A hollow pipe is submerged in a stream of water so that the length of the pipe is parallel to the velocity of the water. If the water speed doubles and the cross-sectional area of the pipe triples, what happens to the volume flow rate of the water passing through it?

Answers

Answer 1

Answer:

increases by a factor of 6.

Explanation:

Let us assume that the initial cross sectional area of the pipe is A m² while the initial velocity of the water is V m/s², hence the flow rate of the water is:

Initial flow rate = area * velocity = A * V = AV m³/s

The water speed doubles (2V m/s) and the cross-sectional area of the pipe triples (3A m²), hence the volume flow rate becomes:

Final flow rate = 2V * 3A = 6AV m³/s = 6 * initial flow rate

Hence, the volume flow rate of the water passing through it increases by a factor of 6.


Related Questions

ow Pass Filter Design 0.0/5.0 points (graded) Determine the transfer function H(s) for a low pass filter with the following characteristics: a cutoff frequency of 100 kHz a stopband attenuation rate of 40 dB/decade. a nominal passband gain of 20 dB, which drops to 14 dB at the cutoff frequency Write the formula for H(s) that satisfies these requirements:

Answers

Answer:

H(s) = 20 / [ 1 + s / 10^5 ]^2

Explanation:

Given data:

cutoff frequency = 100 kHz

stopband attenuation rate = 40 dB/decade

nominal passband gain = 20 dB

new nominal passband gain at cutoff = 14 dB

Represent the transfer function H(s)

The attenuation rate show that there are two(2) poles

H(s) = k / [ 1 + s/Wc ]^2  ----- ( 1 )

where : Wc = 100 kHz = 10^5 Hz , K = 20 log k = 20 dB ∴ k = 20

Input values into equation 1

H(s) = 20 / [ 1 + s / 10^5 ]^2

Air is compressed in a well insulated compressor from 95 kPa and 27 C to 600 kPa and 277 C. Use the air tables; assume negligible changes in kinetic and potential energy. Find the isentropic efficiency of the compressor. Find the exit temperature of the air if the compressor was reversible.

Answers

Answer:

a) 1.9%

b) T2s = 505.5 k = 232.5°C

Explanation:

P1 = 95 kPa

T1 = 27°C  = 300 k

P2 = 600 kPa

T1 = 277°c  = 550 k

Table used : Table ( A - 17 ) Ideal gas properties of air

a) determining the isentropic efficiency of the compressor

Л = ( h2s - h1 ) / ( h2a -  h1 ) ---- ( 1 )

where ; h1 = 300.19 kJ/kg , T1 = 300 K , h2a = 554.74 kJ/kg , T2 = 550 k

To get h2s we have to calculate the the value of Pr2 using Pr1(relative pressure)

 Pr2 = P2/P1 * Pr = ( 600 / 95 ) * 1.306  hence; h2s = 500.72 kJ/kg

back to equation1

Л = 0.019 = 1.9%

b) Calculate the exit temperature of the air if compressor is reversible

if compressor is reversible the corresponding exit temperature

T2s = 505.5 k = 232.5°C

given that h2s = 500.72 kJ/kg

Use pseudocode. 1) Prompt for and input a saleswoman's sales for the month (in dollars) and her commission rate (percentage). Output her commission for that month. Note that you will need the following Variables: SalesAmount CommissionRate CommissionEarned
You will need the following formula: CommissionEarned= Sales Amount * (commissionrate/100)

Answers

Answer:

The pseudocode is as follows:

Input SalesAmount

Input CommissionRate

CommissionEarned= SalesAmount * (CommissionRate/100)

Print CommissionEarned

Explanation:

This gets input for SalesAmount

Input SalesAmount

This gets input for CommissionRate

Input CommissionRate

This calculates the CommissionEarned

CommissionEarned= SalesAmount * (CommissionRate/100)

This prints the calculated CommissionEarned

Print CommissionEarned

A start-up is expanding overseas and spends an excessive amount of time on recruiting and hiring activities, hindering its ability to focus on the core aspects of its business. How can a Human Capital Management (HCM) platform provider benefit this company?

Answers

Answer:

Human Capital Management (HCM) will help the start-up firm manage its recruiting and hiring activities.

Explanation:

Human Capital Management (HCM) Platform will assist the start-up firm manage its main point of access by keeping the employee records and maintaining the wages and salaries, managing the benefits, time, and attendance, and carrying out performance reviews including looking after the most important asset employees.

