A gray element that borders on the zigzag line of the periodic table, is ductile and malleable, but is not a very good conductor of heat or electricity is known as which of the following?
A. metal
B. halogen
C. metalloid
D. nonmetal

Answers

Answer 1
The answer is non metal D
Answer 2

A gray element that borders on the zigzag line of the periodic table, is ductile and malleable, but is not a very good conductor of heat or electricity is known as metalloid. The correct option is option C.

What is periodic table?

In chemistry, a periodic table is an orderly arrangement of each of the chemical elements along order of atomic number is, the total amount of protons inside the atomic nucleus.

Whenever the chemical elements stand grouped in this manner, there is a recurrent pattern in their characteristics known as the "periodic law," in which elements within a single column (group) exhibit comparable qualities. A gray element that borders on the zigzag line of the periodic table, is ductile and malleable, but is not a very good conductor of heat or electricity is known as metalloid.

Therefore, the correct option is option C.

To learn more about  periodic table, here:

https://brainly.com/question/1173237

#SPJ6


Related Questions

How many significant figures are in 3.20x10^2 g?

Answers

Answer:

3

Explanation:

For numbers with decimals, count the number after the decimal.

An atom has 81 electrons, 84 neutrons, and 82 protons. What element is this atom?

Answers

Answer:

Lead

Explanation:

The subatomic particles within an atom can be used to know the atom or element given.

Of particular interest is the number of protons within the atom.

The periodic table is based on the atomic number of atoms. This atomic number is the number of protons within an atomic space.

So; If we know the number of protons within an atom, we can know the element.

The number of protons given is 82, the element is  therefore lead.

Answer:

The atomic number of polonium is 84. The atomic number lead is 82.

Explanation:

3.4 x 10-25 kg = ? microounces

Answers

Answer: 1.2 x 10^-17 microounces

Explanation:

Ounce = 28.5G microounce = 28.5*10^-6g

3.4*10^-25 kg = 3.4*10^-22 g = (3.4/2.85)*10^(-22+5) = 1.2*10-17

The density of a sample of gasoline is 0.70 g/cm3. What is the mass of 1 liter of this gasoline?
Group of answer choices

0.7 g

70 g

700 g

1,429 g

Answers

Answer:

700g

Explanation:

Given parameters:

Density of gasoline  = 0.7g/cm³

Volume of gasoline  = 1L  = 1000cm³  

Unknown:

Mass of the gasoline  = ?

Solution:

Density is the mass per unit volume of a substance. It can be expressed as;

 Density  = [tex]\frac{mass}{volume}[/tex]  

 So;

      Mass  = density x volume

    Mass  = 0.7 x 1000  = 700g

identify which element is oxidized and which element is reduced.
PLZ HELPP...​

Answers

In the first three equations, Magnesium, sodium and aluminum are oxidized because they loose electrons. Sulfur, oxygen and chlorine are reduced because they gain electrons. In the last equation, magnesium is reduced because it gains hydrogen, and hydrogen is oxidized because it loses electrons.

an unknown substance has a mass of 57.4 g and occupies a volume of 34.3 ml. what is the density in g/ml?

Answers

Answer:

1.6734 g\ml..hope it helps

You want to clean a 500-ml flask that has been used to store a 0.9M solution. Each time the flask is emptied, 1.00 ml of solution adheres to the walls, and thus remains in the flask. For each rinse cycle, you pour 9.00 ml of solvent into the flask (to make 10.00 ml total), swirl to mix uniformly, and then empty it. What is the minimum number of such rinses necessary to reduce the residual concentration of 0.00001 M or below

Answers

Answer:

In the 5th cycle rinse, the residual concentration of the solution is < 0.00001M

Explanation:

In each rinse cycle, the dilution that you are doing of the solution is from 1.00mL to 10.00mL, that is a dilution of 10

In the first rinse the concentration must be of 0.9M  10 = 0.09M

2nd = 0.009M

3rd = 0.0009M

4th = 0.00009M

5th = 0.000009M →

In the 5th cycle rinse, the residual concentration of the solution is < 0.00001M

water is a unique material in that the density of the solid is lower than the density of the liquid (which is why ice forms at the top of a pond and why ice floats in our drinks). if the density for ice at 0C is .917g/mL and the density for water at 0C is .999 g/mL, what is the calculated free space (as %) for each of these materials. you will need to estimate the volume of water as the sum of 2 H atoms and 1 O atom with radii 37 and 66 pm respectively. note that you will also have to assume a quantity of water to perform this exercise

