Aqueous ammonia is added to a mixture of silver chloride and water. Given that Kf for the reaction between Ag+ and NH3 is large, which of the following are true?
A) The free ions are favored over the complex ion.
B) The complex ion is favored over solid silver chloride.
C) The free Ag+ ion is unstable.
D) More silver chloride will precipitate.
Answer:
B) The complex ion is favored over solid silver chloride
C) The free Ag+ ion is unstable.
Explanation:
Hello,
In this case, since the dissociation of solid silver chloride occurs at equilibrium with a neglectable solubility product (very small Ksp), which means that the solid tends to remain undissolved:
[tex]AgCl(s)\rightleftharpoons Ag^+(aq)+Cl^-(aq)[/tex]
By the addition of ammonia, the following reaction is favored:
[tex]Ag^+(aq)+2NH_3(aq)\rightleftharpoons [Ag(NH_3)_2]^+(aq)[/tex]
Which has a large equilibrium constant, which means that the formation of the complex is assured. In such a way, by addition of more ammonia, more complex will be formed, therefore B) The complex ion is favored over solid silver chloride is true. Moreover, C) The free Ag+ ion is unstable, since they tend to form the complex once they are formed by the solid silver chloride so it readily reacts.
Best regards.
A sailor on a trans-Pacific solo voyage notices one day that if he puts 735.mL of fresh water into a plastic cup weighing 25.0g, the cup floats in the seawater around his boat with the fresh water inside the cup at exactly the same level as the seawater outside the cup (see sketch at right).
Calculate the amount of salt dissolved in each liter of seawater. Be sure your answer has a unit symbol, if needed, and round it to 2 significant digits.
You'll need to know that the density of fresh water at the temperature of the sea around the sailor is 0.999/gcm3. You'll also want to remember Archimedes' Principle, that objects float when they displace a mass of water equal to their own mass.
Answer:
Amount of salt in 1 L seawater = 34 g
Explanation:
According to Archimedes' principle, mass of freshwater and cup = mass of equal volume of seawater
mass of freshwater = density * volume
1 cm³ = 1 mL
mass of freshwater = 0.999 g/cm³ * 735 cm³ = 734.265 g
mass of freshwater + cup = 734.265 + 25 = 759.265 g
Therefore, mass of equal volume of seawater = 759.265 g
Volume of seawater displaced = 735 mL = 0.735 L (assuming the cup volume is negligible)
1 liter = 1000 cm³ = 1000 mL;
Density of seawater = mass / volume
Density of seawater = 759.265 g / 0.735 L = 1033.01 g/L
Density of freshwater in g/L = 0.999 g/ (1/1000) L = 999 g/L
mass of 1 Liter seawater = 1033.01 g
mass of 1 Liter freshwater = 999 g
mass of salt dissolved in 1 L of seawater = 1033.01 g - 999 g = 34.01 g
Therefore, amount of salt in 1 L seawater = 34 g
Which solution, if either, would create the higher osmotic pressure (compared to pure water): one prepared from 1.0 g of NaCl in 10 mL of water or 1.0 g of CsBr in 10 mL of water
Answer: NaCl would give the higher pressure
Explanation:
Osmotic pressure depends only on the number of ions.
NaCl dissociates as Na+ and Cl- ; CsBr dissociates as Cs+ and Br-
But the concentration of the solutions are different.
Concentration (morality ) of NaCl = Moles /Litre = (1 g /58.44g/mol)/0.01L
Total number of ions in NaCl solution = 2 x (1 g /58.44g/mol)/0.01L ( 1 mol NaCl gives 2 moles ions, 1 mol Na+ and 1 mol Cl-)
= 1.71×2RT
Similarly total number of ions in CsBr solution = 2 x (1 g /212.80 g/mol)/0.01L
= 0.47×2RT
Therefore osmotic pressure is higher in NaCl solution.
Consider the compound hydrazine N2H4 (MW = 32.0 amu). It can react with I2 (MW = 253.8 amu) by the following reaction 2 I2 + N2H4 ------------- 4 HI + N2 (a) How many grams of I2 are needed to react with 36.7 g of N2H4? (b) How many grams of HI (MW = 127.9 amu) are produced from the reaction of 115.7 g of N2H4 with excess iodine?
