 5 m/s. The objects collide and stick together. After the collision, the combined object:
After the collision, the two objects stick together and move as one. Their total mass is m1 + m2 = 5 kg + m2.
How to determine the effect of the collisionIn this case, we can apply the principle of conservation of linear momentum
The initial momentum of the first object (P1_initial) is given by its mass (m1) times its velocity (v1), which is [tex]5 kg * 4 m/s = 20 kg*m/s.[/tex]
Therefore, the total initial momentum [tex](P_{total_initial}) is P1_{initial} + P2_{initial} = 20 kg*m/s - m2 * 5 m/s.[/tex]
After the collision, the two objects stick together and move as one.
Their total mass is m1 + m2 = 5 kg + m2.
Read more on collision here:
https://brainly.com/question/24915434
#SPJ4
Lexy throws a dart with an initial velocity of 25 m/s at an angle of 60° relative to the ground. What is the approximate vertical component of the initial velocity? 0. 5 m/s 0. 87 m/s 12. 5 m/s 21. 7 m/s.
The approximate vertical component of the initial velocity is `21.7 m/s`. The vertical component of an initial velocity in a projectile motion is given by the equation: `Vy = V₀sin(θ)` where `V₀` is the initial velocity of the projectile, `θ` is the angle at which the projectile was thrown and `Vy` is the vertical component of the initial velocity.
The vertical component of an initial velocity in a projectile motion is given by the equation: `
Vy = V₀sin(θ)`
With the given values `V₀ = 25 m/s` and `θ = 60°`,
The vertical component of the initial velocity is:
Vy = V₀sin(θ)
Vy = (25 m/s) sin(60°)
Vy ≈ 21.7 m/s
Therefore, the approximate vertical component of the initial velocity is `21.7 m/s`.
To know more about vertical component, refer
https://brainly.com/question/30354201
#SPJ11
A stone is(4i+5j) find the height maximum and the range
The maximum height of the stone is approximately 1.27 meters and the range is approximately 2.04 meters.
To find the maximum height and range of a projectile, we need to consider the motion of the object in the x and y directions.
Given that the initial velocity of the stone is (4i + 5j), we can break it down into its x and y components:
Initial velocity in the x direction (Vx) = 4
Initial velocity in the y direction (Vy) = 5
The maximum height (H) can be determined using the formula:
H = (Vy^2) / (2 * g)
where g is the acceleration due to gravity. Assuming g = 9.8 m/s^2, we can calculate the maximum height:
H = (5^2) / (2 * 9.8)
H = 25 / 19.6
H ≈ 1.27 meters
The range (R) can be calculated using the formula:
R = (Vx * Vy) / g
R = (4 * 5) / 9.8
R = 20 / 9.8
R ≈ 2.04 meters
Learn more about the stone here:
https://brainly.com/question/12933976
#SPJ11
In the experiment, we measure the total time for 20 complete revolutions and divide it by 20 to obtain the period of the rotation. why not measure the amount of time for one complete revolution directly and record it as the period of rotation?
In the experiment, measuring the total time for 20 complete revolutions and dividing it by 20 to obtain the period of rotation is done to reduce errors and improve the accuracy of the measurement.
Measuring the time for one complete revolution directly can be subject to human reaction time and potential errors in starting and stopping the stopwatch precisely at the beginning and end of each revolution. These errors can accumulate and affect the accuracy of the measurement.
By measuring the total time for 20 complete revolutions and then dividing it by 20, we are essentially averaging out these potential errors over multiple revolutions. This helps to minimize the impact of any individual timing error and provides a more reliable and accurate measurement of the period of rotation.
Additionally, by taking multiple measurements (in this case, 20), we increase the sample size and reduce the influence of outliers or irregularities in any individual measurement. This improves the overall precision and reliability of the calculated period.
Therefore, measuring the total time for multiple revolutions and dividing by the number of revolutions allows for a more accurate determination of the period of rotation in the experiment.
To know more about period here
https://brainly.com/question/30892752
#SPJ4
A projectile is launched horizontally from a height of 8. 0 m. The projectile travels 6. 5 m before hitting the ground. The velocity of the projectile the moment it was launched, rounded to the nearest hundredth, is m/s.
