This question is incomplete, the complete question is;
A force of 193 pounds makes an angle of 79°14' with a second force. The resultant of the two forces makes an angle of 27°0' to the first force. Find the magnitudes of the second force and of the resultant.
Answer:
magnitudes of the second force (vector) is 110.84 lb
the resultant force force has a magnitude of 239.85 lb
Explanation:
Given that;
Magnitude of resultant vector R = ?
Direction of resultant vector α = 27°0'
Magnitude of vector p = 193
Magnitude of vector Q = ?
Angle between two vectors ∅ = 79°14'
Using the formula
tan∝ = [ Qsin∅ / P + Qcos∅]
tan27°0' = [ Qsin79°14' / 193 + Qcos79°14' )
we cross multiply
(193tan27°0') + (Qcos79°14'tan27°0' ) = Qsin79°14'
Q = 193tan27°0' / (sin79°14' - cos79°14'tan27°0')
Q = 110.84 lb
Therefore magnitudes of the second force (vector) is 110.84 lb
Now
R = √( p² + Q² + 2PQcos∅ )
R = √( 193² + 110.84² + ( 2 × 193 × 110.84 × cos79°14'))
R = 239.85 lb
Therefore the resultant force force has a magnitude of 239.85 lb
a car moves for 10 minutes and travels 5,280 meters .What is the average speed of the car?
Answer:use the formular distance over time i.e distance/time. Make sure to convert the distance from metres to kilometers and time from minutes to hours .
Explanation:
The average speed of the car is 31,680 meters per hour.
To calculate the average speed of the car, you need to divide the total distance traveled by the time it took to travel that distance.
Given:
Time taken (t) = 10 minutes = 10 minutes × (1 hour / 60 minutes) = 10/60 hours = 1/6 hours
Distance traveled (d) = 5,280 meters
Average Speed (v) = Distance (d) / Time (t)
Average Speed (v) = 5280 meters / (1/6) hours
To simplify, when you divide by a fraction, it's equivalent to multiplying by its reciprocal:
Average Speed (v) = 5280 meters × (6/1) hours
Average Speed (v) = 31,680 meters per hour
Hence, the average speed of the car is 31,680 meters per hour.
To know more about average speed here
https://brainly.com/question/17661499
#SPJ2
The difference between a DC and an AC generator is that
a. the DC generator has one unbroken slip ring.
b. the AC generator has one unbroken slip ring
c. the DC generator has one slip ring splitin two halves.
d. the AC generator has one slip ring split in two halves.
e The DC generator has twounbroken sip rings
Answer:
The AC generator has one unbroken slip ring
Explanation:
In physics, the application of electromagnetic induction can be seen in generators and dynamos. Electromagnetic induction is the process of generating electricity using magnets. It found applications in generators and the types of generator they found application is in AC and DC generator.
An AC generator is also called a Dynamo. A DC generator contains what is called a SPLIT RING fixed to the end of the coil which can be separated and coupled back according to the name "split". An AC generator also called a Dynamo makes use of a SLIP ring which cannot be divided into two. It comes as an entity. The presence of this rings is what differentiates a DC generator from an AC generator.
We can replace split rings with slip rings when converting a DC generator to an AC generator and vice versa.
It can therefore be concluded that the difference between a DC and an AC generator is that the AC generator has one unbroken slip ring.
A toroidal solenoid with 400 turns of wire and a mean radius of 6.0 cm carries a current of 0.25 A. The relative permeability of the core is 80.
(a) What is the magnetic field in the core?
(b) What part of the magnetic field is due to atomic currents?
Answer:
A) 0.0267 T
B) 0.0263 T
Explanation:
Given that
The number of turns, N = 400
Radius of the wire, r = 6 cm = 0.06 m
Current in the wire, I = 0.25 A
Relative permeability, K(m) = 80
See the attached picture for the calculation
A city of Punjab has a 15 percent chance of wet weather on any given day. What is the probability that it will take a week for it three wet weather on 3 separate days? Also find its Standard Deviation
Answer:
so the probability will be = 0.062
Standard deviation = 0.8925
Explanation:
The probability of rain = 15% = 15/100= 0.15
and the probability of no rain=q = 1-p= 1-0.15= 0.85
The number of trials = 7
so the probability will be
7C3 * ( 0.15)^3 (0.85)^4= 35* 0.003375 * 0.52200 =0.06166= 0.062
Taking this as binomial as the p and q are constant and also the trials are independent .