Answer:Cobb
Explanation:What y'all
What is the mole fraction of urea, CO(NH2)2, in a solution prepared by dissolving 4.0 g of urea in 32.0 g of methanol, CH3OH
Answer:
0.0630
Explanation:
The molar mass of urea = 60 g/mol
we all know that:
[tex]\mathtt{number \ of \ moles = \dfrac{mass }{molar \ mass}}[/tex]
Then; the number of moles of urea
= [tex]\mathtt{\dfrac{4.0 \ g}{60 \ g/mol}}[/tex]
= 0.0667 mol
Similarly; the number of moles of methanol
= [tex]\mathtt{\dfrac{32 \ g}{32.04 \ g/mol}}[/tex]
= 0.9988 mol
The total number of moles = (0.0667 + 0.9988) mol
= 1.0655 mol
Finally,the mole fraction of urea [tex]\mathtt{(X_{urea})}[/tex] = [tex]\mathtt{\dfrac{ n_{urea}}{(n_{urea}+n_{methanol})}}[/tex]
[tex]\mathtt{(X_{urea})}[/tex] = [tex]\mathtt{\dfrac{0.0667 \ mole}{1.0655 \ mole}}[/tex]
= 0.0630
Acetonitrile (CH3CN) is an important industrial chemical. Among other things, it is used to make plastic moldings, which have multiple uses, from car parts to Lego bricks. Which one of the following statements about acetonitrile is not correct?a. Acetonitrile has 16 valence electrons in its Lewis structure. b. Acetonitrile has one triple bond. c. Acetonitrile has one pair of nonbonding electrons. d. All atoms satisfy the octet rule in acetonitrile. e. One carbon atom and the nitrogen atom have nonzero formal charges.
Answer:
One carbon atom and the nitrogen atom have nonzero formal charges.
Explanation:
The compound Acetonitrile has sixteen valence electrons as is easily San from its structure. It contains a carbon nitrogen triple bond with a lone pair of electrons on nitrogen. All atoms satisfy the octet rule and there is no hyper valent atom in the molecule.
The formal charge an carbon and nitrogen is calculated as follows;
No. of valence electron on atom - [non bonded electrons + no. of bonds]
Therefore, for carbon and nitrogen, we have;
formal charge on carbon = 4 - (0 + 4) = 0
formal charge on nitrogen = 5 - (2 + 3) = 0
Hence carbon and nitrogen both possess zero formal charges.
As a reaction proceeds, the ratio between the rate of consumption of reactant and the rate of formation of product:
Answer:
Depends on the reaction.
Explanation:
Hello,
In this case, the answer is depends on the reaction since the ratios between the rates of both consumption and formation depend upon the stoichiometric coefficients in the chemical reaction. For instance, for the reaction:
A -> 2B
The relationship is:
[tex]\frac{1}{-1}r_A =\frac{1}{2} r_B[/tex]
Therefore, we can see that the rate of consumption of A half the rate of formation of B, but is we consider the following chemical reaction:
2A -> B
The relationship is:
[tex]\frac{1}{-2}r_A =\frac{1}{1} r_B[/tex]
Therefore we can see that the rate of consumption of A doubles the rate of consumption of B.
Best regards.
When 2 moles of NH3(g) react with N2O(g) to form N2(g) and H2O(g) according to the following equation, 880 kJ of energy are evolved. 2NH3(g) 3N2O(g)4N2(g) 3H2O(g) Is this reaction endothermic or exothermic
Answer:
Explanation:
This is a bit of a trick question.
Usually an exothermic reaction is written as
A + B - heat = C + D
The meaning of this equation is that when the bonds of the reactants break, heat has to be given away to the environment. On the left, exothermic means that heat has to be given.
The wording on this question means that heat is a product
A + B = C + D + heat.
In other words heat is given up to the environment. So this reaction is exothermic.