Problema:

Una nevera de vinos, con un peso bruto de 50 kg., que tiene las siguientes dimensiones: .60 m Largo x .49 m ancho x .50 m altura. Para ser transportadas en un contenedor de 40 pies D.V. responder las siguientes preguntas:

• 1.Cuántas neveras de vinos de acuerdo al volumen caben en un contenedor de 40 pies?

• De acuerdo dimensiones internas (largo, ancho y alto), ¿Cuántas caben en un contenedor de 40 pies?

• De acuerdo al peso que soporta el contenedor. ¿Cuántas neveras de vinos es posible transportar?

Answers

Answer:

I can't understand this language .

Determine the resolution of a manometer required to measure the velocity of air at 50 m/s using a pitot-static tube and a manometer fluid of mercury (density: 13,600 kg/m3) to achieve uncertainty of 5% (i.e., 2.5 m/s) and 1 % (0.5 m/s).

Answers

Answer:

a)  Δh = 2 cm,  b) Δh = 0.4 cm

Explanation:

Let's start by using Bernoulli's equation for the Pitot tube, we define two points 1 for the small entry point and point 2 for the larger diameter entry point.

            P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂

Point 1 is called the stagnation point where the fluid velocity is reduced to zero (v₁ = 0), in general pitot tubes are used  in such a way that the height of point 2 of is the same of point 1

           y₁ = y₂

subtitute

           P₁ = P₂ + ½ ρ v₂²

           P₁ -P₂ = ½ ρ v²

where ρ is the density of fluid  

now we measure the pressure on the included beforehand as a pair of communicating tubes filled with mercury, we set our reference system at the point of the mercury bottom surface

           ΔP =ρ_{Hg} g h - ρ g h

           ΔP =  (ρ_{Hg} - ρ) g h

as the static pressure we can equalize the equations

          ΔP = P₁ - P₂

         (ρ_{Hg} - ρ) g h = ½ ρ v²

         v = [tex]\sqrt{\frac{2 (\rho_{Hg} - \rho) g}{\rho } } \ \sqrt{h}[/tex]

in this expression the densities are constant

        v = A  √h

       A =[tex]\sqrt{\frac{2(\rho_{Hg} - \rho ) g}{\rho } }[/tex]

 

They indicate the density of mercury rhohg = 13600 kg / m³, the density of dry air at 20ºC is rho air = 1.29 kg/m³

we look for the constant

        A = [tex]\sqrt{\frac{2( 13600 - 1.29) \ 9.8}{1.29} }[/tex]

        A = 454.55

we substitute

       v = 454.55 √h

to calculate the uncertainty or error of the velocity

         h = [tex]\frac{1}{454.55^2} \ v^2[/tex]

       Δh = [tex]\frac{dh}{dv}[/tex]   Δv

       [tex]\frac{\Delta h}{h } = 2 \ \frac{\Delta v}{v}[/tex]

Suppose we have a height reading of h = 20 cm = 0.20 m

             

a) uncertainty 2.5 m / s ( 0.05)

        [tex]\frac{\delta v}{v} = 0.05[/tex]

       [tex]\frac{\Delta h}{h}[/tex] = 2 0.05  

       Δh = 0.1 h

       Δh = 0.1  20 cm

       Δh = 2 cm

b) uncertainty 0.5 m / s ( Δv/v= 0.01)

        [tex]\frac{\Delta h}{h}[/tex] =  2 0.01

        Δh = 0.02 h

        Δh = 0.02 20

        Δh = 0.1 20 cm

        Δh = 0.4 cm = 4 mm

3-71A 20mm diameter steel bar is to be used as a torsion spring. If the torsional stress in the bar is not to exceed 110 MPa when one end is twisted through an angle of 15 degrees, what must be the length of the bar

Answers

Answer:

The right answer is "1.903 m".

Explanation:

Given that,

[tex]\tau =110 \ MPa[/tex]

[tex]G=80 \ GPa[/tex]

[tex]\Theta=15\times \frac{\pi}{180}[/tex]

   [tex]=\frac{\pi}{12}[/tex]

[tex]d=20 \ mm[/tex]

As we know,

⇒ [tex]\frac{\tau}{r}=\frac{G \Theta}{L}[/tex]

Or,

⇒ [tex]L=\frac{G \theta r}{\tau}[/tex]

       [tex]=\frac{80\times 10^3}{110}\times \frac{\pi}{12}\times 10[/tex]

       [tex]=1903.9 \ mm[/tex]

or,

       [tex]=1.903 \ m[/tex]

Steam at 4 MPa and 350°C is expanded in an adiabatic turbine to 125kPa. What is the isentropic efficiency (percent) of this turbine if the steam is exhausted as a saturated vapor?

