Answer:
a) 6.00
b) 3.00
c) 1.50
Step-by-step explanation:
Sample error of the mean is expressed mathematically using the formula;
SE = σ /√n where;
σ is the standard deviation and n is the sample size.
a) Given σ = 18, n = 9
Standard error of the mean = σ /√n
Standard error of the mean = 18/√9
Standard error of the mean = 18/3
Standard error of the mean = 6.00
b) Given σ = 18, n = 36
Standard error of the mean = σ /√n
Standard error of the mean = 18/√36
Standard error of the mean = 18/6
Standard error of the mean = 3.00
c) Given σ = 18, n = 144
Standard error of the mean = σ /√n
Standard error of the mean = 18/√144
Standard error of the mean = 18/12
Standard error of the mean = 3/2
Standard error of the mean = 1.50
Suppose that you are standing 150 feet from a building and the angle of elevation to the top of the building is 42°. What is the building's height?
Answer:
135.06 feet
Step-by-step explanation:
Since the side of the building makes a right triangle with the ground and you know one side length and the degree angle between you and the top of the building we can use trigonometric function to find the height of the building. So since we know one side other than the hypotenuse we can use tangent to solve. Tangent is the opposite side over the adjacent side of the known angle.
opposite side = x
adjacent side = 150 feet
angle = 42°
tan(42°) = x/150 feet
150 feet * tan(42°) = x
x = 135.06 feet
What is the area of the house (including the drawing room, TV room, balcony, hallway, kitchen, and bedroom)?
Answer:
A
Step-by-step explanation:
A clothing business finds there is a linear relationship between the number of shirts, n, it can sell and the price, p, it can charge per shirt. In particular, historical data shows that 1,000 shirts can be sold at a price of $30, while 3,000 shirts can be sold at a price of $10. Find a linear equation in the form p(n)=mn+b that gives the price p they can charge for n shirts.
Answer:
p(n) = -1/100 n 40
Step-by-step explanation:
Use the two points (n, p): (1000, 30) and (3000, 10).
Now we find the equation of the line that passes through these two points.
m = (10 - 30)/(3000 - 1000)
m = -20/2000
m = -1/100
p(n) = mn + b
30 = -1/100 * 1000 + b
30 = -10 + b
b = 40
The equation is:
p(n) = -1/100 n 40
An operator wants to determine the standard deviation for a machine relative to its ability to produce windshield wipers conforming within their specifications. To do this, she wants to create a p-chart. Over a month's time, she tests 100 units every day and records the number of manufacturing defects. The average proportion of non-conforming windshield wipers is found to be 0.042. What is the standard deviation of this sample
Answer:
the standard deviation of the sample is less than 0.1
Step-by-step explanation:
Given that :
The sample size n = 100 units
The average proportion of non-conforming windshield wipers is found to be 0.042 which is the defective rate P-bar
The standard deviation of the machine([tex]S_p[/tex]) can be calculated by using the formula:
[tex]S_p =\dfrac{ \sqrt{ \overline P \times (1 - \overline P)} }{n}[/tex]
[tex]S_p =\dfrac{ \sqrt{0.042 \times (1 -0.042)} }{100}[/tex]
[tex]S_p =\dfrac{ \sqrt{0.042 \times (0.958)} }{100}[/tex]
[tex]S_p =\dfrac{ \sqrt{0.040236} }{100}[/tex]
[tex]S_p =\dfrac{ 0.2005891323 }{100}[/tex]
[tex]S_p =0.002[/tex]
Thus , the standard deviation of the sample is less than 0.1
An octagonal pyramid ... how many faces does it have, how many vertices and how many edges? A triangular prism ... how many faces does it have, how many vertices and how many edges? a triangular pyramid ... how many faces does it have, how many vertices and how many edges?
1: 8 faces and 9 with the base 9 vertices and 16 edges
2: 3 faces and 5 with the bases 6 vertices and 9 edges
3: 3 faces and 4 with the base 4 vertices and 6 edges
Hope this can help you.
what number has 7 ten thousands, 1 thousand, 1 hundred, and no ones?