The second-order decomposition of NO2 has a rate constant of 0.255 M-1s-1. How much NO2 decomposes in 8.00 s if the initial concentration of NO2 (1.00 L volume) is 1.33 M
Answer:
0.9718M
Explanation:
Rate constant, k = 0.255 M-1s-1
time, t = 8.00 s
Initial concentration, [A]o = 1.33 M
Final concentration, [A] = ?
These quantities are represented by the equation;
1 / [A] = 1 / [A]o + kt
1 / [A] = 1 /1.33 + (0.255 * 8)
1 / [A] = 0.7519 + 2.04
[A] = 1 / 2.7919 = 0.3582 M
How much of NO2 decomposed is obtained from the change in concentration;
Change in concentration = Initial - Final
Change = 1.33 - 0.3582 = 0.9718M
Compound A is an alkene that was treated with ozone to yield only (CH3CH2CH2)2C=O. Draw the major product that is expected when compound A is treated with a peroxy acid (RCO3H) followed by aqueous acid (H3O+).
Answer:
2,2,3,3-tetrapropyloxirane
Explanation:
In this case, we have to know first the alkene that will react with the peroxyacid. So:
What do we know about the unknown alkene?
We know the product of the ozonolysis reaction (see figure 1). This reaction is an oxidative rupture reaction. Therefore, the double bond will be broken and we have to replace the carbons on each side of the double bond by oxygens. If [tex](CH_3CH_2CH_2)_2C=O[/tex] is the only product we will have a symmetric molecule in this case 4,5-dipropyloct-4-ene.
What is the product with the peroxyacid?
This compound in the presence of alkenes will produce peroxides. Therefore we have to put a peroxide group in the carbons where the double bond was placed. So, we will have as product 2,2,3,3-tetrapropyloxirane. (see figure 2)
The compound sodium hydroxide is a strong electrolyte. Write the transformation that occurs when solid sodium hydroxide dissolves in water. Use the pull-down boxes to specify states such as (aq) or (s).
Answer:
Solid sodium hydroxide dissolves in water to form an aqueous solution of ions.
NaOH(s) ⇌ Na+(aq) + OH–(aq) ΔH1 = ?
Solid sodium hydroxide reacts with aqueous hydrochloric acid to form water and an aqueous solution of sodium chloride.
NaOH(s) + H+(aq) + Cl–(aq) ⇌ H2O(l) + Na+(aq) + Cl–(aq) ΔH2 = ?
Solutions of aqueous sodium hydroxide and hydrochloric acid react to form water and aqueous sodium chloride.
Na+(aq) + OH–(aq) + H+(aq) + Cl–(aq) ⇌ H2O(l) + Na+(aq) + Cl–(aq) ΔH3 = ?
Human blood typically contains 1.04 kg/L of platelets. A 1.89 pints of blood would contain what mass (in grams) of platelets
A 1.89 pints of blood would contain 873 grams of platelets.
To calculate the amount of platelets present in 1.89 pints, it is first necessary to transform this unit of volume into liters:
1 pint = 473.2 mL[tex]1.89 \times 473.2 = 894.3 mL[/tex]
1000 L = 1mL
[tex]\frac{894.3}{1000}= 0.84L[/tex]
Now, just calculate the amount of platelets present in 0.84L:
[tex]\frac{1.04\times10^{3}g}{xg}=\frac{1L}{0.84L}[/tex]
x = 873 grams
So, a 1.89 pints of blood would contain 873 grams of platelets.
Learn more about transformation of units in: brainly.com/question/10667910
2.Which of the alcohols listed below would you expect to react most rapidly with PBr3?A)CH3CH2CH2CH2CH2CH2OHB)(CH3CH2)2CH(OH)CH2CH3C)(CH3CH2)2CHOHCH3D)(CH3CH2)3COHE)(CH3CH2)2C(CH3)OH
Answer:
A) CH3CH2CH2CH2CH2CH2OH
Explanation:
For this question, we have the following answer options:
A) CH3CH2CH2CH2CH2CH2OH
B) (CH3CH2)2CH(OH)CH2CH3
C) (CH3CH2)2CHOHCH3
D) (CH3CH2)3COH
E) (CH3CH2)2C(CH3)OH
We have to remember the reaction mechanism of the substitution reaction with [tex]PBr_3[/tex]. The idea is to generate a better leaving group in order to add a "Br" atom.