Answers

Answer:

[tex]\eta_{turbine} = 0.603 = 60.3\%[/tex]

Explanation:

First, we will find actual properties at given inlet and outlet states by the use of steam tables:

AT INLET:

At 4MPa and 350°C, from the superheated table:

h₁ = 3093.3 KJ/kg

s₁ = 6.5843 KJ/kg.K

AT OUTLET:

At P₂ = 125 KPa and steam is saturated in  vapor state:

h₂ = [tex]h_{g\ at\ 125KPa}[/tex] = 2684.9 KJ/kg

Now, for the isentropic enthalpy, we have:

P₂ = 125 KPa and s₂ = s₁ = 6.5843 KJ/kg.K

Since s₂ is less than [tex]s_g[/tex] and greater than [tex]s_f[/tex] at 125 KPa. Therefore, the steam is in a saturated mixture state. So:

[tex]x = \frac{s_2-s_f}{s_{fg}} \\\\x = \frac{6.5843\ KJ/kg.K - 1.3741\ KJ/kg.K}{5.91\ KJ/kg.K}\\\\x = 0.88[/tex]

Now, we will find [tex]h_{2s}[/tex](enthalpy at the outlet for the isentropic process):

[tex]h_{2s} = h_{f\ at\ 125KPa}+xh_{fg\ at\ 125KPa}\\\\h_{2s} = 444.36\ KJ/kg + (0.88)(2240.6\ KJ/kg)\\h_{2s} = 2416.088\ KJ/kg[/tex]

Now, the isentropic efficiency of the turbine can be given as follows:

[tex]\eta_{turbine} = \frac{h_1-h_2}{h_1-h_{2s}}\\\\\eta_{turbine} = \frac{3093.3\ KJ/kg-2684.9\ KJ/kg}{3093.3\ KJ/kg-2416.088\ KJ/kg}\\\\\eta_{turbine} = \frac{408.4\ KJ/kg}{677.212\ KJ/kg}\\\\\eta_{turbine} = 0.603 = 60.3\%[/tex]

An industrial load with an operating voltage of 480/0° V is connected to the power system. The load absorbs 120 kW with a lagging power factor of 0.77. Determine the size of the capacitor in vars that is necessary to raise the power factor to 0.9 lagging.

Answers

Answer:

[tex]Q=41.33 KVAR\ \\at\\\ 480 Vrms[/tex]

Explanation:

From the question we are told that:

Voltage [tex]V=480/0 \textdegree V[/tex]

Power [tex]P=120kW[/tex]

Initial Power factor [tex]p.f_1=0.77 lagging[/tex]

Final Power factor [tex]p.f_2=0.9 lagging[/tex]

Generally the equation for Reactive Power is mathematically given by

Q=P(tan \theta_2-tan \theta_1)

Since

[tex]p.f_1=0.77[/tex]

[tex]cos \theta_1 =0.77[/tex]

[tex]\theta_1=cos^{-1}0.77[/tex]

[tex]\theta_1=39.65 \textdegree[/tex]

And

[tex]p.f_2=0.9[/tex]

[tex]cos \theta_2 =0.9[/tex]

[tex]\theta_2=cos^{-1}0.9[/tex]

[tex]\theta_2=25.84 \textdegree[/tex]

Therefore

[tex]Q=P(tan 25.84 \textdegree-tan 39.65 \textdegree)[/tex]

[tex]Q=120*10^3(tan 25.84 \textdegree-tan 39.65 \textdegree)[/tex]

[tex]Q=-41.33VAR[/tex]

Therefore

The size of the capacitor in vars that is necessary to raise the power factor to 0.9 lagging is

[tex]Q=41.33 KVAR\ \\at\\\ 480 Vrms[/tex]

6. When the engine stalls or the power unit fails, on a car with power
brakes, the service brake pedal will
A. Take about the same amount of pressure
B. Take more pressure to stop
C. Take less pressure to stop
D. Become locked in place and no longer help stop the car

Answers

B

But

I think

So yea it prob isn’t

it is a small sharp and printed item for fine worker in trimming scallops clipping threads and cutting large eyelets​

Answers

Answer:

embroidery scissor

Explanation:

is small, sharp and pointed good for fine work use trimming scallops,clipping threads,and cutting large eyelets.

hope this helps

(50 POINTS) How many people use pipes in the world? How do you know this?

