Answer:
I think
A display order of numbers are called sequences.
sand falls from an overhead bin and accumulates in a conical pile with a radius that is always four times its height. suppose the height of the pile infcreases at a rate of 1cm/s when the pile is 12 cm hight. at what rate is the sand leaving the bin at that instant
Answer:
[tex]\frac{dv}{dt} =7239.168 cm/sec[/tex]
Step-by-step explanation:
From the question we are told that:
Rate [tex]\frac{dh}{dt}=1cm[/tex]
Height [tex]h=12cm[/tex]
Radius [tex]r=4h[/tex]
Generally the equation for Volume of Cone is mathematically given by
[tex]V=\frac{1}{3}\pi r^2h[/tex]
[tex]V=\frac{1}{3}\pi (4h)^2h[/tex]
Differentiating
[tex]\frac{dv}{dt} =\frac{16}{3}\pi3h^2\frac{dh}{dt}[/tex]
[tex]\frac{dv}{dt} =\frac{16}{3}*3.142*3*12^2*1[/tex]
[tex]\frac{dv}{dt} =7239.168 cm/sec[/tex]
Hyo-Jin makes bracelets and sells them on an online craft website. Last month, she sold 6 bracelets. After paying the website a commission of $1.25 for each bracelet sold, Hyo-Jin made a total of $16.50. How much does each bracelet sell for on the website? Explain the steps you followed to get your answer
The answer at the end of the day would be 4
Answer:
I set up an equation to show that the number of bracelets multiplied by the cost of each bracelet minus the commission is equal to the total, 6(x – 1.25) = 16.50. I divided each side by 6, then added 1.25 to each side with a result of x = 4. Hyo-Jim sold each bracelet for $4.
Step-by-step explanation:
Find the measure of c
9514 1404 393
Answer:
140°
Step-by-step explanation:
The long arc intercepted by angle c is 360° -80° = 280°. The measure of inscribed angle c is half the measure of the arc it intercepts.
c = 280°/2 = 140°
Which expression represents the total volume of the pictures shown if each cube has a side length of e?
Answer: I believe that you have to do e^3 to find the volume of a cube.
If you had the side, you would do a^3 (a stands for the side length)
Write the following as an inequality.
x is greater than – 3 and less than or equal to 4
Use x only once in your inequality.
Answer:
-3<x≤4
Step-by-step explanation:
Answer:
4 [tex]\geq[/tex] x > -3
Step-by-step explanation:
I just put the written form into inequality form.
Riley wants to buy a car and has a choice between two different banks. One bank is offering a simple interest rate of 4.5% and the other bank is offering a rate of 4.5% compounded annually. Which is the better deal?
The angles in a triangle are represented by x, x+10, and x+50. What is the measure of the largest angle?
A.70 degrees
B.80 degrees
C.100 degrees
D.90 degrees
Answer:
90
Step-by-step explanation:
The sum of the angles of a triangle is 180 degrees
x+x+10 +x+50 = 180
3x+60= 180
3x = 180-60
3x = 120
Divide by 3
3x/3 = 120/3
x = 40
The largest angle is
x+50
40+50 = 90
We have to,
find the measure of the largest angle.
Given that,
The angles in a triangle are represented by x, x+10, and x+50.
Let's start to solve,
→ x+ (x+10) + (x+50) = 180°
→ x + x + x = 180° (-50-10)
→ 3x = 180° -60
→ 3x = 120
→ x = 120/3
→ [x = 40°]
Then the value of x + 10,
→ x + 10
→ 40 + 10
→ 50°
Then the value of x + 50,
→ x + 50
→ 40 + 50
→ 90°
The measure of the largest angle is,
→ D. 90 degrees
Thus, option (D) is the correct answer.
use the figure to find x
9514 1404 393
Answer:
x = 5
Step-by-step explanation:
The given side is opposite the angle, and the unknown is the hypotenuse. The relevant trig relation is ...