Answer:
[tex]71,100[/tex]
Step-by-step explanation:
If you are trying to find a number that is written in word form, we can just use place values to find what goes where.
A number is broken down into this:
Ten thousands, thousands, hundreds, tens, ones.
If they have 7 ten thousands, the first digit will be a 7.
If they have 1 thousand, the second digit will be a 1.
If they have 1 hundred, the third digit will be a 1.
Since nothing is stated about tens, we assume it's value is 0.
And since there are no ones, it's value is 0.
So:
71,100.
Hope this helped!
Each corner of a rectangular prism is cut off. Two (of the eight) cuts are shown. How many edges does the new figure have? Assume that the planes cutting the prism do not intersect anywhere in or on the prism. EXPLAIN PLS
Answer:
36
Step-by-step explanation:
Each cut creates a triangular face where the corner used to be. That face adds three edges to the figure. The 8 cuts add a total of 8×3 = 24 edges to the 12 edges the prism already had.
The new figure has 12+24 = 36 edges.
What is the area of a parallelogram if the coordinates of its vertices are (0, -2), (3,2), (8,2), and (5, -2)?
Answer: 20 sq. units .
Step-by-step explanation:
Let A(0, -2), B(3,2), C(8,2), and D(5, -2) are the points for the parallelogram.
First we plot these points on coordinate plane, we get parallelogram ABCD.
By comparing the y-coordinate of B and C with A and D , we get
height = 2+2 = 4 units
Also by comparing the x coordinates of A and D, we get base = 5-0= 5 units
Area of parallelogram = Base x height
= 5 x 4 = 20 sq. units
Hence, the area of a parallelogram ABCD is 20 sq. units .
one of these marbles is picked at random. what is the probability that a blue marble is picked?
A.1/3
B.2/5
C.1/2
D.1/4
Answer:
1/3
Step-by-step explanation:
there are twelve marbles total. there are 4 blue marbles.
4/12 = 1/3
A number is chosen at random from 1 to 50. Find
the probability of selecting multiples of 10.
Step by step.
Answer:
1/10
Step-by-step explanation:
There are 5 numbers in the range that are multiples of 10: 10, 20, 30, 40, 50. The probability of choosing one of those at random from the set of 50 numbers is ...
5/50 = 1/10
Fiona wrote the linear equation y = y equals StartFraction 2 over 5 EndFraction x minus 5.x – 5. When Henry wrote his equation, they discovered that his equation had all the same solutions as Fiona’s. Which equation could be Henry’s? x – x minus StartFraction 5 over 4 EndFraction y equals StartFraction 25 over 4 EndFraction.y = x – x minus StartFraction 5 over 2 EndFraction y equals StartFraction 25 over 4 EndFraction.y = x – x minus StartFraction 5 over 4 EndFraction y equals StartFraction 25 over 2 EndFraction.y = x – x minus StartFraction 5 over 2 EndFraction y equals StartFraction 25 over 2 EndFraction.y =
Answer:
D. [tex]x-\frac{5}{2}y = \frac{25}{2}[/tex]
Step-by-step explanation:
Given
[tex]y = \frac{2}{5}x - 5[/tex]
Required
Determine its equivalent
From the list of given options, the correct answer is
[tex]x - \frac{5}{2}y = \frac{25}{2}[/tex]
This is shown as follows;
[tex]y = \frac{2}{5}x - 5[/tex]
Multiply both sides by [tex]\frac{5}{2}[/tex]
[tex]\frac{5}{2} * y = \frac{5}{2} * (\frac{2}{5}x - 5)[/tex]
Open Bracket
[tex]\frac{5}{2} * y = \frac{5}{2} * \frac{2}{5}x - \frac{5}{2} *5[/tex]
[tex]\frac{5}{2}y = x - \frac{25}{2}[/tex]
Subtract x from both sides
[tex]\frac{5}{2}y - x = x -x - \frac{25}{2}[/tex]
[tex]\frac{5}{2}y - x = - \frac{25}{2}[/tex]
Multiply both sides by -1
[tex]-1 * \frac{5}{2}y - x * -1 = - \frac{25}{2} * -1[/tex]
[tex]-\frac{5}{2}y + x = \frac{25}{2}[/tex]
Reorder
[tex]x-\frac{5}{2}y = \frac{25}{2}[/tex]
Hence, the correct option is D
[tex]x-\frac{5}{2}y = \frac{25}{2}[/tex]
Answer:
The 4th option
Step-by-step explanation:
Question 1 (Multiple Choice Worth 4 points)
(08.01) Looking at the spread of your data best fits which step of the statistical process?
