A shopper exerts a force on a cart of 76 N at an angle of 40.0° below the horizontal. How much force pushes the cart in the forward direction?

Answers

Answer 1

The force that pushes the cart in the forward direction is calculated as to be equal to 57.99 N.

It is given that a shopper exerts a force of 76 N at an angle of 40° below the horizontal and we need to determine how much force pushes the cart in the forward direction.

The force acting in the forward direction can be calculated as follows:

[tex]Force in the forward direction = Force exerted by the shopper * Cos θ[/tex]

= 76 * cos 40°

= 76 * 0.766

= 57.99 N

Therefore, the force that pushes the cart in the forward direction is 57.99 N.

To know more about force, refer

https://brainly.com/question/12785175

#SPJ11


Related Questions

A 20. Kilogram rock is lifted 7. 0 meters above the ground. What is the gravitational


potential energy of the rock?

Answers

The gravitational potential energy of the rock is 1,372 Joules.

The gravitational potential energy (PE) of an object can be calculated using the formula:

PE = m * g * h, where:

m is the mass of the object,

g is the acceleration due to gravity, and

h is the height or distance above the reference point.

In this case, the mass of the rock (m) is 20 kilograms, and the height (h) is 7.0 meters.

The acceleration due to gravity (g) is approximately 9.8 m/s².

Now we can calculate the gravitational potential energy:

PE = 20 kg * 9.8 m/s² * 7.0 m

PE = 1,372 Joules

Therefore, the gravitational potential energy of the rock is 1,372 Joules.

Learn more about gravitational PE visit:

brainly.com/question/3910603

#SPJ11

Veronica’s velocity was measured as 4. 3 m/s. She displaced 20 meters in 4. 7 seconds. Which piece of information is missing for the correct calculation of velocity?

Answers

The missing piece of information required for the correct calculation of velocity is the direction of the displacement.

In order to calculate velocity accurately, we need to have both the displacement and the time. In this scenario, the displacement of 20 meters in 4.7 seconds is provided, but the missing piece of information is the direction of the displacement. Velocity is a vector quantity, which means it includes both magnitude (speed) and direction. To calculate the velocity accurately, we need to know whether Veronica's displacement was in a specific direction (e.g., north, east, etc.) or if it was only given as a magnitude (20 meters) without a direction.

Learn more about velocity  here:

https://brainly.com/question/847745

#SPJ11

Assuming a constant density, the size of an object scales as its mass raised to what power?.

Answers

Assuming a constant density, the size of an object scales as its mass raised to the power of 1/3 (one-third).

The mass, density, and volume of an object are related by the equation:

ρ = m/Vwhere ρ is the density, m is the mass, and V is the volume.

We can write this equation as

V = m/ρThis equation can be used to find the relationship between the mass and volume of an object of constant density.

Assume that we have two objects of the same material with masses m1 and m2.

We can find the ratio of their volumes by taking the ratio of their masses and density as follows:

V1/V2 = m1/ρ / m2/ρV1/V2 = m1/m2V1/V2 = (m1/m2)^(1/3)

This shows that the ratio of the volumes of two objects with the same density is proportional to the cube root of the ratio of their masses.

This relationship can be expressed as:

V ∝ m^(1/3)

This relationship can also be expressed as the size of an object scales as its mass raised to the power of 1/3.

Know more about constant density here:

https://brainly.com/question/6838128

#SPJ11

In the experiment, we measure the total time for 20 complete revolutions and divide it by 20 to obtain the period of the rotation. why not measure the amount of time for one complete revolution directly and record it as the period of rotation?

Answers

In the experiment, measuring the total time for 20 complete revolutions and dividing it by 20 to obtain the period of rotation is done to reduce errors and improve the accuracy of the measurement.

Measuring the time for one complete revolution directly can be subject to human reaction time and potential errors in starting and stopping the stopwatch precisely at the beginning and end of each revolution. These errors can accumulate and affect the accuracy of the measurement.

By measuring the total time for 20 complete revolutions and then dividing it by 20, we are essentially averaging out these potential errors over multiple revolutions. This helps to minimize the impact of any individual timing error and provides a more reliable and accurate measurement of the period of rotation.

Additionally, by taking multiple measurements (in this case, 20), we increase the sample size and reduce the influence of outliers or irregularities in any individual measurement. This improves the overall precision and reliability of the calculated period.

Therefore, measuring the total time for multiple revolutions and dividing by the number of revolutions allows for a more accurate determination of the period of rotation in the experiment.

To know more about period here

https://brainly.com/question/30892752

#SPJ4

The athlete at point A runs 150m east, then 70m west and then 100 m east. How do i Determine the resultant force acting on the object?

Answers

To determine the resultant force acting on the object we need to find the net displacement. We can find the net displacement by subtracting the total distance travelled in the opposite direction (west) from the total distance travelled in the east direction. We can use this formula: Net displacement = Total displacement in the East direction - Total displacement in the West direction. Once we find the net displacement we can calculate the resultant force acting on the object.