Answers

Answer:

% Free space in water = [tex]\frac{9.945* 10^{-7} }{1*10^{-6} }[/tex]×100 = 99.45%

% Free space in ice  = [tex]\frac{9.98* 10^{-7} }{1*10^{-6} }[/tex]×100 = 99.8%

Explanation:

As given ,

Density for ice at 0⁰C = 0.917 g/ml

Density for water at 0⁰C = 0.999 g/ml

Radii of H atoms = 37 pm

Radii of O atoms = 66 pm

Now,

Consider 1 ml of water = 1 cm²

As , we know that mass of water in 1 cm² = 0.999 g

Moles of water = [tex]\frac{0.999}{18} = 0.056[/tex]

Volume of H₂O = 1.624×[tex]10^{-31}[/tex] m²

Now,

Volume occupied by water = 0.056×6.022×[tex]10^{23}[/tex]× 1.624×[tex]10^{-31}[/tex] m²

                                              = 5.48×[tex]10^{-9}[/tex] m²

⇒Volume occupied by water = 5.48×[tex]10^{-9}[/tex] m²

Now,

Free space = 1×[tex]10^{-6}[/tex]  - 5.48×[tex]10^{-9}[/tex] = 9.95×[tex]10^{-7}[/tex] m²

% Free space = [tex]\frac{9.945* 10^{-7} }{1*10^{-6} }[/tex]×100 = 99.45%

Now,

Consider 1 ml of ice  = 1 cm²

S.I unit of ice = 1×[tex]10^{-6}[/tex] m²

As , we know that mass of water in 1×[tex]10^{-6}[/tex] m² = 0.917 g

Moles of ice = [tex]\frac{0.917}{18} = 0.012[/tex]

Volume of H₂O = 6.022×[tex]10^{23}[/tex] ×0.012

Volume of ice unit = [tex]\frac{4}{3} \pi (37*10^{-12})^{3} *2 + \frac{4}{3} \pi (66*10^{-12})^{3} = 1.624*10^{-31}m^{3}[/tex]

Now,

Volume occupied by water = 0.012×6.022×[tex]10^{23}[/tex]× 1.624×[tex]10^{-31}[/tex] m²

                                              = 1.17×[tex]10^{-9}[/tex] m²

⇒Volume occupied by water = 1.17×[tex]10^{-9}[/tex] m²

Now,

Free space = 1×[tex]10^{-6}[/tex]  - 1.17×[tex]10^{-9}[/tex] = 9.98×[tex]10^{-7}[/tex] m²

% Free space = [tex]\frac{9.98* 10^{-7} }{1*10^{-6} }[/tex]×100 = 99.8%

balance the following equation by oxidation reduction method FeSO4
+
KMnO4+ H2SO4 → Fe2 (SO4)3+ k2SO4+MnSO4+H2O​

Answers

Answer:

[tex]10\, {\rm Fe}\rm SO_4 + 2\, \rm K {Mn} O_4 + 8\, H_2SO_4\\ \to 5\, {Fe} (SO_4)_3 + K_2SO_4 + 2\, {Mn}SO_4 + 8\, H_2O[/tex].

Explanation:

Identify the elements with oxidation state changes:

Oxidation states of iron, [tex]\rm Fe[/tex]:

[tex]+2[/tex] in [tex]\rm FeSO_4[/tex] among the reactants.[tex]+3[/tex] in [tex]\rm Fe_2(SO_4)_3[/tex] among the products.Change to the oxidation state: [tex]+1[/tex] (oxidation) for each [tex]\rm Fe[/tex] atom.

Oxidation state of manganese, [tex]\rm Mn[/tex]:

[tex]+7[/tex] in [tex]\rm KMnO_4[/tex] among the reactants.[tex]+2[/tex] in [tex]\rm MnSO_4[/tex] among the products.Change to the oxidation state: [tex](-5)[/tex] (reduction) for each [tex]\rm Mn[/tex] atom.