Answer:
The answer is "Analysis the information by chart and number processes".
Step-by-step explanation:
They already have articulated a query and also gathered information unless you are searching only at the distribution of your results. Those who are ready to analyze your results for all are there.
Consider the following functions. f={(−1,1),(1,−2),(−5,−1),(5,3)} and g={(0,2),(−3,−4),(1,−2)} Step 1 of 4: Find (f+g)(1).
Answer:
-4
Step-by-step explanation:
(f+g)(1) = f(1) +g(1)
In each case, you need to locate the ordered pair with 1 as the first element.
(1, f(1)) = (1, -2) . . . . f(1) = -2
(1, g(1)) = (1, -2) . . . . g(1) = -2
f(1) +g(1) = (-2) +(-2) = -4
(f+g)(1) = -4
A soda bottling company’s manufacturing process is calibrated so that 99% of bottles are filled to within specifications, while 1% is not within specification. Every hour, 12 random bottles are taken from the assembly line and tested. If 2 or more bottles in the sample are not within specification, the assembly line is shut down for recalibration. What is the probability that the assembly line will be shut down, given that it is actually calibrated correctly? Use Excel to find the probability. Round your answer to three decimal places.
Answer:
The probability that the assembly line will be shut down is 0.00617.
Step-by-step explanation:
We are given that a soda bottling company’s manufacturing process is calibrated so that 99% of bottles are filled to within specifications, while 1% is not within specification.
Every hour, 12 random bottles are taken from the assembly line and tested. If 2 or more bottles in the sample are not within specification, the assembly line is shut down for recalibration.
Let X = Number of bottles in the sample that are not within specification.
The above situation can be represented through binomial distribution;
[tex]P(X=r)=\binom{n}{r} \times p^{r}\times (1-p)^{n-r};x=0,1,2,3,.....[/tex]
where, n = number of trials (samples) taken = 12 bottles
x = number of success = 2 or more bottles
p = probabilitiy of success which in our question is probability that
bottles are not within specification, i.e. p = 0.01
So, X ~ Binom (n = 12, p = 0.01)
Now, the probability that the assembly line will be shut down is given by = P(X [tex]\geq[/tex] 2)
P(X [tex]\geq[/tex] 2) = 1 - P(X = 0) - P(X = 1)
= [tex]1-\binom{12}{0} \times 0.01^{0}\times (1-0.01)^{12-0}-\binom{12}{1} \times 0.01^{1}\times (1-0.01)^{12-1}[/tex]
= [tex]1-(1 \times 1\times 0.99^{12})-(12 \times 0.01^{1}\times 0.99^{11})[/tex]
= 0.00617
There are 2229 students in a school district. Among a sample of 452 students from this school district, 163 have mathematics scores below grade level. Based on this sample, estimate the number of students in this school district with mathematics scores below grade level.
a. 804
b. 844
c. 884
d. 0.36
Answer:
A. 804Step-by-step explanation:
Given the total number of students in the school to be 2229 students. If among a sample of 452 students from this school district, 163 have mathematics scores below grade level, then we can determine the number of students in this school district with mathematics scores below grade level based on the sample scores using ratio.