The athlete runs 150m towards east, 70m towards west and again 100m towards east. Thus, total displacement in the East direction = 150m + 100m = 250mTotal displacement in the West direction = 70mNet displacement = Total displacement in the East direction - Total displacement in the West direction= 250m - 70m= 180mTherefore, the net displacement of the athlete is 180m towards east.

This displacement is called as the resultant displacement. Since the athlete has been moving towards east in the positive direction and towards west in the negative direction, thus his resultant displacement is the sum of the positive and negative distances he covered.

learn more about  resultant force

https://brainly.com/question/25239010

#SPJ11

A bookshelf is at rest in a room. A force of 35. 0 newtons is applied to a bookshelf. If the floor imparts a frictional force of 2. 90 newtons, what is the net force acting on the bookshelf?.

Answers

The net force acting on the bookshelf is 32.1 N. It is given that the net force acting on a bookshelf that is at rest in a room when a force of 35.0 N is applied to it and the floor imparts a frictional force of 2.90 N.

The force that is applied to an object minus the frictional force acting on it is called net force. This net force is responsible for causing motion in the object. Therefore, if the object is at rest, the net force is zero. If it is in motion, the net force is nonzero.

The formula for calculating net force is: Net force = Applied force - Frictional force

Given: Applied force = 35.0 N, Frictional force = 2.90 N

We know that, Net force = Applied force - Frictional force

= 35.0 N - 2.90 N

= 32.1 N

Therefore, the net force acting on the bookshelf is 32.1 N.

To know more about net force, refer

https://brainly.com/question/14361879

#SPJ11

A 5-kg object is moving to the right at 4 m/s and collides with another object moving to the left at 5 m/s. The objects collide and stick together. After the collision, the combined object:

Answers

After the collision, the two objects stick together and move as one. Their total mass is m1 + m2 = 5 kg + m2.

How to determine the effect of the collision

In this case, we can apply the principle of conservation of linear momentum

The initial momentum of the first object (P1_initial) is given by its mass (m1) times its velocity (v1), which is [tex]5 kg * 4 m/s = 20 kg*m/s.[/tex]

Therefore, the total initial momentum [tex](P_{total_initial}) is P1_{initial} + P2_{initial} = 20 kg*m/s - m2 * 5 m/s.[/tex]

After the collision, the two objects stick together and move as one.

Their total mass is m1 + m2 = 5 kg + m2.

Read more on collision here:

https://brainly.com/question/24915434

#SPJ4

A green laser pointer has a wavelength of 532 nanometers. Using the wave equation, what is the frequency of the light from the laser pointer?



1. 77 x 10^5 Hz


1. 88 x 10^14 Hz


5. 64 x 10^14 Hz


1. 60 x 10^4 Hz



(If you want to be in a physics B ig gc please cmmt)

Answers

The frequency of the light from the green laser pointer is [tex]5.64 x 10^14 Hz[/tex]. The correct option is C [tex]5.64 x 10^14 Hz[/tex].

The wave equation can be used to calculate the frequency of the light from a green laser pointer with a wavelength of 532 nanometers.

The wave equation is given by the formula: v = λfwhere v is the velocity of the wave, λ is the wavelength of the wave, and f is the frequency of the wave.

Rearranging the formula to solve for frequency: f = v/λwhere f is the frequency of the wave, v is the velocity of the wave, and λ is the wavelength of the wave. Since light travels at a constant speed in a vacuum (c), we can use this value for the velocity: v = c = 3.00 x 10^8 m/s (speed of light in vacuum)

To use this value, we need to convert the wavelength of the laser pointer from nanometers to meters.1 nanometer = 1 x 10^-9 meters532 nanometers = 532 x 10^-9 meters Substituting the values into the formula: f = v/λf = (3.00 x 10^8 m/s)/(532 x 10^-9 m)f = 5.64 x 10^14 Hz.

Therefore, the frequency of the light from the green laser pointer is 5.64 x 10^14 Hz. The correct option is 5.64 x 10^14 Hz.

For more such questions on green laser pointer

https://brainly.com/question/7975009

#SPJ8

The sun heats land faster than it heats water. As a result, the air above the water is usually cooler than that above land. Many times, early in the morning, the air above the water is very dense and is difficult to see through. What effect is observed from this difference in temperature?.

Answers

The effect that is observed from the difference in temperature is a sea breeze.

A sea breeze is a cooling wind that blows from the sea to the land and results from the difference in temperature between the land and the sea. The sun heats land faster than water, which causes the air above the land to heat up faster than the air above the water, as per the given statement.

As a result, the warm air above the land rises, creating low pressure over the land. On the other hand, the cool air above the sea sinks, creating high pressure over the sea. As a result, the cool air moves from the sea to the land, which is known as a sea breeze.So, the difference in temperature caused by the sun's heating land faster than water leads to the formation of a sea breeze.