The change in the oxidation state of [tex]\rm Mn[/tex] is five times the opposite of the change to the oxidation state of [tex]\rm Fe[/tex]. If there are one mole of [tex]\rm Mn\![/tex] atoms in each mole of this reaction, there would be five times as many [tex]\rm Fe\![/tex] atoms per mole reaction. In other words:

[tex]\displaystyle 5\, \overset{+2}{\rm Fe}\rm SO_4 + 1\, \rm K \overset{+7}{Mn} O_4 + ?\, H_2SO_4\\ \to \frac{5}{2}\, \overset{+3}{Fe} (SO_4)_3 + ?\, K_2SO_4 + 1\, \overset{+2}{Mn}SO_4 + ?\, H_2O[/tex].

(Notice that each mole of this reaction would include five times as many [tex]\rm Fe[/tex] atoms as [tex]\rm Mn[/tex] atoms.)

Multiply the coefficients by [tex]2[/tex] to eliminate the fraction:

[tex]\displaystyle 10\, {\rm Fe}\rm SO_4 + 2\, \rm K {Mn} O_4 + ?\, H_2SO_4\\ \to 5\, {Fe} (SO_4)_3 + ?\, K_2SO_4 + 2\, {Mn}SO_4 + ?\, H_2O[/tex].

Find the unknown coefficients using the conservation of atoms.

Reactants:

[tex]2[/tex] potassium [tex]\rm K[/tex] atoms in two [tex]\rm K_2SO_4[/tex] formula units.

Therefore, among the products:

[tex]2[/tex] potassium [tex]\rm K[/tex] atoms in one [tex]\rm K_2SO_4[/tex] formula unit.

[tex]\displaystyle 10\, {\rm Fe}\rm SO_4 + 2\, \rm K {Mn} O_4 + ?\, H_2SO_4\\ \to 5\, {Fe} (SO_4)_3 + {1}\, K_2SO_4 + 2\, {Mn}SO_4 + ?\, H_2O[/tex].

Products:

[tex]5 \times 3 + 2 + 1 = 18[/tex] sulfur [tex]\rm S[/tex] atoms in five [tex]\rm Fe_2(SO_4)_3[/tex] formula units, two [tex]\rm K_2 SO_4[/tex] formula units, and one [tex]\rm MnSO_4[/tex] formula unit.

Reactants:

There are already ten [tex]\rm S[/tex] atoms in that ten [tex]\rm Fe(SO_4)_2[/tex] formula units. The other [tex]18 - 10 = 8[/tex] formula units would correspond to eight [tex]\rm H_2SO_4[/tex] molecules among the reactants of this reaction.

[tex]\displaystyle 10\, {\rm Fe}\rm SO_4 + 2\, \rm K {Mn} O_4 + 8\, H_2SO_4\\ \to 5\, {Fe} (SO_4)_3 + {1}\, K_2SO_4 + 2\, {Mn}SO_4 + ?\, H_2O[/tex].

Products:

There are [tex]8 \times 2 = 16[/tex] hydrogen [tex]\rm H[/tex] atoms in that eight [tex]\rm H_2SO_4[/tex] molecules.

Therefore, among the products:

There would be [tex]16 / 2 = 8[/tex] molecules of [tex]\rm H_2O[/tex], with two [tex]\rm H[/tex] atoms in each [tex]\rm H_2O\![/tex] molecule.

[tex]\displaystyle 10\, {\rm Fe}\rm SO_4 + 2\, \rm K {Mn} O_4 + 8\, H_2SO_4\\ \to 5\, {Fe} (SO_4)_3 + {1}\, K_2SO_4 + 2\, {Mn}SO_4 + 8\, H_2O[/tex].

Calculate the number of oxygen atoms in a 50.0g sample of scheelite CaWO4

Answers

Answer:

0.696 atoms of oxygen

Explanation:

We'll begin by calculating the number of mole in 50 g of scheelite CaWO₄. This can be obtained as follow:

Mass of CaWO₄ = 50 g

Molar mass of CaWO₄ = 40 + 184 + (4×16)

= 40 + 184 + 64

= 288 g/mol

Mole of CaWO₄ =?

Mole = mass / Molar mass

Mole of CaWO₄ = 50 / 288

Mole of CaWO₄ = 0.174 mole

Finally, we shall determine the number of oxygen atom in 50 g (i.e 0.174 mole) of CaWO₄. This can be obtained as follow:

1 mole of CaWO₄ contains 4 atoms of oxygen.

Therefore, 0.174 mole of CaWO₄ will contain = 0.696 atoms of oxygen.

Thus, 50 g (i.e 0.174 mole) of CaWO₄ contains 0.696 atoms of oxygen.

