Answer:
1260 ounce of the fluid.
Step-by-step explanation:
Dimension of hallway = 90 feet × 7 feet
Area of the hallway = 90 × 7
= 630 square feet
Given that 1/2 (0.5) of a fluid ounce is required per square foot, the amount of cleaning situation to clean the hallway can be determined as;
= [tex]\frac{area of hallway}{cleaning situation per foot}[/tex]
= [tex]\frac{630}{0.5}[/tex]
= 1260 ounce
The amount of cleaning situation required to clean the hallway is 1260 ounce of the fluid.
A vehicle has a will 15 inches in diameter. If the vehicle travels 2 miles, how many revolutions does the wheel make? This is Applications of unit conversions
Find the circumference of the wheel:
Circumference = PI x Diameter = 3.14 x 15 = 47.1 inches.
Every revolution the tire travels 47.1 inches.
1 mile = 5,280 feet, so 2 miles = 5280 x 2 = 10,560 feet.
1 foot = 12 inches.
2 miles = 10,560 feet x 12 = 126,720 inches.
Revolutions = total distance / distance per revolution:
Revolutions = 126,720 / 47.1 = 2,690.45 revolutions ( round answer as needed.)
Nathan, a tutor, buys 5 calculators for $7.50 each at a store, planning to provide one to each of his clients. However, the next day, he discovers that the same calculators has gone on sale for $5.00 and also discovers that he will only have three tutoring clients instead of five. He returns the five calculators and purchases three calculators at the new sale price. He uses the following expression to determine the amount he should receive back from the store. (5 x $7.50) - (3 x $5.00) Which of the following expressions could Nathan have used. 5 ($7.50 - $5.00). $7.50 - $5.00. (5 x $7.50) - $5.00. (5 x $7.50) - $5.00. 3 ($7.50 - $5.00) +2 x $7.50
Answer: 5 (7.50-3 )
Step-by-step explanation:
Given: Previous price of calculator = $7.50
Number of client =5
Total price = (Number of calculators) x (Price for each calculator)
Total price of 5 calculators = (5 x $7.50)
New price of calculator = $5.00
Number of client =3
Total price of 3 calculators = (3 x $5)
Price will receive = (Total price of 5 calculators) -(Total price of 3 calculators )
= (5 x $7.50) - (3 x $5)
= 5 (7.50-3 )
Required expression: 5 (7.50-3 )
Please answer this question now
Answer:
200 cm³ is the volume of the pyramid
Answer:
200 cubic centimeters
Step-by-step explanation:
l = length = 10 cm
w = width = 10 cm
h = height = 6cm
V = lwh / 3
= 10 * 10 * 6 / 3
= 100 * 6 / 3
= 600 /3
= 200 cubic cm
Hope this helps! Tell me if I am incorrect!
solve 3(11)× =3,993 for x
Hi there! :)
Answer:
[tex]\huge\boxed{x = 3}[/tex]
Given the equation:
[tex]3(11)^{x} = 3993[/tex]
Divide both sides by 3:
[tex](11)^{x} = 1331[/tex]
Rewrite both sides of the equation with a base of 11.
[tex]1331 = 11^{3}[/tex], therefore:
[tex](11)^{x} = 11^{3}[/tex]
x = 3.
Answer:
121
Step-by-step explanation:
121 x 33 = 3993
How to do this question plz answer me step by step plzz
Answer:
Hope it helps U can still ask me if u have confusions
Answer:
60+16√30 cm² ≈ 147.64 cm²
Step-by-step explanation:
You can figure the height of the object from ...
V = Bh
120 cm^3 = (30 cm^2)h
4 cm = h . . . . . divide by 30 cm^2
However, this is insufficient to tell you the surface area.
__
If you assume that the base is square, then its side length is
A = s^2
s = √A = √(30 cm^2) = (√30) cm
The lateral surface area can then be found from the perimeter of the base and the height
LA = Ph = (4√30 cm)(4 cm) = 16√30 cm^2
The total surface area will be the sum of this lateral area and the area of the two bases:
total area = 16√30 cm^2 +2·30 cm^2
total area = (60 +16√30) cm^2 ≈ 147.64 cm^2
__
For any other shape, the total area will be larger. It can be arbitrarily large, unless limits are put on the dimensions of the object.