Let the number of students in this school district with mathematics scores below grade level be x. The ratio of the students with math score below grade level to total population will be x:2229
Also, the ratio of the sample students with math score below grade level to sample population will be 163:452
On equating both ratios, we will have;
x:2229 = 163:452
[tex]\dfrac{x}{2229} = \dfrac{163}{452}\\ \\cross\ multiplying;\\\\\\452*x = 2229*163\\\\x = \dfrac{2229*163}{452}\\ \\x = \frac{363,327}{452}\\ \\x = 803.8\\\\x \approx 804[/tex]
Hence the estimate of the number of students in this school district with mathematics scores below grade level based on the sample is 804
Suppose that 80% of all registered California voters favor banning the release of information from exit polls in presidential elections until after the polls in California close. A random sample of 25 registered California voters is selected.
Required:
a. Calculate the mean and standard deviation of the number of voters who favor the ban.
b. What is the probability that exactly 20 voters favor the ban?
Answer:
a. Mean = 20
Sd = 4
b. Probability of X = 20 = 0.1960
Step-by-step explanation:
we have
n = 25
p = 80% = 0.8
mean = np
= 0.8 * 25
= 20
standard deviation = √np(1-p)
= √25*0.8(1-0.8)
=√4
= 2
probability that exactly 20 favours ban
it follows a binomial distribution
= 25C20 × 0.8²⁰ × 0.2⁵
= 53130 × 0.01153 × 0.00032
= 0.1960
Probability of X = 20 = 0.1960
A projectile is fired vertically upward from a height of 300
300
feet above the ground, with an initial velocity of 900
900
ft/sec. Recall that projectiles are modeled by the function h(t)=−16t2+v0t+y0
h
(
t
)
=
−
16
t
2
+
v
0
t
+
y
0
. Write a quadratic equation to model the projectile's height h(t)
h
(
t
)
in feet above the ground after t seconds.
Step-by-step explanation:
It is given that, a projectile is fired vertically upward from a height of 300 feet above the ground, with an initial velocity of 900 ft/s.
The general equation with which a projectile are modled by the function is given by :
[tex]h(t)=-16t^2+v_ot+y_o[/tex]
y₀ is the initial height above the ground
v₀ = initial velocity
So,
[tex]h(t)=-16t^2+900t+300[/tex]
This is the quadratic equation that models the projectile height in feet above the ground after t seconds.
Based on the dot plots shown in the images, which of the following is a true statement? A. Set B has the greater mode. B. Set A has more items than set B. C. Set A is more symmetric than set B. D. Set B has the greater range.
Many stores run "secret sales": Shoppers receive cards that determine how large a discount they get, but the percentage is revealed by scratching off that black stuff only after the purchase has been totaled at the cash register. The store is required to reveal (in the fine print) the distribution of discounts available. Determine whether the following probability assignment is legitimate?
10% off 20% off 30% off 50% off
a. 0.2 0.2 0.2 0.2
b. 0.5 0.3 0.2 0.1
c. 0.8 0.1 0.05 0.05
d. 0.75 0.25 0.25 -0.25
e. 1 0 0 0
Answer:
b
Step-by-step explanation:
it makes the most senses the lower the discount the higher the chance
The average daily volume of a computer stock in 2011 was ų=35.1 million shares, according to a reliable source. A stock analyst believes that the stock volume in 2014 is different from the 2011 level. Based on a random sample of 30 trading days in 2014, he finds the sample mean to be 32.7 million shares, with a standard deviation of s=14.6 million shares. Test the hypothesis by constructing a 95% confidence interval. Complete a and b A. State the hypothesis B. Construct a 95% confidence interval about the sample mean of stocks traded in 2014.