The initial velocity of a projectile launched horizontally can be calculated using the equation of distance covered horizontally (x) = Initial velocity (u) Time of flight (t). The horizontal component of the initial velocity can be determined by x = u t, t = 1.63 s, x = 6.5 mu = x / t = 6.5 m / 1.63 su = 3.99 m/s 4.00 m/s.
The initial velocity of the projectile that was launched horizontally can be calculated using the equation below: Distance covered horizontally (x) = Initial velocity (u) × Time of flight (t) where, Time of flight (t) can be found using the formula below: t = [2 × vertical height (h)] / g where ,g is the acceleration due to gravity = 9.8 m/s².The vertical height (h) of the projectile is 8.0 m. So the time of flight of the projectile will bet = [2 × 8.0 m] / 9.8 m/s²t = 1.63 s Therefore, the horizontal component of the projectile’s initial velocity can be determined by: x = u × tt = 1.63 s, x = 6.5 mu = x / t = 6.5 m / 1.63 su = 3.99 m/s ≈ 4.00 m/s. So, the projectile was launched horizontally with a velocity of 4.00 m/s (rounded to the nearest hundredth).Content loaded: The term “content loaded” is used to indicate that the contents of a webpage or app have finished loading and are ready for viewing or use.
To know more about velocity Visit:
https://brainly.com/question/30559316
#SPJ11
Which events are the craters on the moon evidence of?.
The craters on the moon are evidence of past collisions with asteroids and meteoroids.
When these objects impact the surface, they release a tremendous amount of energy that melts and vaporizes the impacted material,
which then sprays outwards, forming a crater.
Because the moon has no geological activity to erase the evidence of these impacts, the craters are still visible today.
The size and number of craters on the moon provide scientists with valuable information about the history of the solar system.
The craters on the moon are also important because they help scientists understand the impact history of the Earth.
Since the Earth has an atmosphere and geological activity, the evidence of past impacts is often erased.
However, by studying the craters on the moon, scientists can get an idea of how often large objects impact the Earth and what kind of damage they can cause.
In conclusion, the craters on the moon are evidence of past collisions with asteroids and meteoroids. The size and number of these craters provide valuable information about the history of the solar system. By studying these craters, scientists can gain a better understanding of the impact history of both the moon and the Earth.
To know more about energy visit:
brainly.com/question/1932868
#SPJ11
The sun heats land faster than it heats water. As a result, the air above the water is usually cooler than that above land. Many times, early in the morning, the air above the water is very dense and is difficult to see through. What effect is observed from this difference in temperature?.
The effect that is observed from the difference in temperature is a sea breeze.
A sea breeze is a cooling wind that blows from the sea to the land and results from the difference in temperature between the land and the sea. The sun heats land faster than water, which causes the air above the land to heat up faster than the air above the water, as per the given statement.
As a result, the warm air above the land rises, creating low pressure over the land. On the other hand, the cool air above the sea sinks, creating high pressure over the sea. As a result, the cool air moves from the sea to the land, which is known as a sea breeze.So, the difference in temperature caused by the sun's heating land faster than water leads to the formation of a sea breeze.
To learn more about temperature visit;
https://brainly.com/question/7510619
#SPJ11
the gravitational pull will be lowest between which two spears
The gravitational pull between two objects depends on their masses and the distance between them. According to Newton's law of universal gravitation, the force of gravity decreases as the distance between two objects increases. Therefore, the gravitational pull will be lowest between two objects when they are the farthest apart.
In the context of your question, the term "spears" might refer to spherical objects or other bodies. If we assume these spears have the same mass, the gravitational pull between them will be lowest when they are farthest apart. As the distance between the spears increases, the gravitational force between them decreases.
It's important to note that the gravitational force is always present between any two objects, regardless of the distance. However, the magnitude of the force decreases with increasing distance. Therefore, the gravitational pull will be the lowest between the two spears when they are at their maximum distance from each other.
To know more about Force visit-
brainly.com/question/30507236
#SPJ11
The electron and proton of a hydrogen atom are separated by a distance of approximately 5.3 x 10^-11m. Find the magnitude of the electric and gravitational force between the two particles.
The magnitude of the electric force is 8.21 × 10⁻⁸ N and the gravitational force is 3.61 × 10⁻⁸ N. The electric force acting between the electron and proton of hydrogen atom is given by: Coulomb's Law of electrostatics, F = 1 / 4πε₀ × q₁q₂ / r².