Sin = Opposite/Hypotenuse
sin(30°) = (5/2)/x
x = (5/2)/sin(30°) = (5/2)/(1/2) = 5/1
x = 5
__
Additional comment
In this 30°-60°-90° "special" right triangle, the long leg is √3 times the short leg, so ...
y = (5/2)√3
In the HANES5 sample, the average height of the boys was 137 cm at age 9 and 151 cm at age 11. At age 11, the average height of all the children was 151 cm.
a. On the average, are boys taller than girls at age 11?
b. Guess the average height of the 10-year-old boys.
Answer:
a) Average age of girls is also 151.
b) [tex]h_{10}=144cm[/tex]
Step-by-step explanation:
From the question we are told that:
Average height of the boys at age [tex]h_9= 137 cm[/tex]
Average height of the boys at age [tex]h_11= 151 cm[/tex]
a)
Since
The average height of all the children was 151 cm.
This implies that The average height of all children is 151
Therefore
Average age of girls is also 151.
b)
Assuming all factors being equal
Height of 10 year old boy
[tex]h_{10}=\frac{h_9+h_11}{2}[/tex]
[tex]h_{10}=\frac{137+151}{2}[/tex]
[tex]h_{10}=144cm[/tex]
Therefore my Guess is
[tex]h_{10}=144cm[/tex]
9. Which is a true statement about the denominator in a fraction?
(Select one answer)
It is always a negative number
It cannot be 0
It has to be an even number
It is always smaller than the numerator
Answer:
It cannot be 0
Step-by-step explanation:
it can also be positive number :2/4
it can be odd number too:3/9
it is bigger than numerator bcoz we have to divide it for numerator
So, 0 number cannot be put as denominator in fraction is true statement
What is the surface area of the composite figure?
9514 1404 393
Answer:
382 cm²
Step-by-step explanation:
The side facing is a trapezoid with bases 8 and 14 cm, and height 7 cm. Its area is ...
A = 1/2(b1 +b2)h
A = (1/2)(8 +14)(7) = 77 . . . . cm²
The perimeter of the face is ...
7 cm + 8 cm + 9 cm + 14 cm = 38 cm
The total surface area is the sum of the lateral area and the base area.
SA = LA + BA
SA = (38 cm)(6 cm) + 2×(77 cm²) = 228 cm² + 154 cm²
SA = 382 cm²
The surface area of the composite figure is 382 square centimeters.
_____
Additional comment
The lateral area is the width of a rectangular face (6 cm) times the total of all of the lengths of those faces. That total is the perimeter of the trapezoidal base (38 cm).
There are two trapezoidal bases that contribute area. The first calculation figured the area of one of them.
Find the domain of fg. f(x) = x2 +1 g(x) = 1/x a. all real numbers c. all real numbers, except -1 b. all real numbers, except 0 d. all real numbers, except 1
Time taken by a randomly selected applicant for a mortgage to fill out a certain form has a normal distribution with mean value 10 min and standard deviation 3 min. If five individuals fill out a form on one day and six on another, what is the probability that the sample average amount of time taken on each day is at most 11 min
Answer:
0.6121 = 61.21% probability that the sample average amount of time taken on each day is at most 11 min.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Normal distribution with mean value 10 min and standard deviation 3 min.
This means that [tex]\mu = 10, \sigma = 3[/tex]
First day:
5 individuals, so [tex]n = 5, s = \frac{3}{\sqrt{5}}[/tex]
The probability is the p-value of Z when X = 11. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{11 - 10}{\frac{3}{\sqrt{5}}}[/tex]
[tex]Z = 0.745[/tex]
[tex]Z = 0.745[/tex] has a p-value of 0.7719.
Second day:
6 individuals, so [tex]n = 6, s = \frac{3}{\sqrt{6}}[/tex]
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{11 - 10}{\frac{3}{\sqrt{6}}}[/tex]
[tex]Z = 0.817[/tex]
[tex]Z = 0.817[/tex] has a p-value of 0.793.
What is the probability that the sample average amount of time taken on each day is at most 11 min?
Each day is independent of other days, so we multiply the probabilities.