How would I solve this? (y-z) ÷ z y=-2 and z=4/5
Answer:
-3.5
Step-by-step explanation:
The problem you have stated is (y-z)/z where y=-2 and z = 4/5. To solve, substitute the values of y and z into the problem. Then, you have (-2-4/5)/4/5. (-2-4/5) simplifies to -14/5 so then you have (-14/5)/4/5. To divide, multiply -14/5 by 5/4 {multiplying by the reciprocal}. That equals -70/20 which is equal to -3.5
Answer:
[tex]\large\boxed{-3.5}[/tex]
Step-by-step explanation:
(y - z) ÷ z y = -2 and z = 4/5
Substitute in the given values for y and z into the equation
(y - z) ÷ z
(-2 - 4/5) ÷ 4/5
Subtract inside the parenthesis (-2 - 4/5)
-2.8 ÷ 4/5
Convert 4/5 into a decimal (in this case that can be done by multiplying both the numerator and denominator by 20)
4/5 = (4 * 20) / (5 * 20) = 80 / 100
80 / 100
Divide numerator and denominator by 10
8/10 = 0.8
Substitute into previous equation
-2.8 ÷ 4/5 = -2.8 ÷ 0.8
Divide
[tex]\large\boxed{-3.5}[/tex]
Hope this helps :)
Elena drank 3 liters of water yesterday. Jada drank 3/4 times as much water as much water as Elena. Lin drank twice as much water as Jada. Did jada drink more or less water than Elena?
Answer:
Jada drank less water than Elina.
Step-by-step explanation:
Water drunk by Elina = 3 liters
Jada drank the water [tex]\frac{3}{4}[/tex] times as much as water as Elina.
Therefore, water drunk by Jada = [tex]\frac{3}{4}\times 3[/tex]
= [tex]\frac{9}{4}[/tex]
= 2.25 liters
Lin drank water twice as much as Jada.
Therefore, Lin drank the amount of water = 2 × 2.25
= 4.5 liters
Since Jada drank 2.25 liters of water and Elina drank 3 liters
Therefore, Jada drank less water than Elina.
Solve the equation for x
Answer:
x = 33
Step 1:
First, let's add the values together from both parentheses.
2x + x = 3x
1 + (-10) = -9
Now we are left with:
3x - 9 = 90.
Step 2:
Add 9 on the left side to cancel out the 9. Add it to the right side.
3x = 99
Finally, divide both sides by 3 to get our answer.
3x / 3 = x
99 / 3 = 33
x = 33
Make up an expression of your own that satisfies the following:
Must have at least: 4 terms, 1 constant, 2 variables with coefficients and appropriate
operation signs.
There are infinitely many ways to answer this as there is no one single answer to pick from.
Here is one possible answer: x^3 + 5x^2 + 7x + 12The four terms are x^3, 5x^2, 7x and 12. They are separated by the plus signs.
The constant is 12. It does not have any variable attached to it.
Terms 5x^2 and 7x have coefficients of 5 and 7 respectively.
The leading term x^3 has a coefficient of 1, but 1*x^3 = x^3, meaning it's convention to leave the 1 out. So technically x^3 does not have a coefficient directly written/shown. Instead, its more implied.
Find the coordinates of point G that lies along the directed line segment from F(-1, -1) to H(-8, 20) and partitions the segment in the ratio of 5:2.
Answer:
coordinates of point g is ( -6, 14)
Step-by-step explanation:
The coordinates of the point which divides the point (x1,y1) and (x2,y2) in m:n ratio is given by (nx1+mx2)/(m+n), (ny1+my2)/(m+n).
___________________________________________
given point
F(-1, -1) to H(-8, 20)
ratio : 5:2
the coordinates of point g is
(2*-1+5*-8)/(5+2), (2*-1+5*20)/(5+2)
=> (-2 -40/7 , -2+100/7)
=> (-42/7, 98/7)
=>( -6, 14)
Thus , coordinates of point g is ( -6, 14)
if the morning temperature started at -7 celsius but warmed during the day to 24 celsius . What is the temperature change
Answer:
31° change
Step-by-step explanation:
If we want to find the change between two numbers, we need to imagine it like a number line.