The [tex]PBr_3[/tex] attacks the "OH" generation new a bond to P (O-P bonds are very strong), due to this new bond we will have a better leaving group that can remove the oxygen an allow the attack of the Br atom to generating a new C-Br bond. This is made by an Sn2 reaction. Therefore we will have a faster reaction with primary substrates. In this case, the only primary substrate is molecule A. So, "CH3CH2CH2CH2CH2CH2OH" will react faster.
See figure 1
I hope it helps!
1. Explain what the police siren sounds like to Jane:
2. Explain what the police siren sounds like to John:
3. Explain why the police siren sounds different between Jane and John:
Answer:
1. the siren has a lower pitch to Jane
2. the siren has a higher pitch to John
3. sound different due to moving away from Jane making the sound wave lengths longer and moving toward John making the wave lengths shorter
Explanation:
The Doppler effect expresses that sound is comparative with the spectator or observer. This is demonstrated valid by the model given with Jane and John. To one individual it could sound low and to someone else it could sound high, in light of where they are tuning in from. To John, the police alarm playing is a higher pitch. Be that as it may, to Jane this equivalent alarm is a totally extraordinary pitch and is heard lower than in comparison to the john.
This is a prime case of the Doppler Effect. They sound distinctive on the grounds that the sound is moving far from Jane making the sound frequencies longer and it is advancing toward John making the frequencies shorter. This impacts how the sound is heard by the human ear.
A sample is found to contain 1.29×10-11 g of salt. Express this quantity in picograms
Answer:12.9e-12g or in short 12.9pg
Explanation:as p=1e-12
A. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
Br(g)
Cl2(g)
I2(g)
F2(g)
B. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
H2S(g)
H2O(g)
H2O2(g)
C. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
C(s, amorphous)
C(s, diamond)
C(s, graphite)
Answer:
A. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy
I2(g)>Br2(g)>Cl2(g)>F2(g)
B. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
H2O2(g)>H2S(g) >H2O(g)
C. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
C(s, amorphous) >C(s, graphite)>C(s, diamond)
Explanation:
Hello,
In this case, we can apply the following principles to explain the order:
- The greater the molar mass, the larger the standard molar entropy.
- The greater the molar mass and the structural complexity, the larger the standard molar entropy.
- The greater the structural complexity, the larger the standard molar entropy.
A. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy
I2(g)>Br2(g)>Cl2(g)>F2(g)
This is due to the fact that the greater the molar mass, the larger the standard molar entropy.
B. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
H2O2(g)>H2S(g) >H2O(g)
This is due to the fact that the greater the molar mass and the structural complexity, the larger the standard molar entropy as the hydrogen peroxide has four bonds and weights 34 g/mol as well as hydrogen sulfide that has two bonds only.
C. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
C(s, amorphous) >C(s, graphite)>C(s, diamond)
Since the molecular complexity is greater in the amorphous carbon (messy arrangement), mid in the graphite and lower in the diamond (well organized).
Regards.
Complete the following equation of nuclear transmutation.
23892U + 126C → 24498Cf + 6 ______
Complete the following equation of nuclear transmutation.
U + C → Cf + 6 ______
A) 1n
B) 0 e
C) 0 e
D) 1H
E) 0g 0 -1 +1 1 0
Answer:
Option A. 1 0n
Explanation:
Details on how to balanced the equation for the reaction given in the question above can be found in the attached photo.
The missing part of the transmutation equation as it has been shown is 1/o n. Option A
What is nuclear transmutation?Nuclear transmutation is the process of shifting the number of protons in an atom's nucleus to change one element into another. Nuclear processes that change one atomic nucleus into another with a different atomic number are involved.
The production of nuclear energy, radioactive decay, and the creation of new isotopes for use in science and industry all depend on nuclear transmutation, a fundamental idea in nuclear physics.