Answer:
a
The null hypothesis is [tex]H_o : \mu = 35 .1 \ million \ shares[/tex]
The alternative hypothesis [tex]H_a : \mu \ne 35.1\ million \ shares[/tex]
b
The 95% confidence interval is [tex]27.475 < \mu < 37.925[/tex]
Step-by-step explanation:
From the question the we are told that
The population mean is [tex]\mu = 35.1 \ million \ shares[/tex]
The sample size is n = 30
The sample mean is [tex]\= x = 32.7 \ million\ shares[/tex]
The standard deviation is [tex]\sigma = 14.6 \ million\ shares[/tex]
Given that the confidence level is [tex]95\%[/tex] then the level of significance is mathematically represented as
[tex]\alpha = 100-95[/tex]
[tex]\alpha = 5\%[/tex]
=> [tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table
The value is [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{ \sigma }{\sqrt{n} }[/tex]
substituting values
[tex]E = 1.96 * \frac{ 14.6 }{\sqrt{30} }[/tex]
[tex]E = 5.225[/tex]
The 95% confidence interval confidence interval is mathematically represented as
[tex]\= x -E < \mu < \= x +E[/tex]
substituting values
[tex]32.7 - 5.225 < \mu < 32.7 + 5.225[/tex]
[tex]27.475 < \mu < 37.925[/tex]
The graph of g(x) = x – 8 is a transformation of the graph of f(x) = x. Which of
the following describes the transformation?
(A) translation 8 units down
(B) translation 8 units up
(C) translation 8 units right
(D) translation 8 units left
These girts stasts jogging from the same point around
acircular track and they complete one round in 24
Seconds 36 seconds and 48 seconds respectively,
After.
how much time will they meet atone point?
Answer:
2hrs 24mins
Step-by-step explanation:
Very simple the time they will meet again at the point will be the LCM of their various time taken to complete a cycle.
Ans LCM(24, 36, 48) = 144 mins
= 2hrs 24mins
Answer:
The answer is 2 hours and 24 minutes
Step-by-step explanation:
Hope you get this right:)
What is the solution to the system of equations? -2x-3y+z=-6, z=6, 3x-y+z=13
Answer:
B is the correct answer.
Step-by-step explanation:
-2x+3y+z=-6
z=6
-2x+3y+6=-6
-2x+3y=-12
-2(3)+3(2)
-6+6=0 A is incorrect
-2(3)+3(-2)=-12
-6-6=-12
B is the correct answer.
I am not going to show C or D, because you have the right answer. Hope this helps you. Thank you.
If xy = 1 what is the arithmetic mean of x and y in terms of y? Please show work as detailed as possible
Answer:
(1+y^2) /2y
Step-by-step explanation:
arithmetic mean is the average of x and y
(x+y)/2
Using the equation
xy = 1
and solving for x
x = 1/y
Replacing x in the first equation
(1/y + y) /2
Multiply by y/y
(1/y + y) /2 * y/y
(1/y + y)*y /2y
(1+y^2) /2y
the temp fell 3 degrees every hour for 5 hours what's the change in temperature
Answer:
-15
Step-by-step explanation:
If it fell 3 deg every hour for 5 hours so the equation is 3*5 plus a - sign because it dropped degrees
A potato chip company makes potato chips in two flavors, Regular and Salt & Vinegar. Riley is a production manager for the company who is trying to ensure that each bag contains about the same number of chips, regardless of flavor. He collects two random samples of 10 bags of chips of each flavor and counts the number of chips in each bag. Assume that the population variances of the number of chips per bag for both flavors are equal and that the number of chips per bag for both flavors are normally distributed. Let the Regular chips be the first sample, and let the Salt & Vinegar chips be the second sample. Riley conducts a two-mean hypothesis test at the 0.05 level of significance, to test if there is evidence that both flavors have the same number of chips in each bag. (a) H0:μ1=μ2; Ha:μ1≠μ2, which is a two-tailed test. (b) t≈1.44 , p-value is approximately 0.167 (c) Which of the following are appropriate conclusions for this hypothesis test?
A. There is insufficient evidence at the 0.05 level of significance to conclude that Regular and Salt & Vinegar chips have different amounts of chips per bag.B. There is sufficient evidence at the 0.05 level of significance to conclude that Regular and Salt & Vinegar chips have different amounts of chips per bag.C. Reject H0.D. Fail to reject H0.
Answer:
A. There is insufficient evidence at the 0.05 level of significance to conclude that Regular and Salt & Vinegar chips have different amounts of chips per bag.
D. Fail to reject H0.
Step-by-step explanation:
From the summary of the given test statistics.