<-------------0------------->
Let's plot -7 and 24 on this number line.
<----------[tex]-7[/tex]--0------------24>
If we want to get from -7 to 0, we increase by 7. To get from 0 to 24, we increase by 24.
So the total change is [tex]7 + 24 = 31[/tex].
Hope this helped!
Help me with 1 please
Answer:
[tex]\huge\boxed{Mass = 11600\ kg}[/tex]
Step-by-step explanation:
Given:
Density = ρ = 2900 kg/m³
Volume = V = 4 m³
Required:
Mass = m = ?
Formula:
Mass = Density × Volume
Solution:
Mass = 2900 * 4
Mass = 11600 kg
PLEASE HELP MEEE How can a company use a scatter plot to make future sale decisions
Answer:
by tracking data of how much money was made on one product in a certain amount of time
Step-by-step explanation:
(3)/(22)+(-(1)/(11) find the sum without use of a number line
Answer:
1/22
Step-by-step explanation:
Simplify it.
It becomes 3/22-1/11
Change the denominator to 22 becasue that is the LCM.
It becomes 3/22-2/22 which is 1/22. :)
Simplify cos^2theta(1+ tan^2theta)
Answer:
1
Step-by-step explanation:
We will use x instead of theta
● cos^2 x *(1+tan^2x)
We khow that: 1+ tan^2 x = 1/cos^2 x
Replace 1+tan^2 x by the new expression
● cos^2 x (1/cos^2 x)
● cos^2x/ cos^2 x
● 1
Consider 6x2 + 6x + 1. Which term immediately tells you that this expression is NOT a perfect square trinomial? Justify your answer.
Answer:
Step-by-step explanation:
The 6x^2 because 6 is not a perfect square.
Answer:
6x^2
Step-by-step explanation:
6 isn't a perfect square
[tex]\frac{63,756×60}{70×5,280}[/tex]
Answer:
[tex]1035[/tex]
Step-by-step explanation:
(63756×60)/(70×5280)
=1035
SOMEBODY PLEASE HELP ME ON THIS ; DUE TODAY, i’ll mark u the brainliest
Answer: Angle Addition Postulate
Step-by-step explanation:
According to the angle addition postulate, the measure of an angle formed by two angles side by side is the sum of the measures of the two angles. It is used to evaluate the measure of an angle formed by two or more angles .In the given picture, we have ∠MRO and ∠MRS on line SRO.
So, ∠SRO = ∠MRO +∠MRS [By angle addition postulate]
So the postulate that justify the statement " ∠SRO = ∠MRO +∠MRS" is Angle Addition Postulate.
For the mathematics projects, a teacher divides 27 students into 2 groups. One group has more students than twice the number of students in the other group by 3. Find the number of students in both groups.
Write as a equation.
Answer:
8, 19
Step-by-step explanation:
let group 1 have x students and group 2 have y students
x + y = 27
but group 2 has 2x + 3 students
the sum of students from both groups is 27
x + 2x + 3 = 27
3x + 3 = 27
3x = 24
x = 8
y = 2x + 3
y = 19
A standard deck of 52 playing cards contains 13 cards in each of four suits: hearts, diamonds, clubs, and spades. Four cards are drawn from the deck at random. What is the approximate probability that exactly three of the cards are diamonds? 1% 4% 11% 44%
Answer:
4%
Step-by-step explanation:
There are ₁₃C₃ ways to choose 3 diamonds from 13.
There are ₃₉C₁ ways to choose 1 non-diamond from 39.
There are ₅₂C₄ ways to choose 4 cards from 52.
Therefore, the probability is:
₁₃C₃ ₃₉C₁ / ₅₂C₄
= 286 × 39 / 270,725
≈ 0.04
The approximate probability that exactly three of the cards are diamonds is 4%.
What is the probability?Probability refers to a possibility that deals with the occurrence of random events.
The probability of all the events occurring need to be 1.
We are given that standard deck of 52 playing cards contains 13 cards in each of four suits: hearts, diamonds, clubs, and spades.
Since we can see that there are ₁₃C₃ ways to choose 3 diamonds from 13.
₃₉C₁ ways to choose 1 non-diamond from 39.