We have the equation as;
238/92 U + 12/6 C ----> 244/98 Cf + 6 1/0 n
Learn more about nuclear transmutation:https://brainly.com/question/30078683
#SPJ6
The argon atoms are excited into an excited state before emitting the 488.0 nm laser. It is known that the energy of the first ionization energy of argon is 1520 kJ mol-1. What is the energy level of the excited state (in unit eV) lies below the vacuum energy level (0 eV)
Answer:
Explanation:
Given that:
The argon atoms are excited into an excited state before emitting the 488.0 nm laser.
the energy of the first ionization energy of argon is 1520 kJ mol-1.
SInce 1 eV = 96.49 kJ/mol
Therefore, the energy of the first ionization energy of argon in eV is = ( 1520/ 96.49) eV
= 15.75 eV
To find where the energy level of the excited state lies below the vacuum energy level, let's first determine, the energy liberated by using planck expression.
[tex]E = \dfrac{hc}{\lambda}[/tex]
[tex]E = \dfrac{6.6 \times 10^{-34} \times 3 \times 10^8}{488 \times 10^{-9}}[/tex]
[tex]E = \dfrac{1.98 \times 10^{-25}}{488 \times 10^{-9}}[/tex]
[tex]E = \dfrac{1.98 \times 10^{-25}}{488 \times 10^{-9}}[/tex]
[tex]E =4.057 \times 10^{-19} \ J[/tex]
Converting Joules (J) to eV ; we get,
[tex]E =\dfrac{4.057 \times 10^{-19}}{1.6 \times 10^{-19}}[/tex]
E = 2.53 eV
The energy levels of the first exited state = -13.223 eV
All of the following are examples of allotropes of carbon EXCEPT Choose the one alternative that best completes the statement or answers the question. Choose the one alternative that best completes the statement or answers the question. diamond amorphous carbon quartz graphene all of the above
Answer:
quartz
Explanation:
The correct option would be quartz.
Allotropy is a phenomenon that describes the natural existence of the same element in different forms with different physical characteristics. Allotropes are therefore different forms of the same element.
Carbon as an element has several allotropes which include diamond, graphite, graphene, amorphous carbon, and fullerenes. Quartz is a crystalline solid that is composed of silicon dioxide and not carbon.
Hence, all the options are carbon allotropes except quartz.
Write the equation for the reaction described: A solid metal oxide, , and hydrogen are the products of the reaction between metal and steam. (Use the lowest possible coefficients. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed, leave it blank.)
Answer:
Pb + 2H2O --> PbO2 + 2H2
Explanation:
Products:
Solid metal; PbO2
Hydrogen; H
Reactants:
Metal; Pb
Steam; H2O
Reactants --> Products
Pb + H2O --> PbO2 + H2
Upon balancing we have;
Pb + 2H2O --> PbO2 + 2H2
A monoprotic weak acid, HA , dissociates in water according to the reaction HA(aq)+H2O(l)↽−−⇀H3O+(aq)+A−(aq) The equilibrium concentrations of the reactants and products are [HA]=0.260 M , [H3O+]=4.00×10−4 M , and [A−]=4.00×10−4 M . Calculate the Ka value for the acid HA.
Answer:
Ka = 6.15x10⁻⁷
Explanation:
Ka is defined as dissociation constant in the equilibrium of a weak acid with water. The general reaction is:
HA(aq) + H₂O(l) ⇆ H₃O⁺(aq) + A⁻(aq)
And Ka is defined as the ratio between molar concentrations in equilibrium of products over reactants as follows:
Ka = [H₃O⁺] [A⁻] / [HA]
You don't take water in the equilibrium beacuse is a pure liquid
Replacing with the concentrations of the problem:
Ka = [H₃O⁺] [A⁻] / [HA]
Ka = [4.00x10⁻⁴] [4.00x10⁻⁴] / [0.260]
Ka = 6.15x10⁻⁷
A 25.00 mL sample of unknown concentration of HNO3 solution requires 22.62 mL of 0.02000 M NaOH to reach the equivalence point. What is the concentration of the unknown HNO3 solution
Answer:The concentration of the unknown HNO3 solution = 0.01809 M
Explanation:
For the acid-base reaction, HNO3 + NaOH-----> NaN03 + H20
we have that
C1 V1 = C2 V2
Where ,
C1 = concentration of HNO3=?