Given that, Distance between the electron and proton of a hydrogen atom, r = 5.3 × 10⁻¹¹m, Mass of an electron, m₁ = 9.1 × 10⁻³¹ kg, Mass of a proton, m₂ = 1.67 × 10⁻²⁷ kg, Charge of an electron, q₁ = -1.6 × 10⁻¹⁹ C, Charge of a proton, q₂ = +1.6 × 10⁻¹⁹ C.
Where,ε₀ = permittivity of free space = 8.854 × 10⁻¹² C²/N m²
F = 1 / 4π (8.854 × 10⁻¹²) × (1.6 × 10⁻¹⁹)² / (5.3 × 10⁻¹¹)²
F = 8.21 × 10⁻⁸ N
The gravitational force acting between the electron and proton of hydrogen atom is given by:
Newton's Law of gravitation, F = G × m₁m₂ / r², Where, G = gravitational constant = 6.67 × 10⁻¹¹ N m²/kg²
F = (6.67 × 10⁻¹¹) × (9.1 × 10⁻³¹) × (1.67 × 10⁻²⁷) / (5.3 × 10⁻¹¹)²
F = 3.61 × 10⁻⁸ N
Therefore, the magnitude of the electric force is 8.21 × 10⁻⁸ N and the gravitational force is 3.61 × 10⁻⁸ N.
To know more about electric force, refer
https://brainly.com/question/30236242
#SPJ11
Oliver, while visiting a nearby army base, gets to visit the firing range. When he fires the first round his mind turns to physics and he wonders. If the bullet leaves the muzzle of the rifle with a velocity of 600 m/s, and the barrel of the rifle is 0. 9 m long, at what average rate is the bullet accelerated while in the barrel? (20 pts)
The average rate at which the bullet is accelerated while in the barrel is 666.67 m/s². The length of the barrel is given as 0.9 m.
To calculate the average rate of acceleration, we can use the formula:
acceleration = (final velocity - initial velocity) / time
In this case, the bullet starts from rest at the beginning of the barrel and exits the muzzle with a velocity of 600 m/s. The length of the barrel is given as 0.9 m.
Since the bullet travels the entire length of the barrel, we can consider the time it takes to exit the muzzle as the time of acceleration. The distance traveled in this time is equal to the length of the barrel.
So, using the equation of motion:
final velocity² = initial velocity² + 2 * acceleration * distance
we can rearrange to solve for acceleration:
acceleration = (final velocity² - initial velocity²) / (2 * distance)
Substituting the given values, we get:
acceleration = (600² - 0²) / (2 * 0.9) = 666.67 m/s²
Therefore, the average rate at which the bullet is accelerated while in the barrel is 666.67 m/s².
learn more about barrel here:
https://brainly.com/question/29257237
#SPJ11
Assuming a constant density, the size of an object scales as its mass raised to what power?.
Assuming a constant density, the size of an object scales as its mass raised to the power of 1/3 (one-third).
The mass, density, and volume of an object are related by the equation:
ρ = m/Vwhere ρ is the density, m is the mass, and V is the volume.
We can write this equation as
V = m/ρThis equation can be used to find the relationship between the mass and volume of an object of constant density.
Assume that we have two objects of the same material with masses m1 and m2.
We can find the ratio of their volumes by taking the ratio of their masses and density as follows:
V1/V2 = m1/ρ / m2/ρV1/V2 = m1/m2V1/V2 = (m1/m2)^(1/3)
This shows that the ratio of the volumes of two objects with the same density is proportional to the cube root of the ratio of their masses.
This relationship can be expressed as:
V ∝ m^(1/3)
This relationship can also be expressed as the size of an object scales as its mass raised to the power of 1/3.
Know more about constant density here:
https://brainly.com/question/6838128
#SPJ11
A call can supply circuit of 0. 4A and 0. 2A through a 4ohms and 10 ohms resistor respectively what is the internal resistant of the cell
A call can supply circuit of 0. 4A and 0. 2A through a 4ohms and 10 ohms resistor respectively what is the internal resistant of the cellThe internal resistance of the cell is 3 ohms.