For a binomial distribution
Standard deviation = npq= 0.15 *0.85 *7= 0.8925
3. Which of the following accurately describes circuits?
O A. In a parallel circuit, the same amount of current flows through each part of the circuit
O B. In a series circuit, the amount of current passing through each part of the circuit may vary
O C. In a series circuit, the current can flow through only one path from start to finish
O D. In a parallel circuit, there's only one path for the current to travel.
Answer:
Option (c)
Explanation:
In a Series circuit, as the components are connected end-to-end ,the current can flow through only one path from start to finish.
(C.) is the only correct statement in the list of choices.
In a series circuit, the current can flow through only one path from start to finish.
On a separate sheet of paper, tell why scientists in different countries can easily compare the amount of matter in similar objects in their countries
Answer: no u
Explanation: no u
An electrostatic paint sprayer contains a metal sphere at an electric potential of 25.0 kV with respect to an electrically grounded object. Positively charged paint droplets are repelled away from the paint sprayer's positively charged sphere and towards the grounded object. What charge must a 0.168-mg drop of paint have so that it will arrive at the object with a speed of 18.8 m/s
Answer:
The charge is [tex]Q = 2.177 *10^{-9} \ C[/tex]
Explanation:
From the question we are told that
The electric potential is [tex]V = 25.0 \ kV = 25.0 *10^{3}\ V[/tex]
The mass of the drop is [tex]m = 0.168 \ m g = 0.168 *10^{-3} \ g = 0.168 *10^{-6}\ kg[/tex]
The speed is [tex]v = 18.8 \ m/s[/tex]
Generally the charge on the paint drop due to the electric potential which will give it the speed stated in the question is mathematically represented as
[tex]Q = \frac{m v^2 }{ 2 * V }[/tex]
Substituting values
[tex]Q = \frac{0.168 *10^{-6} (18)^2 }{ 2 * 25*10^3 }[/tex]
[tex]Q = 2.177 *10^{-9} \ C[/tex]
Two wires carry current I1 = 73 A and I2 = 31 A in the opposite directions parallel to the x-axis at y1 = 3 cm and y2 = 13 cm. Where on the y-axis (in cm) is the magnetic field zero?
Answer:
The position on the y-axis where the magnetic field is zero is at y = 10 cm
Explanation:
The magnetic field B due to a long straight wire carrying a current, i at a distance R from the wire is given by
B = μ₀i/2πR
Now, let y be the point where the magnetic fields of both wires are equal.
So, the magnetic field due to wire 1 carrying current i₁ = 73 A is
B₁ = μ₀i₁/2π(y - 3) and
the magnetic field due to wire 2 carrying current i₂ = 31 A is
B₂ = μ₀i₂/2π(13 - y)
At the point where the magnetic field is zero, B₁ = B₂. So,
μ₀i₁/2π(y - 3) = μ₀i₂/2π(13 - y)
cancelling out μ₀ and 2π, we have
i₁/(x - y) = i₂/(13 - y)
cross-multiplying, we have
(13 - y)i₁ = (y - 3)i₂
Substituting the values of i₁ and i₂, we have
(13 - y)73 = (y - 3)31
949 - 73y = 31y - 93
Collecting like terms, we have
949 + 93 = 73y + 31y
1042 = 104y
dividing through by 104, we have
y = 1042/104
y = 10.02 cm
y ≅ 10 cm
So, the position on the y-axis where the magnetic field is zero is at y = 10 cm
If you wanted to make your own lenses for a telescope, what features of a lens do you think would affect the images that you can see
Answer:
Therefore the characteristics to be found are:
* the focal length must be large and the focal length of the eyepiece must be small
* The diameter of the objective lens should be as large as possible, to be able to collect small without need from light
* The system must be configured to the far sight tip,
Explanation:
The length of the telescope is
L = f_ocular + f_objetive
the magnification of the telescope is
m = - f_objective / f_ocular
These are the two equations that describe the behavior of the telescope. Therefore the characteristics to be found are:
* the focal length must be large and the focal length of the eyepiece must be small
* The diameter of the objective lens should be as large as possible, to be able to collect small without need from light
* The system must be configured to the far sight tip,
A merry-go-round spins freely when Diego moves quickly to the center along a radius of the merry-go-round. As he does this, it is true to say that
Answer:
A) the moment of inertia of the system decreases and the angular speed increases.