To learn more about temperature visit;

https://brainly.com/question/7510619

#SPJ11

Triangle FGH with vertices F(6, 6), G(8,8),


and H(8,3);


(a) Reflection: in the line. R = 5


(b) Translation: (x, y) - (x - 7, y-9)

Answers

The final image of the original triangle after reflection in the line R=5 and translation by (7,-9) is the triangle F"G"H" with vertices F"(11,-3), G"(9,-1), and H"(9,-12).

(a) Reflection is a transformation in which a shape is mirrored, or flipped over a line called the reflection line. In this problem, the reflection is to take place in the line, R = 5.

This line is vertical; therefore, it passes through points (5,0), (5,1), (5,2), and so on.

The reflection image of point F on the line R=5 is point F', where FF' is perpendicular to line R.

FF' intersects line R at point P, which is equidistant from F and F'.

Hence, the reflection image of F(6,6) on R=5 is F'(4,6).

Similarly, the reflection image of point G(8,8) on line R=5 is G'(2,8), and that of H(8,3) is H'(2,-3).

Therefore, the reflected triangle is F'G'H' with vertices F'(4,6), G'(2,8), and H'(2,-3).

(b) Translation: (x, y) - (x - 7, y-9)

Translation involves moving a shape to a new position without changing its size, shape, or orientation. The new position of each point is obtained by adding the translation vector (7,-9) to the coordinates of the corresponding point. The image of F'(4,6) after the translation is F"(11,-3).

Similarly, G'(2,8) maps to G"(9,-1), and H'(2,-3) maps to H"(9,-12).

The translated triangle is F"G"H" with vertices F"(11,-3), G"(9,-1), and H"(9,-12).

To learn more about reflection click here https://brainly.com/question/15487308

#SPJ11

Susie estimated that she can run for hours at a steady rate of 8mph. She enters a marathon, a distance of 26miles. How long should it take her to complete the race? Give answers in hours and minutes.

Answers

To determine the time it would take Susie to complete the marathon, we can use the formula: Time = Distance / Speed

Given that the distance of the marathon is 26 miles and Susie's steady rate is 8 mph, we can substitute these values into the formula. Time = 26 miles / 8 mph. To calculate the time, we divide 26 miles by 8 mph: Time = 3.25 hours. Since there are 60 minutes in an hour, we can convert the decimal part of the time to minutes: 0.25 hours * 60 minutes/hour = 15 minutes.  Therefore, it would take Susie approximately 3 hours and 15 minutes to complete the marathon.

To learn more about Speed, https://brainly.com/question/28224010

#SPJ11

A particle with a charge of 5nC has a distance of 0. 5m away from a charge of 9. 5nC. What is its electric potential energy?

Answers

The electric potential energy of the particle with a charge of 5nC, located 0.5m away from a charge of 9.5nC, is 1.9 J.

To calculate the electric potential energy, we can use the formula:

Electric potential energy = (k * q1 * q2) / r

Where:

k is the electrostatic constant (9 x 10^9 N m^2/C^2),

q1 and q2 are the charges of the two particles (in this case, 5nC and 9.5nC, respectively),

r is the distance between the charges (0.5m).

Substituting the given values into the formula:

Electric potential energy = (9 x 10^9 N m^2/C^2) * (5 x 10^-9 C) * (9.5 x 10^-9 C) / 0.5m

Calculating the expression:

Electric potential energy ≈ 1.9 J

Therefore, the electric potential energy of the particle is approximately 1.9 Joules.

learn more about electric potential here:

https://brainly.com/question/28444459

#SPJ11

Steam burns are pretty dangerous because there's often a lot of


thermal energy in the steam. When the steam hits you, it is going to


transfer some of that energy to you, cooling the steam. If a 6.4 kg cloud of


steam at 150 degrees, hits you and cools to 100 degrees, What is the loss


of heat energy? (no scientific notation)

Answers

The loss of heat energy when a 6.4 kg cloud of steam at 150 degrees Celsius hits you and cools to 100 degrees Celsius is 13,440,000 Joules.

To calculate the heat energy loss, we can use the formula:

Q = mcΔT

Where Q represents heat energy, m is the mass of the steam cloud (6.4 kg), c is the specific heat capacity of water (4,186 J/kg°C), and ΔT is the change in temperature (150°C - 100°C = 50°C).

Plugging in the values, we have:

Q = (6.4 kg) × (4,186 J/kg°C) × (50°C)

Q = 13,440,000 Joules

Therefore, the loss of heat energy when the steam cools from 150°C to 100°C is 13,440,000 Joules.

Learn more about heat energy calculations here:

https://brainly.com/question/30320641

#SPJ11

Suitable cross section shape of a dam wall diagram

Answers

Trapezoidal shapes are used for dams with a height of 20 to 80 meters. Rectangular shapes are used for dams with a height of more than 80 meters. The cross-sectional shape of a dam wall is an important consideration in the design of a dam as it affects the safety and stability of the dam wall.