Answers

Answer:

7.9 billion people

Explanation:

Ammonia enters the expansion valve of a refrigeration system at a pressure of 10 bar and a temperature of 24 C and exits at 1 bar. If the refrigerant undergoes a throttling process, what is the quality of the refrigerant exiting the expansion valve.

Answers

Answer:

[tex]h_{1} = h_2} = 293.45 KJ/kg[/tex].

The quality of the refrigerant exiting the expansion valve is

[tex]x_{2}=0.193596[/tex].

Explanation:

Fluid given Ammonia.

Inlet 1:-

Temperature [tex]T_{1}[/tex] = [tex]24^{o} C[/tex].

Pressure [tex]P_{1}[/tex] = 10 bar.

Exit 2:-

Pressure [tex]P_{2}[/tex] = 1 bar.

Solution:-

Alice and Bob both have RSA Public-Private key pairs: (PUA, PRA) and (PUB, PRB). They also have cryptographic functions E_AES / D_AES to encrypt / decrypt using AES; and E_RSA and D_RSA to encrypt / decrypt using RSA. Alice wants to sent a high resolution video of a large secret facility to Bob.
A. Show how Alice can securely and efficiently send the video to Bob. You are required to use the cryptographic functions above to get full credit;
B. Does your solutions assure confidentiality? How / Why not?
C. Does your solutions assure non-repudiation? How / Why not?
D. Does your solutions assure integrity? How / Why not?
E. Does your solutions assure replay attacks? How / Why not?

Answers

Solution :

B. yes, the given solution assures confidentiality. The sender Alice encrypting his messages with its own private key PRA which provides authentication. Sender Alice further encrypts his messages with the receiver's public key PUB provides confidentiality.

C. So the given solution provides non repudiation. Alice and Bob who are exchanging messages. In one case, Alice denies sending a messages to Bob that he claims to have received being able to counter Alice's denial is caused non repudiation of origin.

D. The given solution provides integrity. Because it provides authentication and have not been changed.

E. It does not provide replay attacks because it does not captures the traffic. The client does not receive the messages twice.

The following is a correlation for the average Nusselt number for natural convection over spherical surface. As can be seen in the above, the Nusselt number approaches 2 as Rayleigh number approaches zero. Prove that this situation corresponds to conduction heat transfer and in conduction heat transfer over sphere, the Nusselt number becomes 2. Hint: First step: Write an expression for heat transfer between two spherical shells that share the same center. Second step: Assume the outer spherical shell is infinitely large.

Answers

Answer:

Explanation:

[tex]r_2=[/tex]∞

[tex]q=4\pi kT_1(T_2-T_1)\\[/tex]

[tex]q=2\pi kD.[/tex]ΔT--------(1)

[tex]q=hA[/tex] ΔT[tex]=4\pi r_1^2(T_2_s-T_1_s)\\[/tex]

[tex]N_u=\frac{hD}{k} = 2+\frac{0.589 R_a^\frac{1}{4} }{[1+(\frac{0.046}{p_r}\frac{9}{16} )^\frac{4}{9} } ------(3)[/tex]

By equation (1) and (2)

[tex]2\pi kD.[/tex]ΔT=h.4[tex]\pi r_1^2[/tex]ΔT

[tex]2kD=hD^2\\\frac{hD}{k} =2\\N_u=\frac{hD}{k}=2\\[/tex]-------(4)

From equation (3) and (4)

So for sphere [tex]R_a[/tex]→0

g The inside surface of a 17 mm inner diameter tube with a 2.4 mm thick wall indicates a temperature of 46 deg C. The outside temperature is 43 deg C. The tube is 5 m long. If the tube material has a conductivity of 0.15 W/m/K, estimate the heat transfer rate through the tube wall assuming SS 1D conduction. Indicate the direction of heat transfer with a or - sign ( meaning outward and vice versa). Express your answer using two significant digits in W.

Answers

Answer:

-50 W

Explanation:

The heat transfer rate Q = kA(T₂ - T₁)/d where k = thermal conductivity of material = 0.15 W/m-K, A = surface area of tube = πdL where d = diameter of tube = 17 mm = 0.017 m and L = length of tube = 5 m, T₁ = inside temperature = 46 °C, T₂ = outside temperature = 43 °C and d = thickness of tube = 2.4 mm = 0.0024 m

Since Q = kA(T₂ - T₁)/d ,

Q = kπdL(T₂ - T₁)/d

substituting the values of the variables into the equation, we have

Q = 0.15 W/m-K × π × 0.017 m × 5 m(43 °C  - 46 °C )/0.0024 m

Q = 0.01275π Wm/K(-3 K )/0.0024 m

Q = -0.03825π Wm/0.0024 m

Q = -0.1202 Wm/0.0024 m

Q = -50.07 W

Q = -50 W

So, the heat transfer rate is -50 W meaning heat transfer out of the tube.