The null and the alternative hypothesis are:
[tex]H_0:\mu_1=\mu_2 \\ \\ Ha:\mu_1 \neq \mu_2[/tex]
This test is also a two tailed test.
Similarly, the t value for the test statistics = 1.44
The p- value - 0.167
The level of significance ∝ = 0.05
The objective we are meant to achieve here is to determine which of the following from the given options are appropriate conclusions for this hypothesis test.
From what we have above:
Decision Rule: We fail to reject the null hypothesis since the p-value is greater than the level of significance at 0.05
CONCLUSION: Therefore, we can conclude that there is insufficient evidence at the 0.05 level of significance to conclude that Regular and Salt & Vinegar chips have different amounts of chips per bag as we fail to reject H0.
I don't understand word problems can someone please answer it for me and I need it ASAP.
Answer:
Inequality: 3 + 1.2c
What you'd put on graph: 1 ≥ 13.50
Oregon State University is interested in determining the average amount of paper, in sheets, that is recycled each month. In previous years, the average number of sheets recycled per bin was 59.3 sheets, but they believe this number may have increase with the greater awareness of recycling around campus. They count through 79 randomly selected bins from the many recycle paper bins that are emptied every month and find that the average number of sheets of paper in the bins is 62.4 sheets. They also find that the standard deviation of their sample is 9.86 sheets. What is the value of the test-statistic for this scenario
Answer:
The test statistic is [tex]t = 2.79[/tex]
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 59.3[/tex]
The sample size is [tex]n = 79[/tex]
The sample mean is [tex]\= x = 62.4[/tex]
The standard deviation is [tex]\sigma = 9.86[/tex]
Generally the test statistics is mathematically represented as
[tex]t = \frac{\= x - \mu }{ \frac{ \sigma}{ \sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 62.2 - 59.3 }{ \frac{ 9.86}{ \sqrt{ 79} } }[/tex]
[tex]t = 2.79[/tex]
Which of the following is the correct set notation for the set of perfect squares between 1 and 100 (including 1 and 100)?
Select the correct answer below:
{p2∣p∈ℤ and 1≤p≤10}
{p2∣p∈ℤ and 1
Answer:
[tex]\{P^2: P\ E\ Z\ and\ 1\leq p\leq 10\}[/tex]
Step-by-step explanation:
Given
Range: = 1 to 100 (Inclusive)
Required
Determine the notation that represents the perfect square in the given range
Represent the range with P
P = 1 to 100
Such that the perfect squares will be P² and integers
In set notation, integers are represented with Z
The set notation becomes
[tex]\{P^2: P\ E\ Z\ and\ 1\leq p\leq 10\}[/tex]
The [tex]\leq[/tex] shows that 1 and 100 are inclusive of the set
Aaron wants to mulch his garden. His garden is x^2+18x+81 ft^2 One bag of mulch covers x^2-81 ft^2 . Divide the expressions and simplify to find how many bags of mulch Aaron needs to mulch his garden.
Answer:
Step-by-step explanation:
Given
Garden: [tex]x^2+18x+81[/tex]
One Bag: [tex]x^2 - 81[/tex]
Requires
Determine the number of bags to cover the whole garden
This is calculated as thus;
[tex]Bags = \frac{x^2+18x+81}{x^2 - 81}[/tex]
Expand the numerator
[tex]Bags = \frac{x^2+9x+9x+81}{x^2 - 81}[/tex]
[tex]Bags = \frac{x(x+9)+9(x+9)}{x^2 - 81}[/tex]
[tex]Bags = \frac{(x+9)(x+9)}{x^2 - 81}[/tex]
Express 81 as 9²
[tex]Bags = \frac{(x+9)(x+9)}{x^2 - 9\²}[/tex]
Evaluate as difference of two squares
[tex]Bags = \frac{(x+9)(x+9)}{(x - 9)(x+9)}[/tex]
[tex]Bags = \frac{(x+9)}{(x - 9)}[/tex]
Hence, the number of bags is [tex]Bags = \frac{(x+9)}{(x - 9)}[/tex]