The cross-section shape of a dam wall is determined by the hydraulic forces that the dam will experience. The suitable cross-section shape of a dam wall diagram should have a wide base with a gradual reduction in width as it approaches the top. It should be designed in such a way that the dam can withstand the force of water pressure and the load of the content loaded. The width of the base should be at least 2 to 3 times the height of the dam. Additionally, the dam wall should have a curvature at the upstream face that minimizes the water pressure at the base of the wall. The most common types of dam cross-section shapes include triangular, trapezoidal, and rectangular shapes. Triangular shapes are preferred for small dams with a height of less than 20 meters. Trapezoidal shapes are used for dams with a height of 20 to 80 meters. Rectangular shapes are used for dams with a height of more than 80 meters. The cross-sectional shape of a dam wall is an important consideration in the design of a dam as it affects the safety and stability of the dam wall.

To know more about hydraulic forces Visit:

https://brainly.com/question/25012437

#SPJ11

The electron and proton of a hydrogen atom are separated by a distance of approximately 5.3 x 10^-11m. Find the magnitude of the electric and gravitational force between the two particles.

Answers

The magnitude of the electric force is 8.21 × 10⁻⁸ N and the gravitational force is 3.61 × 10⁻⁸ N. The electric force acting between the electron and proton of hydrogen atom is given by: Coulomb's Law of electrostatics, F = 1 / 4πε₀ × q₁q₂ / r².

Given that, Distance between the electron and proton of a hydrogen atom, r = 5.3 × 10⁻¹¹m, Mass of an electron, m₁ = 9.1 × 10⁻³¹ kg, Mass of a proton, m₂ = 1.67 × 10⁻²⁷ kg, Charge of an electron, q₁ = -1.6 × 10⁻¹⁹ C, Charge of a proton, q₂ = +1.6 × 10⁻¹⁹ C.

Where,ε₀ = permittivity of free space = 8.854 × 10⁻¹² C²/N m²

F = 1 / 4π (8.854 × 10⁻¹²) × (1.6 × 10⁻¹⁹)² / (5.3 × 10⁻¹¹)²

F = 8.21 × 10⁻⁸ N

The gravitational force acting between the electron and proton of hydrogen atom is given by:

Newton's Law of gravitation, F = G × m₁m₂ / r², Where, G = gravitational constant = 6.67 × 10⁻¹¹ N m²/kg²

F = (6.67 × 10⁻¹¹) × (9.1 × 10⁻³¹) × (1.67 × 10⁻²⁷) / (5.3 × 10⁻¹¹)²

F = 3.61 × 10⁻⁸ N

Therefore, the magnitude of the electric force is 8.21 × 10⁻⁸ N and the gravitational force is 3.61 × 10⁻⁸ N.

To know more about electric force, refer

https://brainly.com/question/30236242

#SPJ11

Driving a car 100m requires the same amount of _____ as pushing it 100m by hand. A. PowerB. Power and EnergyC. TimeD. Work

Answers

Driving a car 100m requires the same amount of work as pushing it 100m by hand as the concept of work in physics refers to the transfer of energy when a force is applied over a certain distance.

When driving a car or pushing it by hand, the same amount of work is done because the distance covered is the same. However, it's important to note that the power required to accomplish this work may differ, as power is the rate at which work is done or energy is transferred. So, while the work is the same, the power required for driving a car is typically much higher than the power needed to push it by hand.

To know more about energy, visit

https://brainly.com/question/18771704

#SPJ11

In a game of pool, a 0. 4 kg cue ball is traveling at 0. 80 m/s when it hits a slower striped ball moving at 0. 38 m/s. After the collision, the striped ball moves off at 0. 62 m/s. What is the magnitude of the final velocity of the cue ball? Assume all pool balls have the same mass. 0. 20 m/s 0. 56 m/s 1. 0 m/s 1. 8 m/s.

Answers

When solving the problem of pool game and calculating the magnitude of the final velocity of the cue ball, the correct option is 0.56 m/s.

The following method: Use the principle of conservation of momentum, i.e. momentum before the collision is equal to the momentum after the collision, which is mathematically written as: [tex]$$mv_1+Mv_2=(m + M)v_3$$[/tex]

Where, m is the mass of the cue ball,

M is the mass of the striped ball,

v1 is the velocity of the cue ball before the collision,

v2 is the velocity of the striped ball before the collision, and

v3 is the velocity of the cue ball after the collision.

Using the above formula, we get the final velocity of the cue ball as:

[tex]$$v_3=frac {mv_1+Mv_2}{m+M}$$[/tex]

Plug in the given values, we get,

[tex]$$v_3=frac{0.4*0.80+0.4*0.38}{0.4+0.4}$$[/tex]

Solving for v3, we get [tex]$v_3=0.59$[/tex] m/s Therefore, the magnitude of the final velocity of the cue ball is 0.59 m/s.

To know more about velocity visit :

https://brainly.com/question/18084516

#SPJ11

A call can supply circuit of 0. 4A and 0. 2A through a 4ohms and 10 ohms resistor respectively what is the internal resistant of the cell

Answers

A call can supply circuit of 0. 4A and 0. 2A through a 4ohms and 10 ohms resistor respectively what is the internal resistant of the cellThe internal resistance of the cell is 3 ohms.