16. Using the average atomic masses given in the inside front cover of this book, calculate the indicated quantities.

d. the number of moles of cobalt represented by 5.99 x 1021 cobalt atoms e. the mass of 4.23 mol of cobalt

f. the number of cobalt atoms in 4.23 mol of cobalt

g. the number of cobalt atoms in 4.23 g of cobalt

Answers

Answer:

d. 9.95 × 10⁻³ mol

e. 249 g

f. 2.55 × 10²⁴ atoms

g. 4.32 × 10²² atoms

Explanation:

d. the number of moles of cobalt represented by 5.99 x 10²¹ cobalt atoms

We will use Avogadro's number: there are 6.02 × 10²³ atoms of cobalt in 1 mole of atoms of cobalt.

5.99 x 10²¹ atoms × 1 mol/6.02 × 10²³ atoms = 9.95 × 10⁻³ mol

e. the mass of 4.23 mol of cobalt

The molar mass of cobalt is 58.93 g/mol.

4.23 mol × 58.93 g/mol = 249 g

f. the number of cobalt atoms in 4.23 mol of cobalt

We will use Avogadro's number: there are 6.02 × 10²³ atoms of cobalt in 1 mole of atoms of cobalt.

4.23 mol × 6.02 × 10²³ atoms/1 mol = 2.55 × 10²⁴ atoms

g. the number of cobalt atoms in 4.23 g of cobalt

First, we will calculate the moles of cobalt using the molar mass of cobalt.

4.23 g × 1 mol/58.93 g = 0.0718 mol

Then, we will calculate the number of cobalt atoms using Avogadro's number.

0.0718 mol × 6.02 × 10²³ atoms/1 mol = 4.32 × 10²² atoms

How many moles of hydrogen gas are present in 65.0 liters at STP?
1456 moles
1.45 moles
3.00 moles
2.90 moles

Answers

Answer:

2.9moles of hydrogen gas

Explanation:

convert liters to dm³

since 1liter= 1dm³

thus, 65.0liters = 65.0dm³

number of moles = volume given/22.4dm³

= 65.0/22.4

=2.9moles

When preparing for work in the fume hood, be sure to gather all necessary tools, glassware, and chemicals _________ to minimize the number of times the hood sash is raised and lowered. Work as much as possible in the _________ of the work surface to keep the area tidy and promote air flow. If you need to step away from the experiment to obtain another item, _________ the sash during this time.

Answers

Answer:

In advance

middle

lower

Explanation:

These are the safety precautions needed when carrying out duties in the fume hood.

When planning and preparing to work in a fume hood (a locally designed area to reduce exposure to hazardous fumes). It is advisable to make all equipment readily available at your disposal in advance to reduce and minimize the raising and lowering of the hood sash at intervals.

It is also pertinent to understand that working in the middle of the work surface helps to promote the movement of air and keeps the area neat and tidy.

However, if any case where there is a need to get a new tool or equipment during the process of working in a fume hood, it is advisable to lower the sash at that point in time.

Identify the term that matches each definition.
The front vent of a fume hood, which helps maintain proper air circulation____.
The horizontal, flat area of a fume hood upon which experiments are carried out____.
A characteristic that describes substances that evaporate readily, producing large amounts of vapors____.
The glass panel in front of the fume hood that shields the user from fumes and other hazard_____.
A. Airfoil.
B. Sash.
C. Work surface.
D. Volatile.

Answers

Answer:

A,

C.

D.

B.

Explanation:

The front vent of a fume hood that assists and maintain proper air circulation is Airfoil

The horizontal flat surface area of the fume hood where experiments are being carried out is Work  Surface.

The main characteristics which demonstrate and describes how substances evaporate rapidly and readily into the thin air while producing a huge amount of vapor is known as Volatile

In front of the fume hood, lies the glass panel whose main purpose is to shield the user from the hazardous substance. This glass panel is known as the Sash.

In each row, checkbox under the compound that can reasonably be expected to be more acidic in aqueous solution, e.g have the larger
Ka
H₂ SO₃ H₃ SO ₄
H₃ PO₄ H₃ PO₃
HCH₃ SO₂ HCH₃CO₂

Answers

Explanation:

H2SO3 is more acid than H2TeO3. Since S is more electronegative than Te is. In H2SO3, thus, dissociation of H+ would be smoother.

So, H2SO3's got high Ka.