Explanation:
The complete question is
A merry-go-round spins freely when Diego moves quickly to the center along a radius of the merry-go-round. As he does this, It is true to say that
A) the moment of inertia of the system decreases and the angular speed increases.
B) the moment of inertia of the system decreases and the angular speed decreases.
C) the moment of inertia of the system decreases and the angular speed remains the same.
D) the moment of inertia of the system increases and the angular speed increases.
E) the moment of inertia of the system increases and the angular speed decreases
In angular momentum conservation, the initial angular momentum of the system is conserved, and is equal to the final angular momentum of the system. The equation of this angular momentum conservation is given as
[tex]I_{1} w_{1} = I_{2} w_{2}[/tex] ....1
where [tex]I_{1}[/tex] and [tex]I_{2}[/tex] are the initial and final moment of inertia respectively.
and [tex]w_{1}[/tex] and [tex]w_{2}[/tex] are the initial and final angular speed respectively.
Also, we know that the moment of inertia of a rotating body is given as
[tex]I = mr^{2}[/tex] ....2
where [tex]m[/tex] is the mass of the rotating body,
and [tex]r[/tex] is the radius of the rotating body from its center.
We can see from equation 2 that decreasing the radius of rotation of the body will decrease the moment of inertia of the body.
From equation 1, we see that in order for the angular momentum to be conserved, the decrease from [tex]I_{1}[/tex] to [tex]I_{2}[/tex] will cause the angular speed of the system to increase from [tex]w_{1}[/tex] to [tex]w_{2}[/tex] .
From this we can clearly see that reducing the radius of rotation will decrease the moment of inertia, and increase the angular speed.
A spherical balloon has a radius of 6.95 m and is filled with helium. The density of helium is 0.179 kg/m3, and the density of air is 1.29 kg/m3. The skin and structure of the balloon has a mass of 950 kg. Neglect the buoyant force on the cargo volume itself. Determine the largest mass of cargo the balloon can lift. Express your answer to two significant figures and include the appropriate units.
volume of balloon
= 4/3 T R3
= 4/3 x 3.14 x 6.953
= 1405.47 m3
uplift force
= volume of balloon x density of air x 9.8
= = 1405.47 x 1.29 x 9.8
= 1813.05 x 9.8 N
weight of helium gas
= volume of balloon x density of helium x
9.8
= 1405.47 x .179 x 9.8
= 251.58 x 9.8 N
Weight of other mass = 930 x 9.8 N Total weight acting downwards
= 251.58 x 9.8 +930 x 9.8
= 1181.58 x 9.8 N
If W be extra weight the uplift can balance
1181.58 × 9.8 + W × 9.8 = 1813.05 * 9.8
1181.58+W=1813.05
W= 631.47 kg
An electron moving in the direction of the +x-axis enters a magnetic field. If the electron experiences a magnetic deflection in the -y direction, the direction of the magnetic field in this region points in the direction of the:______
Answer:
-z axis
Explanation:
According to the left hand rule for an electron in a magnetic field, hold the thumb of the left hand at a right angle to the rest of the fingers, and the rest of the fingers parallel to one another. If the thumb represents the motion of the electron, and the other fingers represent the direction of the field, then the palm will push in the direction of the force on the electron. In this case, the left hand will be held out with the thumb pointing to the right (+x axis), and the palm facing your body (-y axis). The magnetic field indicated by the other fingers will point down in the the -z axis.
Question 18(Multiple Choice Worth 2 polnis)
When riding your skateboard you crash into a curb, the skateboard stops, and you continue moving forward. Which law of
motion is being described in this scenario?
O Law of Universal Gravitation
o Newton's Second Law of Motion
o Law of Conservation of Energy
o Newton's First Law of Motion
A girl is sitting on the edge of a pier with her legs dangling over the water. Her soles are 80.0 cm above the surface of the water. A boy in the water looks up at her feet and wants to touch them with a reed. (nwater =1.333). He will see her soles as being:____
a. right at the water surface.
b. 53.3 cm above the water surface.
c. exactly 80.0 cm above the water surface.
d. 107 cm above the water surface.
e. an infinite distance above the water surface.