₅₂C₄ ways to choose 4 cards from 52.
Therefore, the probability is:
₁₃C₃ ₃₉C₁ / ₅₂C₄
= 286 × 39 / 270,725
≈ 0.04
Therefore, the answer could be 4 percent.
Learn more about probability here;
https://brainly.com/question/9326835
#SPJ7
Simplify the following expression. (10-4i)(4-5i)+(-15+20i)
Answer:
5-46i
Step-by-step explanation:
1. Multiply (10-4i) and (4-5i), I recomnd using foil:
40-50i-16+20i^2 + (-15+20i)
2. Remove the parenthesis around -15+20i
*we can do this since there is a "+":
40-50i-16+20i^2 + (-15)+20
3. Simplify i^2
* i^2 is -1 by textbook defination:
40-50i-16+20(-1) + (-15)+20
4. Simplify
40-50i-16-20 + (-15)+20
6. Combine like terms:
-5-50i-16i+20i
5-46i
And the problem is done
Two angles are adjacent and form an angle of 160. Their difference is 34. Find the angles
Answer:
The angles are 63 , 97
Step-by-step explanation:
Let one angle be x
As sum of two angles is 160, the other angle = 160 - x
Their difference = 34
x - [160- x] = 34
Use distributive property to remove the brackets
x - 160 + x = 34
Add like terms
x + x - 160 = 34
2x - 160 = 34
Add 160 to both sides
2x = 34 + 160
2x = 194
Divide both sides by 2
2x/2 = 194/2
x = 97°
One angle = 97°
Other angle = 160 - 97 = 63°
A fruit tray was served at a meeting. During the meeting, 4 out of 10 strawberries were eaten. Which model has a shaded region that represents the amount of strawberries eaten during the meeting?
Answer:
4 of the berries will be shaded
Step-by-step explanation:
The model that shows that 4 out of 10 strawberries were eaten is attached.
What is a expression? What is a mathematical equation? What is a fraction?A mathematical expression is made up of terms (constants and variables) separated by mathematical operators.A mathematical equation is used to equate two expressions. Equation modelling is the process of writing a mathematical verbal expression in the form of a mathematical expression for correct analysis, observations and results of the given problem.A fraction represents a part of a whole or, more generally, any number of equal parts. A fraction is written as - {x/y}, where [x] is numerator and [y] is denominator.We have, 4 out of 10 strawberries were eaten in a fruit tray.
Refer to the image attached. This model shows that the 4 out of 10 strawberries were eaten.
Therefore, the model that shows that 4 out of 10 strawberries were eaten is attached.
To solve more questions on Equations, Equation Modelling and Expressions visit the link below -
brainly.com/question/14441381
SPJ2
On Tuesday, Dec. 3, I began drinking a glass of cola every day except Saturday and Sunday. I drank my 22nd glass of cold on A) Dec. 24 B) Dec. 25 C) Dec. 31 D) Jan. 1
Answer:
The correct option is;
D) Jan. 1
Step-by-step explanation:
The given information are;
The date at which drinking a glass of cola a day of cola began = Dec 3
The days in which to drink cols = Every day of the week except Saturday and Sunday
The number of glasses of drinking cola = 22
In the fires week, number of days in which to drink cola = Tuesday, Wednesday, Thursday, and Friday which is 4 days
On the week commencing Dec 9, 5 glasses drank
On the week commencing Dec 16, 5 glasses drank
On the week commencing Dec 23, 5 glasses drank
On the week commencing Dec 30, 3 glasses drank
Therefore on the week commencing Dec 30, cola was drank on the 30th, 31st and the 22nd glass was drank on Jan. 1
The correct option is Jan. 1.
A ship travels a distance of 700 km. On the return trip it averages 10km/hr faster and 8 hours less, tp travel the 700km back. Determine how long the original part of the trip took in hours
Answer:
The total duration of the trip is 48 hours.
Step-by-step explanation:
Let suppose that ship travels at constant speed during its travel. Each stage is represented by the following kinematic equation:
[tex]v =\frac{\Delta s}{\Delta t}[/tex]
Where:
[tex]\Delta s[/tex] - Travelled distance, measured in kilometers.
[tex]\Delta t[/tex] - Time, measured in hours.