HCH3SO2 is more acid than HCH3CO2. Since S is more electronegative than C. So, HCH3SO2 is a high Ka.

HClO2 is more acid than HClO. Since in HClO2, after the donation of H+ ion, the negative charge is set by two oxygen atoms, while in HClO, only one oxygen atom stabilizes the negative charge.

So, HClO2 is a high Ka

Two volumes of nitric oxide react with one volume of oxygen gas to form two volumes of a reddish-brown gas. Deduce the formula of this gas and sketch particle representations of its molecules.

Answers

Answer:

Explanation:

Nitric oxide is the gas NO, it reacts with oxygen as shown below;

2NO(g) + O2(g) -----> 2NO2(g)

Now the gas formed is the gas NO2 which is known to be reddish brown in colour.

A diagrammatic representation of this reaction is shown in the image attached to this answer.

Image credit: Chemlibretext

Molecule A undergoes isomerization to molecule B in acetone. Using curved arrows, showing key intermediates and any formal charges, propose a detailed mechanism for this isomerization. Provide a brief explanation why this isomerization occurs.

Answers

Answer:

hello your question is incomplete attached below is the complete question

answer :

we use Isomerization because conjugated allylic carbocation  is more stable when compared to a Non-conjugated Allylic carbocation

Explanation:

Reason for the mechanism

we use Isomerization because conjugated allylic carbocation  is more stable when compared to a Non-conjugated Allylic carbocation

attached below is the detailed mechanism

What produces the magnetic force of an electromagnet?

O magnetic fields passing through the device

O static charged particles on the wire

O movement of charged particles through the wire

O positive and negative charges repelling each other

Answers

Answer:

movement of charged particles through the wire .

Explanation:

When electricity is passed through the wire of electromagnet , moving electrons of the wire produces magnetic field . This magnetic field in increased due to high permeability of soft iron of the electromagnet . It is this magnetic field which creates magnetic force .

Joseph Priestly is frequently credited with the discovery of oxygen, and was reported to have produced molecular oxygen from the decomposition reaction of mercury(II) oxide, which is the reverse of the synthesis of HgO depicted in the following equation. 4 Hg(l) + 2 O2(g) LaTeX: \rightarrow → 4 HgO(s) Determine the value of LaTeX: \Delta ΔH°rxn for the synthesis, given that

Answers

Joseph Priestly is frequently credited with the discovery of oxygen, and was reported to have produced molecular oxygen from the decomposition reaction of mercury(II) oxide, which is the reverse of the synthesis of HgO depicted in the following equation. [tex]4Hg(l)+2O_2(g)\rightarrow 4 HgO(s) [/tex]Determine the value of [tex]\Delta ΔH°rxn[/tex] for the synthesis, given that [tex]\Delta H_f^0[/tex] for HgO is -90.7 kJ/mol.

Answer: The enthalpy change for this reaction is, -362.8 kJ

Explanation:

The balanced chemical reaction is,

[tex]4Hg(l)+2O_2(g)\rightarrow 4HgO(s)[/tex]

The expression for enthalpy change is,

[tex]\Delta H=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)][/tex]

[tex]\Delta H=[(n_{HgO}\times \Delta H_{HgO})]-[(n_{O_2}\times \Delta H_{O_2})+(n_{Hg}\times \Delta H_{Hg})][/tex]

where,

n = number of moles

[tex]\Delta H_{O_2}=0[/tex] (as heat of formation of substances in their standard state is zero

[tex]\Delta H_{Hg}=0[/tex] (as heat of formation of substances in their standard state is zero

Now put all the given values in this expression, we get

[tex]\Delta H=[(4\times -90.7)]-[(2\times 0)+(4\times 0)][/tex]

[tex]\Delta H=-362.8kJ[/tex]

Therefore, the enthalpy change for this reaction is, -362.8 kJ

A particular term in an atom in which LS coupling is a good approximation splits into three levels, each having the same L and same S but different J. If the relative spacings between the levels are in the proportion 5:3, find L and S.