Answer:
d. 107 cm above the water surface.
Explanation:
The refractive index of water and air = 1.333
The real height of the girl's sole above water = 80.0 cm
From the water, the apparent height of the girl's sole will be higher than it really is in reality by a factor that is the refractive index.
The boy in the water will therefore see her feet as being
80.0 cm x 1.333 = 106.64 cm above the water
That is approximately 107 cm above the water
PLEASE HELP FAST Five-gram samples of brick and glass are at room temperature. Both samples receive equal amounts of energy due to heat flow. The specific heat capacity of brick is 0.22 cal/g°C and the specific heat capacity of glass is 0.22 cal/g°C. Which of the following statements is true? 1.The temperature of each sample will increase by the same amount. 2.The temperature of each sample will decrease by the same amount. 3.The brick will get hotter than the glass. 4.The glass will get hotter than the brick.
Answer:
1.The temperature of each sample will increase by the same amount
Explanation:
This is because, since their specific heat capacities are the same and we have the same mass of each substance, and the same amount of energy due to heat flow is supplied to both the glass and brick at room temperature, their temperatures would thereby increase by the same amount.
This is shown by the calculation below
Q = mcΔT
ΔT = Q/mc where ΔT = temperature change, Q = amount of heat, m = mass of substance and c = specific heat capacity of substance.
Since Q, m and c are the same for both substances, thus ΔT will be the same.
So, the temperature of each sample will increase by the same amount
"A thin film with an index of refraction of 1.50 is placed in one of the beams of a Michelson interferometer. If this causes a shift of 8 bright fringes in the pattern produced by light of wavelength 540 nm, what is the thickness of the film?"
Answer:
The film thickness is 4.32 * 10^-6 m
Explanation:
Here in this question, we are interested in calculating the thickness of the film.
Mathematically;
The number of fringes shifted when we insert a film of refractive index n and thickness L in the Michelson Interferometer is given as;
ΔN = (2L/λ) (n-1)
where λ is the wavelength of the light used
Let’s make L the subject of the formula
(λ * ΔN)/2(n-1) = L
From the question ΔN = 8 , λ = 540 nm, n = 1.5
Plugging these values, we have
L = ((540 * 10^-9 * 8)/2(1.5-1) = (4320 * 10^-9)/1 = 4.32 * 10^-6 m
Consider a wire of a circular cross-section with a radius of R = 3.17 mm. The magnitude of the current density is modeled as J = cr2 = 9.00 ✕ 106 A/m4 r2. What is the current (in A) through the inner section of the wire from the center to r = 0.5R?
Answer:
The current is [tex]I = 8.9 *10^{-5} \ A[/tex]
Explanation:
From the question we are told that
The radius is [tex]r = 3.17 \ mm = 3.17 *10^{-3} \ m[/tex]
The current density is [tex]J = c\cdot r^2 = 9.00*10^{6} \ A/m^4 \cdot r^2[/tex]
The distance we are considering is [tex]r = 0.5 R = 0.001585[/tex]
Generally current density is mathematically represented as
[tex]J = \frac{I}{A }[/tex]
Where A is the cross-sectional area represented as
[tex]A = \pi r^2[/tex]
=> [tex]J = \frac{I}{\pi r^2 }[/tex]
=> [tex]I = J * (\pi r^2 )[/tex]
Now the change in current per unit length is mathematically evaluated as
[tex]dI = 2 J * \pi r dr[/tex]
Now to obtain the current (in A) through the inner section of the wire from the center to r = 0.5R we integrate dI from the 0 (center) to point 0.5R as follows
[tex]I = 2\pi \int\limits^{0.5 R}_{0} {( 9.0*10^6A/m^4) * r^2 * r} \, dr[/tex]
[tex]I = 2\pi * 9.0*10^{6} \int\limits^{0.001585}_{0} {r^3} \, dr[/tex]
[tex]I = 2\pi *(9.0*10^{6}) [\frac{r^4}{4} ] | \left 0.001585} \atop 0}} \right.[/tex]
[tex]I = 2\pi *(9.0*10^{6}) [ \frac{0.001585^4}{4} ][/tex]
substituting values
[tex]I = 2 * 3.142 * 9.00 *10^6 * [ \frac{0.001585^4}{4} ][/tex]
[tex]I = 8.9 *10^{-5} \ A[/tex]
Two hoops, staring from rest, roll down identical incline planes. The work done by nonconservative forces is zero. The hoops have the same mass, but the larger hoop has twice the radius. Which hoop will have the greater total kinetic energy at the bottom
Answer:
They both have the same total K.E at the bottom
Explanation:
This Is because If assuming no work is done by non conservative forces, total mechanical energy must be conserved
So
K1 + U1 = K2 + U2
But If both hoops start from rest, and and at the bottom of the incline the level for gravitational potential energy is zero for reference
thus
K1 = 0 , U2 = 0
ΔK = ΔU = m g. h
But if the two inclines have the same height, and both hoops have the same mass m,
So difference in kinetic energy, must be the same for both hoops.