According to Ohm's Law, the current in a circuit can be determined using the equation I = V/R, where I is the current, V is the voltage, and R is the resistance. In this case, we have two resistors connected in parallel. Let's assume the voltage of the cell is V.

For the 4-ohm resistor, the current is given as 0.4A. Using Ohm's Law, we can calculate the voltage across the resistor as V1 = I1 * R1 = 0.4A * 4ohms = 1.6V.

For the 10-ohm resistor, the current is given as 0.2A. Using Ohm's Law, we can calculate the voltage across the resistor as V2 = I2 * R2 = 0.2A * 10ohms = 2V.

Since the resistors are in parallel, the voltage across both resistors is the same, so V1 = V2. This means the internal resistance of the cell can be calculated as V = I * r, where r is the internal resistance. Substituting the values, we have 1.6V = 0.4A * r, which gives us r = 1.6V / 0.4A = 4 ohms.

learn more about supply circuit  here:

https://brainly.com/question/32392237

#SPJ11

What is the energy of a wave that has a frequency of 9. 50 x 10^12 Hz?

Answers

The energy of the wave with a frequency of 9.50 x 10^12 Hz is approximately 6.2947 x 10^-21 Joules.

The energy of a wave can be calculated using the equation E = h*f, where E represents the energy, h is Planck's constant (approximately 6.626 x 10^-34 J·s), and f is the frequency of the wave.

Given a frequency of 9.50 x 10^12 Hz, we can substitute this value into the equation to find the energy:

E = (6.626 x 10^-34 J·s) * (9.50 x 10^12 Hz)

E = 6.2947 x 10^-21 J

Therefore, the energy of the wave with a frequency of 9.50 x 10^12 Hz is approximately 6.2947 x 10^-21 Joules.

Learn more about frequency visit:

brainly.com/question/31938473

#SPJ11

A stone is(4i+5j) find the height maximum and the range

Answers

The maximum height of the stone is approximately 1.27 meters and the range is approximately 2.04 meters.

To find the maximum height and range of a projectile, we need to consider the motion of the object in the x and y directions.

Given that the initial velocity of the stone is (4i + 5j), we can break it down into its x and y components:

Initial velocity in the x direction (Vx) = 4

Initial velocity in the y direction (Vy) = 5

The maximum height (H) can be determined using the formula:

H = (Vy^2) / (2 * g)

where g is the acceleration due to gravity. Assuming g = 9.8 m/s^2, we can calculate the maximum height:

H = (5^2) / (2 * 9.8)

H = 25 / 19.6

H ≈ 1.27 meters

The range (R) can be calculated using the formula:

R = (Vx * Vy) / g

R = (4 * 5) / 9.8

R = 20 / 9.8

R ≈ 2.04 meters

Learn more about the stone here:

https://brainly.com/question/12933976

#SPJ11

During an investigation, equal volumes of hot and cold baking soda solution and calcium chloride solution were mixed in four cups. A record of the investigation is shown below:



Investigation Record

Cup Baking Soda Solution Calcium Chloride Solution

W Hot Cold

X Cold Cold

Y Cold Hot

Z Hot Hot



Baking soda reacts with calcium chloride to form bubbles. In which cup will bubbles form the fastest?

Cup W

Cup X

Cup Y

Cup Z

Answers

Baking soda reacts with calcium chloride to form bubbles fastest in Cup Z

Does temperature affect rate of reaction?

The rate of a chemical reaction is impacted by temperature. In general, a rise in temperature causes the rate of response to rise, whereas a fall in temperature causes the rate to fall.

The collision theory helps explain how temperature affects reaction rate. This hypothesis states that for a reaction to take place, reactant molecules must collide with enough force and in the proper direction. Temperature affects the frequency and energy of particle collisions, which in turn affects the rate of response.

Learn more about rate of reaction:https://brainly.com/question/13693578

#SPJ4

A web browser is open on yur screen. The lengh of the monitor is x+7. The area of the browser windw is 24 inches. The dimensions of the browser window are x-2 and x. Find the length of the browser window x. Part B. The browser covers 3/13 of the screen. What are the dimensions of the screen

Answers

The length of the browser window (x) is 6. The dimensions of the screen are approximately 3 inches (width) and 18/13 inches (height).

Let's solve the equations step by step:

Part A:

The area of the browser window is given by the equation:

(x - 2) * x = 24

Expanding the equation:

[tex]x^{2}[/tex] - 2x = 24

Rearranging the equation to standard quadratic form:

[tex]x^{2}[/tex] -  2x - 24 = 0

Factoring the quadratic equation:

(x - 6)(x + 4) = 0

Setting each factor to zero:

x - 6 = 0 or x + 4 = 0

Solving for x:

x = 6 or x = -4

Since the length of the monitor cannot be negative, we discard the solution x = -4.