Answers

Answer:

Explanation:

From the information given;

Consider using Lande's Interval rule which can be expressed as:

[tex]\Delta E = E_{j+1} - E_jj \ = \alpha (j+1)[/tex]

here;

[tex]j+1[/tex]  = highest level of j

and

[tex]\dfrac{\Delta E_1}{\Delta E_2} = \dfrac{(j+2)}{(j+1)}[/tex]

[tex]\dfrac{5}{3} = \dfrac{(j+2)}{(j+1)}[/tex]

[tex]5(j+1) = 3(j+2)[/tex]

[tex]5j+5 = 3j+6[/tex]

[tex]2j = 1\\ \\ j = \dfrac{1}{2}[/tex]

recall that:

[tex]j = |S-L| \ \to \ |S+L |[/tex]

So;

[tex]S-L = \dfrac{1}{2} --- (1)[/tex]; &

[tex]S+L = \dfrac{5}{2} --- (1)[/tex]

Using the elimination method, we have:

[tex]2S = \dfrac{6}{2}[/tex]

[tex]S = \dfrac{3}{2}[/tex]

Since [tex]S = \dfrac{3}{2}[/tex]; then from (1)

[tex]\dfrac{3}{2} -L = \dfrac{1}{2}[/tex]

[tex]L = \dfrac{2}{2}[/tex]

[tex]L = 1[/tex]

Explain the differences between an ideal gas and a real gas.

Answers

Answer:

Ideal Gas

The ideal gas is extremely small and the mass is almost zero and no volume Ideal gas is also considered as a point mass.

Real Gas

The molecules of real gas occupy space though they are small particles and also have volume.

anation:

The differences between an ideal gas and a real gas are that the ideal gas follows the gas laws perfectly under all conditions. Whereas a real gas deviates from ideal gas behaviors.

The ideal gas law, also known as the general gas equation, is a fundamental principle in thermodynamics and relates the pressure, volume, temperature, and number of moles of an ideal gas.

An ideal gas is a theoretical gas that follows the gas laws perfectly under all conditions of temperature and pressure. It is assumed to have no volume, no intermolecular forces, and elastic collisions between its particles. An ideal gas also obeys the ideal gas law.

On the other hand, a real gas is a gas that does not follow the gas laws perfectly under all conditions of temperature and pressure. Real gases have volume and intermolecular forces that affect their behavior. These forces cause deviations from ideal gas behavior, especially at high pressures and low temperatures.

In summary, while an ideal gas is a theoretical gas that follows the gas laws perfectly under all conditions, a real gas is a gas that deviates from ideal gas behavior due to its volume, intermolecular forces, and non-elastic collisions between its particles.

Learn more about ideal gas law here:

https://brainly.com/question/33342075

#SPJ2

A student dissolves of aniline in of a solvent with a density of . The student notices that the volume of the solvent does not change when the aniline dissolves in it. Calculate the molarity and molality of the student's solution. Be sure each of your answer entries has the correct number of significant digits.

Answers

Answer:

Molarity: 0.21M

Molality: 0.20m

Explanation:

...dissolves 3.9g of aniline (C6H5NH2) in 200.mL of a solvent with a density of 1.05 g/mL...

To solve this question, we need to find the moles of aniline in 3.9g using its molar mass. Then, we need to find the kg and Liters of solution in order to find molarity (Moles/L solution) and molality (Moles/kg of solvent):

Moles aniline:

Molar mass:

6C: 6* 12.01g/mol = 72.06g/mol

7H: 7*1.008g/mol = 7.056g/mol

N: 1*14.007g/mol = 14.007g/mol

72.06g/mol+7.056g/mol+14.007g/mol = 93.123g/mol

Moles of 3.9g: 3.9g * (1mol / 93.123g) = 0.04188moles

Liters solution:

200mL * (1L / 1000mL) = 0.200L

kg solvent:

200mL * (1.05g/mL) * (1kg/1000g) = 0.210L

Molarity:

0.04188mol / 0.200L = 0.21M

Molality:

0.04188mol / 0.210L =0.20m

A species of desert plant produces flowers that only bloom at night. How does this enhance the survival of the species?

A. This allows the plants to conserve water and not bloom during the heat of the day.

B. This species relies on nocturnal animals like moths for pollination and reproduction

C. This species relies on moonlight for photosynthesis.

D.This allows flowers to stay closed durng the day when herbivores are more likely to eat them.

Od

Answers

Answer:

A. This allows the plants to conserve water and not bloom during the heat of the day

Explanation:

Most desert plants only bloom at night because they take advantage of animals like moths and insects that fly at night for pollination and reproduction.

Because these plants are in the desert and do not get enough water except from short occasional rainfalls, they conserve water and not bloom during the heat of the day. They bloom at night when the temperature is low and this enhances their water conservation and survival.