A semi-circular loop consisting of one turn of wire is place in the x-y plane. A constant magnetic field B=1.7T points along the negative z-axis(into the page), and a current I=0.7A flows counterclockwisefrom the positive z-axis. The net magnetic force on the circular section of the loop points in what direction? What is the net magnetice force on the circular section of the loop?
Answer:
The direction of net magnetic force on the circular section of the loop is in the positive y-axis
The net magnetic force on the circular section of the loop is 3.74 N
Explanation:
The magnetic field strength [tex]B[/tex] = 1.7 T
the current [tex]I[/tex] = 0.7 A
The diameter of the loop = 2 m
the length of the circular section of the semi-circular loop [tex]l[/tex] = πd/2
==> [tex]l[/tex] = (3.142 x 2)/2 = 3.142 m
The force on the semi-circular is given as
F = [tex]BIl[/tex] sin ∅
but the loop is perpendicular to the field, therefore
sin ∅ = sin 90° = 1
F = 1.7 x 0.7 x 3.142 x 1 = 3.74 N
The right hand rule states that "if the fingers of the right hand are held parallel to each other in the direction of the magnetic field, and the thumb is held at right angle to the other fingers in the direction of the flow of current. The palm will push in the direction of the magnetic force on the conductor".
According to the right hand rule, the direction of net magnetic force on the circular section of the loop is in the positive y-axis
A Cannonball is shot at an angle of 35.0 degrees and is in flight for 11.0 seconds before hitting the ground at the same height from which it was shot.
A. What is the magnitude of the inital velocity?B. What was the maximum height reached by the cannonball?C. How far, horizontally, did it travel?
Answer:
Explanation:
According to Equations of Projectile motion :
[tex]Time\ of\ Flight = \frac{2vsin(x)}{g}[/tex]
vsin(x) = 11 * 9.8 / 2 = 53.9 m/sec
(A) v (Initial velocity) = 11 * 9.8 / 2 * sin(35) = 94.56 m/sec
[tex]Maximum Height = \frac{(vsinx)^{2} }{2g}[/tex]
(B) Maximum Height = 53.9 * 53.9 / 2 * 9.8 = 142.2 m
[tex]Horizontal Range = vcosx * t[/tex]
(C) Horizontal Range = 94.56 * 0.81 * 11 = 842.52 m
If an electron is accelerated from rest through a potential difference of 1.60 x 102V, what is its de Broglie wavelength
Answer:
0.09 x10^-10m
Explanation:
Using wavelength=( 12.27 A)/√V
= 12.27 x 10^-10/ √1.6x10^2
= 0.09x10^-10m
The earth has a vertical electric field at the surface,pointing down, that averages 102 N/C. This field is maintained by various atmosphericprocesses, including lightning.