Therefore, the length of the browser window (x) is 6.

Part B:

The dimensions of the screen can be calculated using the length of the monitor (x+7) and the coverage ratio of the browser window (3/13).

The width of the screen is given by:

Width = (3/13) * (x + 7)

The height of the screen is given by:

Height = (3/13) * (x)

Substituting the value of x = 6:

Width = (3/13) * (6 + 7) = (3/13) * 13 = 3

Height = (3/13) * 6 = 18/13

Therefore, the dimensions of the screen are approximately 3 inches (width) and 18/13 inches (height).

To know more about dimensions here

https://brainly.com/question/23246002

#SPJ4

An elastic wire expands by 2cm when load of 40g hangs from it. What additional load will be required to cause a further extension of 4cm

Answers

To solve this problem, we can use Hooke's Law, which states that the extension of an elastic material is directly proportional to the force applied to it.

First, let's convert the mass of the load from grams to kilograms:
Mass of the load = 40 g = 0.04 kg

Next, we need to find the spring constant of the wire. The spring constant (k) is a measure of the stiffness of the wire and represents the force required to produce a unit extension. We can find it by dividing the force (weight) by the extension.

Given:
Extension 1 = 2 cm = 0.02 m
Force 1 = Weight = 0.04 kg × 9.8 m/s^2 (acceleration due to gravity) = 0.392 N

Using Hooke's Law, we can calculate the spring constant:
k = Force 1 / Extension 1
k = 0.392 N / 0.02 m
k = 19.6 N/m

Now that we have the spring constant (k), we can calculate the additional load required to cause a further extension of 4 cm.

Given:
Extension 2 = 4 cm = 0.04 m

Using Hooke's Law:
Force 2 = k × Extension 2
Force 2 = 19.6 N/m × 0.04 m
Force 2 = 0.784 N

Therefore, an additional load of 0.784 N will be required to cause a further extension of 4 cm.
Answer:
An additional load of 80g will be required to cause a further extension of 4cm.

Step by step explanation:
To find the additional load required to cause a further extension of 4cm, we can use the concept of proportionality.

The extension of the wire is directly proportional to the load applied. This means that the ratio of the extension to the load remains constant.

In this case, we have an initial extension of 2cm when a load of 40g is applied. We can set up the following proportion:

2cm / 40g = 4cm / x

Cross-multiplying, we get:

2cm * x = 40g * 4cm

2x = 160g cm

To find the additional load required, we need to solve for x:

x = 160g cm / 2
x = 80g

Therefore, an additional load of 80g will be required to cause a further extension of 4cm.

A stevedore slides a crate along a dock with a 50 kg horizontal force of 175 N. The opposing force of friction is 120 N. If started from rest, what is the crates’s final velocity after 0.5s?

Answers

To determine the crate's final velocity after 0.5 seconds, we can use the concept of Newton's second law of motion, which states that the net force acting on an object is equal to its mass multiplied by its acceleration.

In this scenario, the stevedore applies a horizontal force of 175 N to move the crate along the dock. However, there is also an opposing force of friction acting in the opposite direction, which has a magnitude of 120 N. The net force is the difference between these two forces, so we can calculate it as follows:

Net force = Applied force - Frictional force

Net force = 175 N - 120 N

Net force = 55 N

Now, using Newton's second law of motion, we can determine the acceleration of the crate. Rearranging the equation, we have:

Net force = mass * acceleration

55 N = 50 kg * acceleration

Solving for acceleration:

acceleration = 55 N / 50 kg

acceleration = 1.1 m/s²

Since we know the initial velocity of the crate is zero (as it starts from rest), and we want to find the final velocity after 0.5 seconds, we can use the equation of motion:

final velocity = initial velocity + (acceleration * time)

Plugging in the values:

final velocity = 0 + (1.1 m/s² * 0.5 s)

final velocity = 0.55 m/s

Therefore, the crate's final velocity after 0.5 seconds is 0.55 m/s. This means that after being subjected to a 175 N force and experiencing 120 N of friction, the crate gains a velocity of 0.55 m/s in the direction of the applied force.

To know more about Velocity visit-

brainly.com/question/30559316

#SPJ11

An inflatable toy starts with 1. 05 moles of air and a volume of 5. 17 liters. When fully inflated, the volume is 8. 00 liters. If the pressure and temperature inside the toy don’t change, how many moles of air does the toy now contain? A. 2. 05 mol B. 1. 62 mol C. 1. 55 mol D. 0. 679 mol.

Answers

The number of moles of air currently present in toy, given that the pressure and temperature are constant is 1.62 mole (option B)

How do i determine the mole air currently present?

The following data were obtained from the question:

Initial mole (n₁) = 1.05 moleInitial volume (V₁) = 5.17 litersPressure = ConstantTemperature = ConstantNew volume (V₂) = 8.00 litersNew mole (n₂) =?