PREDICT How do you think the atoms in metal elements are different from those in

nonmetals or metalloids? How might the atoms of different metals vary from one another?

Answers

Answer:

See explanation

Explanation:

The atoms of metals have fewer valence electrons than the atoms of metals and metalloids.

Atoms of metals have only very few valence electrons in their outermost shells hence they donate electrons during bonding. However, atoms of nonmetals have more electrons in their outermost shells and rather accept electrons during bonding. The atoms of metalloids just have a number of valence electrons that are intermediate between those of metals and nonmetals and mostly share electrons in covalent bonds.

Similarly, atoms of metallic elements differ from each other in the number of valence electrons present in the valence shell of the atom of each element. For instance, sodium has one electron in the valence shell of its atom while aluminium has three electrons in the valence shell of its atom.

The atoms of metallic elements are different from the atoms of non metals or metalloids base on the outer electron/ valency electrons and the its bonding pattern.

The atoms of different metals varies in it ability to bond quickly.

The atoms of metallic elements are different from the atoms of non metals or metalloids base on the outer electron/ valency electrons and how it bonds.

Metallic atoms have very few electrons in the outermost shell. The valency electrons of this metallic atoms are few and are easily lost during bonding. They have the ability to release there valency electrons easily. Example of this metals are sodium, potassium , calcium etc.

On the other hand non metallic elements have numerous electron in the outermost shell and easily receive electron during bonding. Example are chlorine, fluorine, oxygen etc.

The metalloid atoms like silicon and germanium have an average number of electron in their outermost shell. They are in between.

The atoms of different metals varies in it ability to bond quickly. For example the group 1 metals are very reactive than the group 2 metals. This simply means the group 1 metals(alkali metals) goes into bonding more easily than the group 2 metals(alkali earth metals).    

read more: https://brainly.com/question/1903992?referrer=searchResults

chemistry
Definition in your own words. I will check if you got it from online.

Word:
Malleable
(malleability)

Answers

mallebable- a material that is able to be hammered or pressed permanently without breaking .

is C5H10 ionic or covalent?

Answers

Covalent because it is 5 and 10 so there even numbers I think
covalent. there is 5 c-c bonds 2 hydrogen atoms attach to each. total # of bonds is 15

As the food burned,
energy was
nergy. Thus, a
thermal
transformed intos
chemical
form of Select
nuclear
$ converted to a
form of
Select
energy.
Check

Answers

Answer:

I don't get it is it even a question?

How many moles of water can be formed from 0.57 moles of hydrogen gas?

Answers

Answer:

0.57 water

Explanation:

To solve this problem, we need to write the reaction expression first.

The reactants are oxygen gas and hydrogen gas.

They react to give a product of water

       2H₂    +    O₂   →   2 H₂O  

Given that;

Number of moles of hydrogen gas = 0.57moles

From the balanced reaction expression;

       2 moles of hydrogen gas produces 2 moles of water

   So;

    0.57mole of hydrogen gas will also produce 0.57 water

Suppose a 500.mL flask is filled with 0.40mol of N2 and 1.0mol of NO. The following reaction becomes possible:
N2g+O2g ->2NOg
The equilibrium constant K for this reaction is 5.93 at the temperature of the flask. Calculate the equilibrium molarity of N2. Round your answer to two decimal places.

Answers

Answer:

[N₂] = 1.1M

Explanation:

Based on the chemical reaction:

N₂(g) + O₂(g) ⇄ 2 NO(g)

Equilibrium constant, K, is defined as:

K = 5.93 = [NO]² / [N₂] [O₂]

Where [] are equilibrium concentrations of each specie

As initial concentrations are:

N₂ = 0.40mol / 0.500L = 0.8M

NO = 1mol / 0.500L = 2M

The equilbrium concentrations are:

[NO] = 2M - 2X

[N₂] = 0.8M +X

[O₂] = X

Replacing:

5.93 = [2 - 2X]² / [0.8+X] [X]

5.93 = 4 - 8X + 4X² / 0.8X + X²

4.744X + 5.93X² = 4 - 8X + 4X²

1.93X² + 12.744X - 4 = 0

Solving for X:

X = -6.9M → False solution. There are no negative concentrations

X = 0.3M. Real solution.