What is the excess charge on the surface of the earth? inC
Answer:
[tex]q = -461532.5 \ C[/tex]
Explanation:
From the question we are told that
The electric filed is [tex]E = 102 \ N/C[/tex]
Generally according to Gauss law
=> [tex]E A = \frac{q}{\epsilon_o }[/tex]
Given that the electric field is pointing downward , the equation become
[tex]- E A = \frac{q}{\epsilon_o }[/tex]
Here [tex]q[/tex] is the excess charge on the surface of the earth
[tex]A[/tex] is the surface area of the of the earth which is mathematically represented as
[tex]A = 4\pi r^2[/tex]
Where r is the radius of the earth which has a value [tex]r = 6.3781*10^6 m[/tex]
substituting values
[tex]A = 4 * 3.142 * (6.3781*10^6 \ m)^2[/tex]
[tex]A =5.1128 *10^{14} \ m^2[/tex]
So
[tex]q = -E * A * \epsilon _o[/tex]
Here [tex]\epsilon_o[/tex] s the permitivity of free space with value
[tex]\epsilon_o = 8.85*10^{-12} \ m^{-3} \cdot kg^{-1}\cdot s^4 \cdot A^2[/tex]
substituting values
[tex]q = -102 * 5.1128 *10^{14} * 8.85 *10^{-12}[/tex]
[tex]q = -461532.5 \ C[/tex]
Equipotential lines are lines with equal electric potential (for example, all the points with an electric potential of 5.0 V). Using the plot tool that comes with voltmeter (pencil icon) make two equipotential lines at r = 0.5 m and r = 1.5 m. Enable electric field vectors in the simulation. Put an electric field sensor at different points on the equipotential line and note the direction of the electric field vector. What can you conclude about the direction of the electric field vector in relation to the equipotential lines?
The direction for each field vector is perpendicular to equipotential lines.
Take a snapshot of the simulation showing equipotential lines and paste to a word document.
....................
A fan rotating with an initial angular velocity of 1500 rev/min is switched off. In 2.5 seconds, the angular velocity decreases to 400 rev/min. Assuming the angular acceleration is constant, answer the following questions.
How many revolutions does the blade undergo during this time?
A) 10
B) 20
C) 100
D) 125
E) 1200
Answer:
The blade undergoes 40 revolutions, so neither of the given options is correct!
Explanation:
The revolutions can be found using the following equation:
[tex]\theta_{f} = \theta_{i} + \omega_{i}*t + \frac{1}{2}\alpha*t^{2}[/tex]
Where:
α is the angular acceleration
t is the time = 2.5 s
[tex]\omega_{i}[/tex] is the initial angular velocity = 1500 rev/min
First, we need to find the angular acceleration:
[tex] \alpha = \frac{\omega_{f} - \omega_{i}}{t} = \frac{400 rev/min*2\pi rad*1 min/60 s - 1500 rev/min *2\pi rad*1 min/60 s}{2.5 s} = -46.08 rad/s^{2} [/tex]
Now, the revolutions that the blade undergo are:
[tex]\theta_{f} - \theta_{i} = \omega_{i}*t + \frac{1}{2}\alpha*t^{2}[/tex]
[tex]\Delta \theta = 1500 rev/min *2\pi rad*1 min/60 s*2.5 s - \frac{1}{2}*(46.08 rad/s^{2})*(2.5)^{2} = 248.7 rad = 39.9 rev[/tex]
Therefore, the blade undergoes 40 revolutions, so neither of the given options is correct!
I hope it helps you!
If you have a density of 100 kg/L, and a mass of 1000 units, tell me the following: First what are the mass units?
Answer:
The mas unit is the the 'Kilogram' written as 'kg'
Volume is 10 L
Explanation:
The complete question is
If you have a density of 100 kg/L, and a mass of 1000 units, tell me the following: First, what are the mass units?
Second, what is the volume
mass units is the 'Kilogram', written as 'kg'
density = mass/volume = 100 kg/L
the mass = 1000 kg
volume = mass/density = 1000/100 = 10 L
At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 7.45 ✕ 106 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.10 ✕ 10−5 T
Answer:
The speed of the proton is 4059.39 m/s
Explanation:
The centripetal force on the particle is given by;
[tex]F = \frac{mv^2}{r}[/tex]
The magnetic force on the particle is given by;
[tex]F = qvB[/tex]
The centripetal force on the particle must equal the magnetic force on the particle, for the particle to remain in the circular path.
[tex]\frac{mv^2}{r} = qvB\\\\r = \frac{mv^2}{qvB} \\\\r = \frac{mv}{qB}[/tex]
where;
r is the radius of the circular path moved by both electron and proton;
⇒For electron;
[tex]r = \frac{(9.1*10^{-31})(7.45*10^6)}{(1.602*10^{-19})(1.1*10^{-5})}\\\\r = 3.847 \ m[/tex]
⇒For proton
The speed of the proton is given by;
[tex]r = \frac{mv}{qB}\\\\mv = qBr\\\\v = \frac{qBr}{m} \\\\v = \frac{(1.602*10^{-19})(1.1*10^{-5})(3.847)}{1.67*10^{-27}} \\\\v = 4059.39 \ m/s[/tex]
Therefore, the speed of the proton is 4059.39 m/s
Two football teams, the Raiders and the 49ers are engaged in a tug-of-war. The Raiders are pulling with a force of 5000N. Which of the following is an accurate statement?