Technician A says that a graphing multi-meter may be used to verify signals going to and from electrical and electronic components. Technician B says that digital storage oscilloscope may be used to verify signals going to and from electrical and electronic components. Who is correct

Answers

Answer:

Both are correct.

Explanation:

Graphing multi meter is used to verify signals that move from electrical components. Digital oscilloscope is an equipment which stores and analyzes input signals with digital technique.

What does Faraday's law of induction states?​

Answers

Explanation:

This relationship, known as Faraday's law of induction (to distinguish it from his laws of electrolysis), states that the magnitude of the emf induced in a circuit is proportional to the rate of change of the magnetic flux that cuts across the circuit.

Steam enters an adiabatic turbine at 6 MPa, 600°C, and 80 m/s and leaves at 50 kPa, 100°C, and 140 m/s. If the power output of the turbine is 5 MW, determine (a) the reversible power output and (b) the second-law efficiency of the turbine. Assume the surroundings to be at 25°C.

Answers

Answer:

(a) the reversible power output of turbine is 5810 kw

(b) The second-law efficiency of he turbine = 86.05%

Explanation:

In state 1: the steam has a pressure of 6 MPa and 600°C. Obtain the enthalpy and entropy at this state.

h1 = 3658 kJ/kg s1=7.167 kJ/kgK

In state 2: the steam has a pressure of 50 kPa and 100°C. Obtain the enthalpy and entropy at this state

h2 = 2682kl/kg S2= 7.694 kJ/kg

Assuming that the energy balance equation given  

Wout=m [h1-h2+(v1²-v2²) /2]

Let

W =5 MW

V1= 80 m/s  V2= 140 m/s

h1 = 3658kJ/kg  h2 = 2682 kJ/kg

∴5 MW x1000 kW/ 1 MW =m [(3658-2682)+ ((80m/s)²-(140m/s)²)/2](1N /1kg m/ s²) *(1KJ/1000 Nm)

m = 5.158kg/s

Consider the energy balance equation given  

Wrev,out =Wout-mT0(s1-s2)

Substitute Wout =5 MW m = 5.158kg/s 7

s1=  7.167 kJ/kg-K            s2= 7.694kJ/kg-K and 25°C .

Wrev,out=(5 MW x 1000 kW /1 MW) -5.158x(273+25) Kx(7.167-7.694)

= 5810 kW

(a) Therefore, the reversible power output of turbine is 5810 kw.

The given values of quantities were substituted and the reversible power output are calculated.

(b) Calculating the second law efficiency of the turbine:  

η=Wout/W rev,out

Let Wout =  5 MW and Wrev,out = 5810 kW  

η=(5 MW x 1000 kW)/(1 MW *5810)  

η= 86.05%

a) Complete the following methods description using the correct tense for the verb in brackets. (This student is using passive voice rather than any human agents at the request of the instructor.) Student Lab Report Identical tensile test procedures were performed on all test specimens. Each of the metal specimens ____1____ [have] an indentation near the center to ensure that the fracture point would occur in this region. Tension tests ____2____ [conduct] as follows. Two pieces of reflective tape ____3____ [place] approximately 1 inch apart in the center of the specimen where the indentation 4 [locate]. The width and the thickness of the specimen at this location _____5_____ [measure] using a Vernier caliper. Then the specimen _____6____ [secure] in the MTS Load Frame. A laser extensometer _____7_____ [place] into position to measure the deformation of the specimen. The laser extensometer ______8_ __ [use] to measure the original distance between the pieces of reflective tape. The MTS ________9____ [set] to elongate the specimen one tenth of an inch every minute.

Answers

Answer:

Each of the metal specimens HAS an indentation near the center to ensure that the fracture point would occur in this region. Tension tests WERE CONDUCTED as follows. Two pieces of reflective tape WERE PLACED approximately 1 inch apart in the center of the specimen where the indentation 4 WAS LOCATED. The width and the thickness of the specimen at this location WAS MEASURED using a Vernier caliper. Then the specimen WAS SECURED in the MTS Load Frame. A laser extensometer WAS PLACED into position to measure the deformation of the specimen. The laser extensometer WAS USED to measure the original distance between the pieces of reflective tape. The MTS WAS SET to elongate the specimen one tenth of an inch every minute.