[N₂] in equilibrium is:

[N₂] = 0.8M +0.3M

[N₂] = 1.1M

A series of dilute NaCl solutions are prepared starting with an initial stock solution of 0.100 M NaCl. Solution A is prepared by pipeting 10 mL of the stock solution into a 250-mL volumetric flask and diluting to volume. Solution B is prepared by pipeting 25 mL of solution A into a 100-mL volumetric flask and diluting to volume. Solution C is prepared by pipeting 20 mL of solution B into a 500-mL volumetric flask and diluting to volume. What is the molar concentration of NaCl in solutions A, B and C

Answers

Answer:

Solution A: 0.00400M

Solution B: 0.00400M

Solution C: 4.00x10⁻⁵M

Explanation:

Solution A is diluting the 0.100M NaCl from 10mL to 250mL. That is:

250mL / 10mL = 25 times.

That means molar concentration of sln A is:

0.100M / 25 = 0.00400M

Solution B is obtained diluting 25mL to 100mL:

100mL / 25mL = 4 times

0.00400M / 4 times = 0.00100M

And solution C is obtained diluting the solution C from 20mL to 500mL:

500mL / 20mL = 25 times

Solution C:

0.00100M / 25 times = 4.00x10⁻⁵M

The formula for serial dilution can be used to obtain the molarity of solution A, B , C.

For solution A

M1V1 = M2V2

M2 = 0.100 M ×  10 mL/250-mL

M2 = 0.004 M

For solution B

M1V1 = M2V2

M2 = 0.004 M × 25 mL/100-mL

M2 = 0.001 M

For solution C

M1V1 = M2V2

M2 = 0.001 M × 20 mL/500-mL

M2 = 0.00004 M

Learn more about serial dilution: https://brainly.com/question/2167827

Other Questions
527856 \ 8 How do I solve this with long division to find my quotient? Wolves that live in snowy climates often prey on rabbits. Some rabbits can move quickly across deep snow because they have large feet that dont sink into the snow. Rabbits without this adaptation move more slowly across the snow. Which statement best justifies how the rabbit population changes over time?A. Sea coral would make immediate adaptations through genetic mutations to adjust to the changes in the environment.B. The ocean water would change its current so that the acidic water is relocated to another area and allow sea coral to survive.C. The ocean water would change its composition to reduce the amount of carbon dioxide contained and allow sea coral to survive.D. Sea coral would become extinct because of its inability to make adaptations fast enough to adjust to the changes in the environment ABC Services reported the following transactions for September, 2013. A) The owner opened the business with a capital contribution of $23,500 cash. It was credited to Capital. B) The business purchased office equipment for $11,500. The business paid $2,500 cash down and put the balance on a note payable. C) The business paid insurance expense of $1,350 cash. D) The business paid a utility bill for $980 cash. E. The business paid $2,000 cash for September rent. F. The business had sales of $12,000 in September. Of these sales, 60% were cash sales, and the balance was credit sales. G. The business paid $9,700 cash for office furniture. What are the total liabilities at the end of September, 2013 Name three disguises Monsignor uses. The. Ordered pair? Is this a function yes or no? The first floor of a tiny house has the length of 11 feet. The width of the kitchen feet is 7 feet and the width of the bottom bathroom feet is 4 feet the expression 11(7+4) represents the total area in the square feet. why an expression to represent a total area as a some of the areas of each room Martha is a regional supervisor who earns a base salary of $34,400 per year plus a 1% commission on all service contracts that she sells to existing customers. The company pays salaries on a semi monthly basis and contract commissions on a quarterly basis. As of September 30, Martha had made $38,200 in contract sales for the third quarter. What will be her gross pay on her next pay date please solve for ba=b/c can someone please help me? work out 1/5 of 80 = if a box of oranges weigh 4 kilograms one orange weighs 80g how many oranges? What is the first president Why might it be important for population ecologists to know the factors that allowed the population to grow at exponential rates? Jamal wants to install a rectangular 2025 cm window in his garden shed. That area of window comes in several length/width combinations, and he wants to minimize the perimeter to prevent drafts. What is the least perimeter possible for the window? (b) 28.2 yd to centimeters What is the main cause of pollution Need help ASAP Thanks+ BRAINLIST only for correct answers using pythagoras theorem if a = 3, b = 4 what is c?34563.6 What was the main reason education reformers wanted to establish publicschools?O A. To make use of old, empty buildings in the cityB. To give teaching jobs to women who needed workC. So children without homes would have a place to goD. So immigrants could learn about democracy someone please help me