According to Ohm's Law, the current in a circuit can be determined using the equation I = V/R, where I is the current, V is the voltage, and R is the resistance. In this case, we have two resistors connected in parallel. Let's assume the voltage of the cell is V.
For the 4-ohm resistor, the current is given as 0.4A. Using Ohm's Law, we can calculate the voltage across the resistor as V1 = I1 * R1 = 0.4A * 4ohms = 1.6V.
For the 10-ohm resistor, the current is given as 0.2A. Using Ohm's Law, we can calculate the voltage across the resistor as V2 = I2 * R2 = 0.2A * 10ohms = 2V.
Since the resistors are in parallel, the voltage across both resistors is the same, so V1 = V2. This means the internal resistance of the cell can be calculated as V = I * r, where r is the internal resistance. Substituting the values, we have 1.6V = 0.4A * r, which gives us r = 1.6V / 0.4A = 4 ohms.
learn more about supply circuit here:
https://brainly.com/question/32392237
#SPJ11
A person standing atop a building drops a coin. How fast will the coin be traveling 2 seconds after she drops it? 3 seconds?
The speed of the coin when dropped from the top of a building, using free fall formula after 2 and 3 seconds are, 19.6 m/s and 29.4 m/s.
The speed of an object in free fall can be determined by multiplying the acceleration due to gravity (which is approximately 9.8 m/s²) by the time elapsed. In this case, after 2 seconds, the coin will have fallen a distance of 19.6 meters and will be traveling at 19.6 m/s. Similarly, after 3 seconds, the coin will have fallen a distance of 44.1 meters and will be traveling at 29.4 m/s.
To know more about speed, visit
https://brainly.com/question/22610586
#SPJ11
A particle with a charge of 5nC has a distance of 0. 5m away from a charge of 9. 5nC. What is its electric potential energy?
The electric potential energy of the particle with a charge of 5nC, located 0.5m away from a charge of 9.5nC, is 1.9 J.
To calculate the electric potential energy, we can use the formula:
Electric potential energy = (k * q1 * q2) / r
Where:
k is the electrostatic constant (9 x 10^9 N m^2/C^2),
q1 and q2 are the charges of the two particles (in this case, 5nC and 9.5nC, respectively),
r is the distance between the charges (0.5m).
Substituting the given values into the formula:
Electric potential energy = (9 x 10^9 N m^2/C^2) * (5 x 10^-9 C) * (9.5 x 10^-9 C) / 0.5m
Calculating the expression:
Electric potential energy ≈ 1.9 J
Therefore, the electric potential energy of the particle is approximately 1.9 Joules.
learn more about electric potential here:
https://brainly.com/question/28444459
#SPJ11
Veronica’s velocity was measured as 4. 3 m/s. She displaced 20 meters in 4. 7 seconds. Which piece of information is missing for the correct calculation of velocity?
The missing piece of information required for the correct calculation of velocity is the direction of the displacement.
In order to calculate velocity accurately, we need to have both the displacement and the time. In this scenario, the displacement of 20 meters in 4.7 seconds is provided, but the missing piece of information is the direction of the displacement. Velocity is a vector quantity, which means it includes both magnitude (speed) and direction. To calculate the velocity accurately, we need to know whether Veronica's displacement was in a specific direction (e.g., north, east, etc.) or if it was only given as a magnitude (20 meters) without a direction.
Learn more about velocity here:
https://brainly.com/question/847745
#SPJ11
You have discovered and practiced the memory tools and study skills in this learning path.
Describe one specific tool or skill that has been most valuable for you to learn.
Describe how that specific tool or skill has been valuable.
Your answer should be at least two complete sentences.
One specific tool or skill that has been most valuable for me to learn is the technique of creating mnemonic devices. Mnemonic devices are memory aids that help me remember and recall information more easily. They involve associating the information I want to remember with vivid and memorable images, patterns, or acronyms.
This tool has been valuable because it has significantly improved my ability to retain and retrieve information. By using mnemonic devices, I can convert complex or abstract concepts into visual or auditory cues that are easier for my brain to process and store. It has helped me remember key facts, formulas, and sequences, making my studying more efficient and effective.
Additionally, mnemonic devices have made learning more engaging and fun, as I get to be creative in constructing mental associations that stick in my memory for a long time.
To know more about Information visit-
brainly.com/question/30101285
#SPJ11