Lab 5A Problem Input two DWORD values from the keyboard. Determine which number is larger or if they are even. Your program should look like the following: First number larger Enter a number 12 Enter a number 10 12 is the larger number Press any key to close this window... Second number larger Enter a number 10 Enter a number 12 12 is the larger number Press any key to close this window... Numbers Equal Enter a number 12 Enter a number 12 Numbers are equal Press any key to close this window...

Answers

Answer:

Explanation:

#include<iostream>

using namespace std;

int main()

{

int n1,n2;

cout<<"Enter a number:"<<endl; //Entering first number

cin>>n1;

cout<<"Enter a number:"<<endl; //Entering second number

cin>>n2;

if(n1%2==0 && n1%2==0) //Checking whether the two number are even or not

{

if(n1>n2)

{

cout<<n1<<" is the larger number"<<endl;

}

else if(n1==n2)

{

cout<<"Numbers are equal"<<endl;

}

else

{

cout<<n2<<" is the larger number"<<endl;

}

}

else

{

cout<<"The number are not even"<<endl;

}

}

If a heat engine has an efficiency of 30% and its power output is 600 W, what is the rate of heat input from the combustion phase

Answers

Answer:

The heat input from the combustion phase is 2000 watts.

Explanation:

The energy efficiency of the heat engine ([tex]\eta[/tex]), no unit, is defined by this formula:

[tex]\eta = \frac{\dot W}{\dot Q}[/tex] (1)

Where:

[tex]\dot Q[/tex] - Heat input, in watts.

[tex]\dot W[/tex] - Power output, in watts.

If we know that [tex]\dot W = 600\,W[/tex] and [tex]\eta = 0.3[/tex], then the heat input from the combustion phase is:

[tex]\eta = \frac{\dot W}{\dot Q}[/tex]

[tex]\dot Q = \frac{\dot W}{\eta}[/tex]

[tex]\dot Q = \frac{600\,W}{0.3}[/tex]

[tex]\dot Q = 2000\,W[/tex]

The heat input from the combustion phase is 2000 watts.




Page Title





Submit



Add a pair of radio buttons to your form, each nested in its own label element.
One should have the option of car and the other should have the option of bike.
Both should share the name attribute of “vehicle” to create a radio group
Make sure the radio buttons are nested with the form
Make sure that the name attributes appear after the type

Answers

Answer:

The code is as follows:

<form name = "myForm">

       <div>

           <input type="radio" name="vehicle" value="D0" id="D0"/>

           <label for="D0">Car</label>

       </div>

       <div>

           <input type="radio" name="vehicle" value="D1" id="D1"/>

           <label for="D1">Bike</label>

       </div>

   </form>

Explanation:

This defines the first button

           <input type="radio" name="vehicle" value="D0" id="D0"/>

           <label for="D0">Car</label>

This defines the second button

           <input type="radio" name="vehicle" value="D1" id="D1"/>

           <label for="D1">Bike</label>

The code is self-explanatory, as it follows all the required details in the question

Imagine a cantilever beam fixed at one end with a mass = m and a length = L. If this beam is subject to an inertial force and a uniformly distributed load = w, what is the moment present at a length of L/4?

Answers

Answer:

jsow

hfhcffnbxhdhdhdhdhdhdddhdhdgdhdhdhdhdhdhhhdhdjsksmalalaksjdhfgrgubfghhhhhhh

Explanation:

j

grudb

All of the following safety tips are true EXCEPT Select one: a. It is not acceptable to handle broken glass with your bare hands b. It is acceptable to grasp the electrical cord when removing an electrical plug from its socket c. It is not acceptable to immerse hot glassware in cold water d. It is not acceptable to reuse dirty glassware

Answers

Answer:

Explanation:

B. you would grab the plug closest to the outlet

If you don't have enough experience, it's always best to leave socket changing to the experts. If you make a mistake, you might inflict harm and potentially endanger yourself and other people. Read on if you're interested in learning how to change a socket safely. Thus, option D is correct.

What, removing an electrical plug from its socket?

Grip the plug, not the electrical cable, when taking an electrical plug out of its socket. Before handling an electrical switch, socket, or outlet, hands must be fully dry.

Reduce the extra so that it rests only on top of the existing plasterboard. If necessary, push it back a little by using your finger. Fill the dent with ready-mixed filler or powdered filler, whichever you want, and bring it flush with the surrounding wall. Allow to dry, then sand off any excess.