The new mole of the air currently present can be obtained as follow:

V₁ / n₁ = V₂ / n₂

5.17 / 1.05 = 8 / n₂

Cross multiply

5.17 × n₂ = 1.05 × 8

Divide both side by 5.17

n₂ = (1.05 × 8) / 5.17

= 1.62 mole

Thus, the number of mole currently present is 1.62 mole (option B)

Learn more about number of mole:

https://brainly.com/question/29927685

#SPJ4

A force of 25 N is applied to a screwdriver to pry the lid off of a can of paint. The screwdriver applies 75 N of force to the lid. What is the mechanical advantage of the screwdriver?

Answers

Answer:

The mechanical advantage of the screwdriver is 3.

Explanation:

The mechanical advantage can be calculated using the formula: mechanical advantage = output force / input force. In this case, the output force is 75 N (the force applied by the screwdriver to the lid), and the input force is 25 N (the force applied to the screwdriver).

Therefore, the mechanical advantage is:

mechanical advantage = 75 N / 25 N = 3.

Hence, the mechanical advantage of the screwdriver is 3.

Learn more about mechanical advantage here: https://brainly.com/question/32030248

#SPJ11.

What is the medical applications of maxwell's wheel experiment ?​

Answers

The medical applications of Maxwell's wheel experiment will be; Vestibular Assessment, Physical Therapy, Hand-eye Coordination Training, and Kinematic Analysis.  

Vestibular Assessment; The rotating motion of Maxwell's wheel can be used to assess vestibular function in individuals with balance disorders or vertigo. By observing the direction and duration of nystagmus (involuntary eye movement), healthcare professionals can gain insights into the functioning of the vestibular system.

Rehabilitation and Physical Therapy; Maxwell's wheel can be used in physical therapy and rehabilitation settings to assess and improve motor coordination, proprioception, and balance control. Patients can be instructed to manipulate the wheel to target specific muscle groups and enhance fine motor skills.

Hand-eye Coordination Training; The precise control required to manipulate the spinning disk in Maxwell's wheel experiment can be utilized for hand-eye coordination training. This is particularly relevant for surgeons and other medical professionals who require dexterity and accuracy in their procedures.

Kinematic Analysis; The motion of Maxwell's wheel can be recorded and analyzed using video or motion capture systems. This analysis can provide insights into the kinematics of different body movements, such as joint angles, velocity, and acceleration.

To know more about Maxwell's wheel here

https://brainly.com/question/31420537

#SPJ4

What is the approximate wavelength of a light whose second-order dark band forms a diffraction angle of 15. 0° when it passes through a diffraction grating that has 250. 0 lines per mm? 26 nm 32 nm 414 nm 518 nm.

Answers

To find the approximate wavelength of the light, we can use the formula:

wavelength (λ) = (d * sin(θ)) / m

where d is the spacing between the lines of the diffraction grating, θ is the angle of diffraction, and m is the order of the dark band.

In this case, the diffraction grating has 250.0 lines per mm, which means the spacing between the lines is:

d = 1 / 250.0 mm

The second-order dark band has an angle of diffraction of 15.0°, and we want to find the wavelength. So we can plug these values into the formula:

wavelength (λ) = [(1 / 250.0 mm) * sin(15.0°)] / 2

Calculating this expression gives us:

wavelength (λ) ≈ 32 nm

Therefore, the approximate wavelength of the light is 32 nm.

Learn more about wavelength here:

brainly.com/question/31143857

#SPJ11

3. A grating with 1555 lines/cm is illuminated with light of wavelength 565 nm. What


is the highest-order number that can be observed with this grating? (Hint:


Remember that sin can never be greater than 1 for a diffraction grating. )




important!

Answers

The highest-order number that can be observed with this grating using diffraction formula is 1/1555.

It is determined using the formula for diffraction: mλ = d sinθ. Where m is the order number, λ is the wavelength of light, d is the grating spacing, and θ is the angle of diffraction. In this case, the grating has 1555 lines/cm, which means the grating spacing is 1/1555 cm.

To determine the highest-order number, calculate m × (565 × 10^-9 meters) = (1/1555 cm) × sinθ, where θ must be less than or equal to 90 degrees to satisfy sinθ ≤ 1. Given the wavelength of light as 565 nm (or 565 × 10^-9 meters), we can proceed with the calculation. Since sinθ ≤ 1, the highest-order number (m) can be determined by substituting θ = 90 degrees into the equation: m = (1/1555 cm) × sin(90 degrees).

To know more about grating, visit

https://brainly.com/question/30460514

#SPJ11

A projectile is launched horizontally from a height of 8. 0 m. The projectile travels 6. 5 m before hitting the ground. The velocity of the projectile the moment it was launched, rounded to the nearest hundredth, is m/s.

Answers

The initial velocity of a projectile launched horizontally can be calculated using the equation of distance covered horizontally (x) = Initial velocity (u)  Time of flight (t). The horizontal component of the initial velocity can be determined by x = u  t, t = 1.63 s, x = 6.5 mu = x / t = 6.5 m / 1.63 su = 3.99 m/s  4.00 m/s.