A. The tension in the rope depends on whether or not the teams are in equilibrium.
B. The 49ers are pulling with a force of more than 5000N because of course they’d be winning.
C. The 49ers are pulling with a force of 5000N.
D. The tension in the rope is 10,000N.
E. None of these statements are true.
Answer:
E. None of these statements are true.
Explanation:
We can't say the exact or approximate amount of tension on the rope, since we do know for sure from the statement who is winning.
for A, the tension on the rope does not depend on if both teams pull are in equilibrium.
for B, the 49ers would be pulling with a force more than 5000 N, if they were winning. The problem is that we can't say with all confidence that they'd be winning.
for C, we don't know how much tension exists on the rope, and its direction, so we can't work out how much tension the 49ers are pulling the rope with.
for D, just as for C above, we can't work out how much tension there is on the rope, since we do not know how much force the 49ers are pulling with.
we go with option E.
A small helium-neon laser emits red visible light with a power of 5.40 mW in a beam of diameter 2.30 mm.
Required:
a. What is the amplitude of the electric field of the light? Express your answer with the appropriate units.
b. What is the amplitude of the magnetic field of the light?
c. What is the average energy density associated with the electric field? Express your answer with the appropriate units.
d. What is the average energy density associated with the magnetic field? Express your answer with the appropriate units.
E) What is the total energy contained in a 1.00-m length of the beam? Express your answer with the appropriate units.
Answer:
A. 990v/m
B.330x10^-8T
C.2.19x10^-6J/m³
D.1.45x10^-11J
Explanation:
See attached file
A car moving at 36 m/s passes a stationary police car whose siren has a frequency of 500 Hz. What is the change in the frequency (in Hz) heard by an observer in the moving car as he passes the police car? (The speed of sound in air is 343 m/s.)
Answer:
Change in the frequency (in Hz) = 104.96 Hz
Explanation:
Given:
Speed of sound in air (v) = 343 m/s
Speed of car (v1) 36 m/s
Frequency(f) = 500 Hz
Find:
Change in the frequency (in Hz)
Computation:
Frequency hear by the observer(before)(f1) = [f(v+v1)] / v
Frequency hear by the observer(f1) = [500(343+36)] / 343
Frequency hear by the observer(f1) = 552.48 Hz
Frequency hear by the observer(after)(f2) = [f(v-v1)] / v
Frequency hear by the observer(f2) = [500(343-36)] / 343
Frequency hear by the observer(f2) = 447.52 Hz
Change in the frequency (in Hz) = f1 - f2
Change in the frequency (in Hz) = 552.48 Hz - 447.52 Hz
Change in the frequency (in Hz) = 104.96 Hz
The advantage of a hydraulic lever is A : it transforms a small force acting over a large distance into a large force acting over a small distance. B : it transforms a small force acting over a small distance into a large force acting over a large distance. C : it allows you to exert a larger force with less work. D : it transforms a large force acting over a large distance into a small force acting over a small distance. E : it transforms a large force acting over a small distance into a small force acting over a large distance.
Answer:
A) it transforms a small force acting over a large distance into a large force acting over a small distance.
Explanation:
The hydraulic lever works based on Pascal's law of transmission of pressure through a fluid. In the hydraulic lever, the pressure transmitted is the same.
Pressure transmitted P = F/A
where F is the force applied
and A is the area over which the force is applied.
This pressure can be manipulated on the input end as a small force applied over a small area, and then be transmitted to the output end as a large force over a large area.
F/A = f/a
where the left side of the equation is for the output, and the right side is for the input.
The volume of the displaced fluid will be the same on both ends of the hydraulic lever. Since we know that
volume V = (area A) x (distance d)
this means that the the piston on the input smaller area of the hydraulic lever will travel a greater distance, while the piston on the larger output area of the lever will travel a small distance.
From all these, we can see that the advantage of a hydraulic lever is that it transforms a small force acting over a large distance into a large force acting over a small distance.