Therefore, It is acceptable to grasp the electrical cord when removing an electrical plug from its socket

Learn more about electrical plug here:

https://brainly.com/question/28932892

#SPJ5

Match the test to the property it measures.

a. Rockwell
b. Inston
c. Charpy
d. Fatigue
e. Brinell
f. Izod

1. impact strength
2. stress vs strain
3. hardness
4. Endurance Limit

Answers

Answer:

a. Rockwell              3. hardness

b. Instron                 2. stress vs strain

c. Charpy                 1. impact strength

d. Fatigue                4. Endurance Limit

e. Brinell                  3. hardness

f. Izod                      1. impact strength

Explanation:

Izod and Charpy are the impact strength testing procedure of a material in which a heavy hammer is attached to an arm is released to impact on the test specimen. In Izod test the specimen with v-notch is held vertical with the notch facing outward while in Charpy test the specimen is supported horizontally with notch facing inward to the impacting hammer.

Instron testing system does universal testing of the material which gradually applies the load recording all the stresses and the corresponding strains until the material fails.

Fatigue is the property of a material due to which it fails under the repeated cyclic loading by the initiation and propagation of cracks. The property of a material resist failure subjected to infinite number of repeated cyclic loads below a certain stress limit.

Rockwell and Brinell are the hardness testing methods. In Rockwell test an intender ball is firstly pressed against the specimen using minor load for a certain time and then a major load is pressed against it for a certain time. After the intender is removed the depth of impression on the surface is measured while in case of Brinell hardness we apply only one load against the intender ball for a certain time and after its removal the radius of impression is measured.

For a steel alloy it has been determined that a carburizing heat treatment of 3-h duration will raise the carbon concentration to 0.38 wt% at a point 2.6 mm from the surface. Estimate the time (in h) necessary to achieve the same concentration at a 6.1 mm position for an identical steel and at the same carburizing temperature.

Answers

Answer:

The right answer is "16.5 hrs".

Explanation:

Given values are:

[tex]x_1=2.6 \ mm[/tex]

[tex]t_1=3 \ hrs[/tex]

[tex]x_2=6.1 \ mm[/tex]

As we know,

⇒ [tex]\frac{x^2}{Dt}=constant[/tex]

or,

⇒ [tex]\frac{x_1^2}{t_1} =\frac{x_2^2}{t_2}[/tex]

⇒ [tex]t_2=(\frac{x_2}{x_1})^2\times t_1[/tex]

By putting the values, we get

       [tex]=(\frac{6.1}{2.6} )^2\times 3[/tex]

       [tex]=5.5\times 3[/tex]

       [tex]=16.5 \ hrs[/tex]      

A levee will be constructed to provide some flood protection for a residential area. The residences are willing to accept a one-in-five chance that the levee will be overtopped in the next 15 years. Assuming that the annual peak streamflow follows a lognormal distribution with a log10(Q[ft3/s]) mean and standard deviation of 1.835 and 0.65 respectively, what is the design flow in ft3/s?

Answers

Answer:

1709.07 ft^3/s

Explanation:

Annual peak streamflow = Log10(Q [ft^3/s] )

mean = 1.835

standard deviation = 0.65

Probability of levee been overtopped in the next 15 years = 1/5

Determine the design flow ins ft^3/s

P₁₅ = 1 - ( q )^15 = 1 - ( 1 - 1/T )^15 = 0.2

                         ∴  T = 67.72 years

Q₁₅ = 1 - 0.2 = 0.8

Applying Lognormal distribution : Zt = mean + ( K₂ * std ) --- ( 1 )

K₂ = 2.054 + ( 67.72 - 50 ) / ( 100 - 50 ) * ( 2.326 - 2.054 )

    = 2.1504

back to equation 1

Zt = 1.835 + ( 2.1504 * 0.65 )  = 3.23276

hence:

Log₁₀ ( Qt(ft^3/s) ) = Zt  = 3.23276

hence ; Qt = 10^3.23276

                  = 1709.07 ft^3/s

If there is a discrepancy between Chick-fil-A food safety requirements and local Health Department
regulations, what should Team Member do?

Answers

It is important to follow both Chick-fil-A food safety requirements and local Health Department regulations. If there is a discrepancy between the two, always follow the more stringent requirement. Any other appearance or grooming issue not covered in these materials may be addressed at the discretion of the Operator.

The following should be done by the team member:

It is important to follow both Chick-fil-A food safety requirements and local Health Department regulations. In the case when there is a discrepancy between the two, always follow the more stringent requirement. Any other appearance or grooming issue not covered in these materials may be addressed at the discretion of the Operator.