V1 = volume of HNO3 = 25.00 mL,
V2 = volume of NaOH = 22.62 mL,
C2 = concentration of NaOH = 0.02000 M
Therefore ,
25.00 mL x C1 = 22.62 mL x 0.02000 M
= (22.62 mL / 25.00 mL) x 0.02000 M = 0.01809 M
The concentration of the unknown HNO3 solution = 0.01809 M
An aqueous solution of potassium bromide, KBr, contains 4.34 grams of potassium bromide and 17.4 grams of water. The percentage by mass of potassium bromide in the solution is 20 %.
Answer:
True
Explanation:
The percentage by mass of a substance in a solution can be calculated by dividing the mass of the substance dissolved in the solution by the total mass of the solution. This can be expressed mathematically as:
Percentage by mass = mass of substance in solution/mass of solution x 100
In this case;
mass of KBr = 4.34 grams
mass of water = 17.4 grams
mass of solution = mass of KBr + mass of water = 4.34 + 17.4 = 21.74
Percentage by mass of KBr = 4.34/21.74 x 100
= 19.96 %
19.96 is approximately 20%.
Hence, the statement is true.
Using only sodium carbonate, Na2CO3, sodium bicarbonate, NaHCO3, and distilled water determine how you could prepare 50.0 mL of a 0.20 M solution that is buffered to a pH of 10.3. The total molarity of the ions should be 0.20 M. The Ka of the hydrogen carbonate ion, HCO3 - , is 4.7 x 10-11 .
Answer:
Weight 0.4326 g of sodium bicarbonate and 0.5141 g of sodium carbonate, dissolve it in distilled water and then bring the solution to a final volume of 50.0 mL using distilled water.
Explanation:
The pH of a buffered solution can be calculated using the Henderson-Hasselbalch equation:
[tex] pH = pKa + log(\frac{[Na_{2}CO_{3}]}{[NaHCO_{3}]}) [/tex]
We have that pH = 10.3 and the Ka is 4.7x10⁻¹¹, so:
[tex] 10.3 = -log(4.7 \cdot 10^{-11}) + log(\frac{[Na_{2}CO_{3}]}{[NaHCO_{3}]}) [/tex]
[tex] \frac{[Na_{2}CO_{3}]}{[NaHCO_{3}]} = 0.94 [/tex] (1)
Also, we know that:
[tex] [Na_{2}CO_{3}] + [NaHCO_{3}] = 0.20 M [/tex] (2)
From equation (2) we have:
[tex] [Na_{2}CO_{3}] = 0.20 - [NaHCO_{3}] [/tex] (3)
By entering (3) into (1):
[tex] \frac{0.20 - [NaHCO_{3}]}{[NaHCO_{3}]} = 0.94 [/tex]
[tex] 0.94*[NaHCO_{3}] + [NaHCO_{3}] = 0.20 [/tex]
[tex] [NaHCO_{3}] = 0.103 M [/tex]
Hence, the [Na_{2}CO_{3}] is:
[tex] [Na_{2}CO_{3}] = 0.20 - [NaHCO_{3}] = 0.20 M - 0.103 M = 0.097 M [/tex]
Now, having the concentrations and knowing the volume of the buffer solution we can find the mass of the sodium carbonate and the sodium bicarbonate, as follows:
[tex]m_{Na_{2}CO_{3}} = C*V*M = 0.097 mol/L*0.050 L*105.99 g/mol = 0.5141 g[/tex]
[tex]m_{NaHCO_{3}} = C*V*M = 0.103 mol/L*0.050 L*84.007 g/mol = 0.4326 g[/tex]
Therefore, to prepare 50.0 mL of a 0.20 M solution that is buffered to a pH of 10.3 we need to weight 0.4326 g of sodium bicarbonate and 0.5141 g of sodium carbonate, dissolve it in distilled water and then bring the solution to a final volume of 50.0 mL using distilled water.