The initial velocity of the projectile that was launched horizontally can be calculated using the equation below: Distance covered horizontally (x) = Initial velocity (u) × Time of flight (t) where, Time of flight (t) can be found using the formula below: t = [2 × vertical height (h)] / g where ,g is the acceleration due to gravity = 9.8 m/s².The vertical height (h) of the projectile is 8.0 m. So the time of flight of the projectile will bet = [2 × 8.0 m] / 9.8 m/s²t = 1.63 s Therefore, the horizontal component of the projectile’s initial velocity can be determined by: x = u × tt = 1.63 s, x = 6.5 mu = x / t = 6.5 m / 1.63 su = 3.99 m/s ≈ 4.00 m/s. So, the projectile was launched horizontally with a velocity of 4.00 m/s (rounded to the nearest hundredth).Content loaded: The term “content loaded” is used to indicate that the contents of a webpage or app have finished loading and are ready for viewing or use.

To know more about velocity Visit:

https://brainly.com/question/30559316

#SPJ11

Other Questions
Sabrina can type 2 pages per hour. How many pages can she type in 8 hours and 20 minutes? What is 13+1 Please help i cant answering in my exam 3.17 Iodine has an orthorhombic unit cell for which the a, b, and c lattice parameters are 0.479, 0.725, and 0.978 nm, respectively. (a) If the atomic packing factor and atomic radius are 0.547 and 0.177 nm, respectively, determine the number of atoms in each unit cell. (b) The atomic weight of iodine is 126.91 g/mol; compute its theoretical density Selena and Julian want to plant saplings in their backyard. Selena's tree is 54.2 centimeters high and Julian's tree is 47.6 centimeters high. One centimeter is approximately equal to 0.4 inches. How many inches taller is Selena's tree than Julian's? Which equation best models the data in the scatter plot?AnswerAy = x + 1By = x 1Cy = x + 1Dy = x 1 The Grade 8 learners decide to start living more healthily. They will either jog or cycle. There are 125 Grade Iearners and they jog and cycle in the ratio 3:2. Calculate how many learners participate in each sport During an investigation, equal volumes of hot and cold baking soda solution and calcium chloride solution were mixed in four cups. A record of the investigation is shown below:Investigation RecordCupBaking Soda SolutionCalcium Chloride SolutionWHotColdXColdColdYColdHotZHotHotBaking soda reacts with calcium chloride to form bubbles. In which cup will bubbles form the fastest? Cup W Cup X Cup Y Cup Z Madeline is saving up to buy a new jacket. She already has $65 and can save anadditional $5 per week using money from her after school job. How much totalmoney would Madeline have after 5 weeks of saving? Also, write an expression thatrepresents the amount of money Madeline would have saved in w weeks.Savings after 5 weeks:Savings after w weeks: By establishing an independent church after the pope refused to end hismarriage, King Henry VIII of England demonstrated that:A. The Anabaptist movement was widely accepted among EnglishnobilityB. Some rulers chose to convert to Protestantism because Catholicmonarchs were becoming less powerful during this time. C. Rulers' decisions to change the official religion of their countrycould be driven by nonreligious motivations. D. Protestantism had little appeal for the commchypeople, soreligious change had to come from rulers. Gabe kept track of the trick-or-treaters who came to his door and found that 1/2 were dressed as ghosts and 2/5 were dressed as witches. What fraction of the trick-or-treaters were dressed as either ghosts or witches? Tadpoles survive hatching in water because they are born knowing how to swim. This is an example of _____. Discuss the rational subgroup concept. What part does it play in control chart analysis?. What are the functions of the sori found on the leaves? Pls list like three. if BAT is congruent to DOG and angle B equals 14 angle G equals 29 and angle O is equal to 10 X +7 find X and angle O Read this excerpt from "The Lady of Shalott" by Alfred, Lord Tennyson. How is the isolation of the Lady emphasized through the poem's settings? On either side the river lie Long fields of barley and of rye, That clothe the wold and meet the sky; And thro' the field the road runs by To many-tower'd Camelot; And up and down the people go, Gazing where the lilies blow Round an island there below, The island of Shalott. What is the following product? (StartRoot 14 EndRoot minus StartRoot 3 EndRoot) (StartRoot 12 EndRoot StartRoot 7 EndRoot). In the last basketball game. Arnav scored 6 more than one fourth of his team's points. Let P represent the number of points Arnav's team scored. Write an expression for yhe number of points Arnav scored. Given circle B.If measure of arc AD = 118 degrees, find the measure of angle DBC. 20 26 28 25 28 18 23 15 17 26 29 24 29 29 17 15 17 20 30 29 16 21 22 28 19 Find Q1Find Q2Find Q3Find the minimum and maximum value, 360 is shared between Abby, Ben, Chloe and Denesh. The ratio of the amount Abby gets to the amount Ben gets is 2 : 7 Chloe and Denesh each get 1. 5 times the amount Abby gets. Work out the amount of money that Ben gets. (4)