Learn more: brainly.com/question/17429689

A multipurpose transformer has a secondary coil with several points at which a voltage can be extracted, giving outputs of 5.60, 12.0, and 480 V. (a) The input voltage is 220 V to a primary coil of 230 turns. What are the numbers of turns in the parts of the secondary used to produce the output voltages

Answers

Answer:

Explanation:

A multipurpose transformer can act as step up as well as step down transformer according to the desired setting by a user.

When the voltage at the output is greater than the voltage at the input of the transformer then it acts as step-up transformer and vice-versa acting is a step down transformer.

Given that:

input (primary) voltage of the transformer, [tex]V_i=220~V[/tex]

no. of turns in the primary coil, [tex]N_i=230[/tex]

When the output voltage is 5.60 V:

[tex]V_o=5.60~V[/tex]

[tex]\frac{N_i}{N_o} =\frac{V_i}{V_o}[/tex]

[tex]\frac{N_o}{230}=\frac{5.60}{220}[/tex]

[tex]N_o=5.85\approx 6[/tex] turns compensating the losses

When the output voltage is 12.0 V:

[tex]V_o=12.0~V[/tex]

[tex]\frac{N_i}{N_o} =\frac{V_i}{V_o}[/tex]

[tex]\frac{N_o}{230}=\frac{12.0}{220}[/tex]

[tex]N_o=12.45\approx 13[/tex] turns compensating the losses

When the output voltage is 480 V:

[tex]V_o=480~V[/tex]

[tex]\frac{N_i}{N_o} =\frac{V_i}{V_o}[/tex]

[tex]\frac{N_o}{230}=\frac{480}{220}[/tex]

[tex]N_o=501.8\approx 502[/tex] turns compensating the losses

Other Questions
what is the area of the triangle :// Question 12 plz show ALL STEPS Hii, please help me with this question I keep getting an option that isn't there.A cylindrical piece of iron pipe is shown below. The wall of the pipe is 1.25 inch thick:The figure shows a cylinder of height 16 inches and diameter 6 inches.What is the approximate inside volume of the pipe?a. 88 cubic inchesb. 49 cubic inchesc. 142 cubic inchesd. 154 cubic inches The population of a city has increased by 27% since it was last measured. If the current population is 38,100, what was the previous population? =___ WILL GIVE BRAINLIST IF CORRECT Which function is represented by this graph Design a ductile iron pumping main carrying a discharge of 0.35 m3/s over a distance of 4 km. The elevation of the pumping station is 140 m and that of the exit point is 150 m. The required terminal head is 10 m. Estimate the pipe diameter and pumping head using the explicit design procedure g A textbook store sold a combined total of 240 chemistry and history textbooks in a week. The number of chemistry textbooks soldwas two times the number of history textbooks sold. How many textbooks of each type were sold? x.(9x-1).(x+2)-x(3x-1).(3x+1) Can someone explain this to me please How much does international trade affect you personally? What is the equation of the graph? The immunoglobulin light chain does not have a D segment. In humans, there are two different possible light chain proteins, termed kappa and lambda. Assume that there are 35 V segments and 5 J segments in the human kappa light chain region, and there are 30 V segments and 4 J segments in the human lambda light chain region. How many possible light chain genes can be created from these different segments, simply due to combinatorial diversity convert decimal number into binary numbers (265)10 the length of a rectangle is 4 meters longer than the width. if the area is 22 square meters , find the rectangle dimension Triangle DEF contains right angle E. If angle D measures 40 and its adjacent side measures 7.6 units, what is the measure of side EF? Round your answer to the nearest hundredth. The reason that Germany attacked Belgiumand France before Russia wasA. they believed Russia would be slow to mobilize due to its sizeB. France was an easier targetC. France was a greater threat to them The distance a cart moves down a track (from rest) is proportional to the time squared. How far would a cart move down a track (from rest) in two seconds if it moves (from rest) a distance of 20 cm in one second?A) 5 cm B) 10 cm C) 20 cm D) 40 cm E) 80 cm Coefficient and degree of the polynomial Decide whether each word creates mood in the passage."Then you don't have anything to be concerned about." Mother Lois maneuvered through the unusually heavy traffic. "I don't know where all the cars could have come from," she said. We both craned our necks, curious about all the unfamiliar cars and people. Certainly there had never before been so many white people driving down the streets of our quiet, tree-lined neighborhood.Warriors Don't Cry,Melba Pattillo BealsCreates MoodDoesn't Create Mood what is government? pls answer fast