I hope it helps you!
Of the following substances, an aqueous solution of ________ will form basic solutions. NH4Br Pb(NO3)2 K2CO3 NaF
Answer:
K2CO3 and NaF
Explanation:
In order to ascertain which salt would form a basic solution we have to identify the classification of each of the salts.
- NH4Br: is the salt of a weak base (NH3) and a strong acid (HBr). This means that it would form an acidic solution.
- Pb(NO3): This is a normal salt, hence would not form a basic solution.
- K2CO3: This is salt that forms a strongly alkaline/basic solution.
- NaF: it is the salt of a strong base, NaOH, and a weak acid, HF. This means this would form a basic solution.
The compounds capable to form basic solutions are[tex]\rm \bold {K_2CO_3 }[/tex] and NaF. Thus, options C and D are correct.
The basic solution has been given with the presence of a high number of hydroxide ions, while the acidic solution has been the presence of hydrogen ions.
The solution has been considered as basic when the compound has been constituted of a strong base. The constituents of the following compounds have been:
Ammonium bromide: The basic part is ammonia, and is a weak base. Thus, forms an acidic solutionLead nitrate: The compound is salt and results in a neutral solution.Potassium carbonate: The base has been carbonate, and a strong base. Thus forms the basic solution.Sodium fluoride: The fluoride has been the basic part and has been a constituent of a strong base. It has been capable of forming a basic solution.The compounds capable to form basic solutions are[tex]\rm \bold {K_2CO_3 }[/tex] and NaF. Thus, options C and D are correct.
For more information about the basic solution, refer to the link:
https://brainly.com/question/3595168
Cesium-137 is part of the nuclear waste produced by uranium-235 fission. The half-life of cesium-137 is 30.2 years. How much time is required for the activity of a sample of cesium-137 to fall to 20.0 percent of its original value?
Answer:
There are required 70.1 years for the activity of a sample of cesium-137 to fall to 20.0 percent of its original value
Explanation:
The radioactive decay follows always first-order kinetics where its general law is:
Ln[A] = -Kt + ln[A]₀
Where [A] is actual concentration of the atom, k is rate constant, t is time and [A]₀ is initial concentration.
We can find rate constant from half-life as follows:
Rate constant:
t(1/2) = ln 2 / K
As half-life of Cesium-137 is 30.2 years:
30.2 years = ln 2 / K
K = 0.02295 years⁻¹
Replacing this result and with the given data of the problem:
Ln[A] = -Kt + ln[A]₀
Ln[A] = -0.02295 years⁻¹* t + ln[A]₀
Ln ([A] / [A₀]) = -0.02295 years⁻¹* t
As you want time when [A] is 20% of [A]₀, [A] / [A]₀ = 0.2:
Ln (0.2) = -0.02295 years⁻¹* t
70.1 years = t
There are required 70.1 years for the activity of a sample of cesium-137 to fall to 20.0 percent of its original valueWhich of the following chemical equations corresponds to the standard molar enthalpy of formation of Na_2CO_3(s)?
a. 2 NA(s) + C(s) + 3 O(g) ------------> Na_2CO_3(s)
b. Na_2O(s) + CO_2(g) --------------->Na_2CO_3 (s)
c. Na_2(s) + C(s) + 3 O(g) -------------> Na_2CO_3 (s)
d. Na_2O(s) + CO(g) ---------------> Na_2CO_3(s)
e. 2 Na(s)+ C(s) + 3/2 O_2(g) ------------> Na_2CO_3(s)
Answer:
2 Na(s) + C(s) + 3/2 O₂(g) → Na₂CO₃(s)
Explanation:
The molar enthalpy of formation of a chemical is defined as the change in enthalpy during the formation of 1 mole of the substance from its constituent elements (Constituent elements are pure elements you have in the periodic table)
For Na₂CO₃ constituent elements are Na(s), C(s) and O₂(g) and the chemical equation that represents the molar enthalpy is:
2 Na(s) + C(s) + 3/2 O₂(g) → Na₂CO₃(s)A sample of radioactive silver contains two isotopes, 108Ag (denoted A) and 110Ag (denoted B). The second of these (B) has a half life of 24 seconds, whereas the first (A) has a half life of 2.3 minutes. If a sample contains equal numbers of each of these isotopes at the beginning of an experiment that runs for an hour, which of the following statements is correct?