[tex]v[/tex] - Speed, measured in kilometers per hour.
Now, each stage is represented by the following expressions:
Outbound trip
[tex]v = \frac{700\,km}{\Delta t}[/tex]
Return trip
[tex]v + 10\,\frac{km}{h} = \frac{700\,kh}{\Delta t - 8\,h}[/tex]
By eliminating [tex]v[/tex] and simplifying the resulting expression algebraically:
[tex]\frac{700\,km}{\Delta t} + 10\,\frac{km}{h} = \frac{700\,km}{\Delta t -8\,h}[/tex]
[tex](700\,km)\cdot \left(\frac{1}{\Delta t - 8\,h}-\frac{1}{\Delta t} \right) = 10\,\frac{km}{h}[/tex]
[tex]\frac{1}{\Delta t - 8\,h}-\frac{1}{\Delta t} = \frac{1}{70}\,\frac{1}{h}[/tex]
[tex]\frac{8\,h}{\Delta t \cdot (\Delta t-8\,h)} = \frac{1}{70}\,\frac{1}{h}[/tex]
[tex]560\,h^{2} = \Delta t\cdot (\Delta t - 8\,h)[/tex]
[tex](\Delta t )^{2}-8\cdot \Delta t - 560 = 0[/tex]
This equation can be solved by means of the Quadratic Formula, whose roots are presented below:
[tex]\Delta t_{1} = 28\,h[/tex] and [tex]\Delta t_{2} = -20\,h[/tex]
Only the first roots offers a physically resonable solution. Then, total duration of the trip is:
[tex]t_{T} = 28\,h +20\,h[/tex]
[tex]t_{T} = 48\,h[/tex]
The total duration of the trip is 48 hours.
Convert to slope-intercept from: y-3=6(x-5)
Answer:
y = 6x -27
Step-by-step explanation:
y-3=6(x-5)
Distribute
y-3 = 6x-30
Add 3 to each side
y-3+3 = 6x-30+3
y = 6x -27
This is in slope intercept form y=mx+b where m is the slope and b is the y intercept
Hey there! I'm happy to help!
Slope intercept form is y=mx+b. So, the first thing we want to do is isolate y on side of the equation.
y-3=6(x-5)
We use distributive property to undo parentheses.
y=3=6x-30
We add 3 to both sides.
y=6x-27
Now, this in slope intercept form.
Have a wonderful day! :D
x/t+m=b need to make x the subject
Answer:
x=(t+m)/b is the answer
Step-by-step explanation:
Hope it will help :)
Answer:
x = t(b-m)
Step-by-step explanation:
x/t + m =b
subtract m from each side
x/t +m-m = b-m
x/t =b-m
Multiply each side by t
x/t *t = t(b-m)
x = t(b-m)
answer it answer it it
Answer:
answer it answer it it
answer it answer it it
Answer:
the answer is answer i hope u have a great day
(if u apricate me giive me a brainly by pressing the crown and giving me a heart) THANKS!!!
Step-by-step explanation:
Michael is trying to hang Christmas lights on his house. His house is 17 ft tall and the ladder leaning is 34 degrees above the ground. How long must the ladder be to reach the house? a 24 feet b 17 feet c 34 feet d 30 feet
Answer:
34 feet
Step-by-step explanation:
let length of ladder be x
[tex] \ \sin(34) = \frac{17}{x} [/tex]
[tex]x \sin(34) = 17[/tex]
[tex]x = \frac{17}{ \sin(34) } [/tex]
x = 32.131083564
Suppose triangle TIP and triangle TOP are isosceles triangles. Also suppose that TI=5, PI=7, and PO=11. What are all the possible lengths TO? Enter the possible values, separated by commas.
===========================================
Explanation:
Refer to the diagram below.
In order for triangle TOP to be isosceles, the missing side x must be either 5 or 7. This way we have exactly two sides that are the same length.
--------
If TP = 5, then the value of y could be either 5 or 11 to ensure that triangle TIP has exactly two sides the same length.
If TP = 7, then y = 7 or y = 11 for similar reasons.
--------
Therefore, the possible lengths for segment TO are 5, 7, and 11.
Answer:
7, 11
Step-by-step explanation:
its right- trust me-