A. At the end of the hour, isotope B has a greater decay constant λ than isotope A
B. At the end of the hour, isotope A has the same decay constant λ as isotope B
C. At the end of the hour, isotope A has a greater decay constant λ than isotope B
Answer:
A : At the end of the hour, isotope B has a greater decay constant λ than isotope A
Explanation:
Firstly, we need to understand that radioactive decay follows a first order rate law.
What this means is that we can calculate the radioactive decay constant using the following formula from the half-life
Mathematically;
[tex]t_{1/2}[/tex] = 0.693/λ
where λ represents the radioactive decay constant.
Rearranging the equation, we can have
λ = 0.693/[tex]t_{1/2}[/tex]
Now, to have a fair level playing ground, it is best that the half-life of both isotopes are in the same unit of time(seconds)
For A, the half-life = 2.3 minutes which is same as 2.3 × 60 = 138 seconds
For B, the half-life is 24 seconds
Thus, at the end of the hour, the decay constant for isotope A will be;
λ = 0.693/138 = 0.0050 [tex]s^{-1}[/tex]
For isotope B, the decay constant will be;
λ = 0.693/24 = 0.028875 [tex]s^{-1}[/tex]
We can see that the decay constant of isotope B is higher than that of A at the end of the experiment
How are animals used in vaccine development?
Answer:
Animals whose certain organs closely match those of humans or have similar genetic makeup are used in vaccine tests because the results can closely resemble those same results on humans.
Explanation:
Answer:
they use them to test the effectiveness of the vaccine.
Explanation:
Using the data: C2H4(g), = +51.9 kJ mol-1, S° = 219.8 J mol-1 K-1 CO2(g), = ‑394 kJ mol-1, S° = 213.6 J mol-1 K-1 H2O(l), = ‑286.0 kJ mol-1, S° = 69.96 J mol-1 K-1 O2(g), = 0.00 kJ mol-1, S° = 205 J mol-1 K-1 calculate the maximum amount of work that can be obtained, at 25.0 °C, from the process: C2H4(g) + 3 O2(g) → 2 CO2(g) + 2 H2O(l)
Answer:
The correct answer is 1332 KJ.
Explanation:
Based on the given information,
ΔH°f of C2H4 is 51.9 KJ/mol, ΔH°O2 is 0.0 KJ/mol, ΔH°f of CO2 is -394 KJ/mol, and ΔH°f of H2O is -286 KJ/mol.
Now the balanced equation is:
C2H4 (g) + 3O2 (g) ⇔ 2CO2 (g) + 2H2O (l)
ΔH°rxn = 2 × ΔH°f CO2 + 2 × ΔH°fH2O - 1 × ΔH°fC2H4 - 3×ΔH°fO2
ΔH°rxn = 2 (-394) + 2(-286) - 1(51.9) - 3(0)
ΔH°rxn = -1411.9 KJ
Now, the given ΔS°f of C2H4 is 219.8 J/mol.K, ΔS°f of O2 is 205 J/mol.K, ΔS°f of CO2 is 213.6 J/mol.K, and ΔS°f of H2O is 69.96 J/mol.K.
Now based on the balanced chemical reaction,
ΔS°rxn = 2 × ΔS°fCO2 + 2 ΔS°fH2O - 1 × ΔS°f C2H4 - 3 ΔS°fO2
ΔS°rxn = 2 (213.6) + 2(69.96) - 1(219.8) -3(205)
ΔS°rxn = -267.68 J/K or -0.26768 KJ/K
T = 25 °C or 298 K
Now putting the values of ΔH, ΔS and T in the equation ΔG = ΔH-TΔS, we get
ΔG = -1411.9 - 298.0 × (-0.2677)
ΔG = -1332 KJ.
Thus, the maximum work, which can obtained is 1332 kJ.