0.7719*0.793 = 0.6121
0.6121 = 61.21% probability that the sample average amount of time taken on each day is at most 11 min.
In this problem, y = 1/(1 + c1e−x) is a one-parameter family of solutions of the first-order DE y' = y − y2. Find a solution of the first-order IVP consisting of this differential equation and the given initial condition. y(0)=-1/3
If y (0) = -1/3, then
-1/3 = 1 / (1 + C e ⁻⁰)
Solve for C :
-1/3 = 1 / (1 + C )
-3 = 1 + C
C = -4
So the particular solution to the DE that satisfies the given initial condition is
[tex]\boxed{y=\dfrac1{1-4e^{-x}}}[/tex]
resolve 3x-1÷(x+1)^2 into partial fraction
9514 1404 393
Answer:
3/(x +1) -4/(x +1)^2
Step-by-step explanation:
The partial fraction expansion will be of the form ...
A/(x+1)^2 +B/(x+1)
We can find the values of A and B by writing the sum of these terms:
= (A +B(x +1))/(x +1)^2
Then we require ...
B = 3
A +B = -1 ⇒ A = -4
So, the desired expansion is ...
3/(x +1) -4/(x +1)^2
I WILL AWARD BRAINLIEST PLEASE HELP!!!
All the students in an English class complete a 25-point extra-credit assignment to raise their test scores. The new test score is 25 points more than the original score. Let x = original score Let y = new score Which equation represents this situation? A. y = 25x B. y = x – 25 C. y = x ÷ 25 D. y = x + 25
20 points Surd question Work out the area of the triangle. ABC
Answer:
sqrt( 150)
Step-by-step explanation:
it can also be 5sqrt(6)
The solution is, the area of the triangle. ABC is 10 cm^2.
What is area ?Area is the measure of a region's size on a surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object.
here, we have,
from the given diagram, we get,
we have to find the area of the triangle. ABC
now, we have,
using the Pythagorean theorem, we get,
BD = √AB² - AD²
=√50 - 45
=√5
now, we know that,
area of triangle = 1/2 * base * height
= 1/2 * √5 * 4√5
= 10
Hence, The solution is, the area of the triangle. ABC is 10 cm^2.
To learn more on Area click:
brainly.com/question/20693059
#SPJ2
The perimeter of rhombus EFGH is 48 cm and the measure of ZFE) = 60
9514 1404 393
Answer:
a. 12 cm
b. 90°
c. 60°
Step-by-step explanation:
The relevant relationships are ...
all sides of a rhombus have the same lengththe diagonals of a rhombus are perpendicular bisectors of each otherthe diagonals of a rhombus divide the figure into 4 congruent triangles__
a) The perimeter, 48 cm, is the sum of four equal side lengths, so any given side is (48 cm)/4 = 12 cm.
GH = 12 cm
__
b) Angle EJF is where the diagonals meet. It is a right angle.
∠EJF = 90°
__
c) Angle EFJ is the complement of the one marked, so is 30°. Angles EHJ and GHJ are congruent to that, so both are 30°. Angle EHG is the sum of those two congruent 30° angles, so is ...
∠EHG = 60°
Find the Perimeter of the figure below, in inches
Answer:
117.8 in.
Step-by-step explanation:
To find the perimeter, add all the side lengths together. If we do that, we get 117.8 in, which is the answer.
Find the intersection of the parabola y=-2x^2-4x+2 and the line -6x+y=14
Answer:
(-2,2) and (-3,-4)
Step-by-step explanation:
by graphing the line and parabola, you should get this graph
8. What is the domain and range of the graph below?
Answer:
Domain: [-5, 4]
Range: [-5, 0] U (2, 4]
Step-by-step explanation:
The domain encompasses whatever the input (in this case, the horizontal values) can be and the range is what the output (in this case, the vertical values) can be.
As shown on the graph, all horizontal values including and between -5 and 4 are used on the graph. It does not matter that they are on two separate lines. Therefore, the domain is [-5, 4]. Note that the closed brackets signify that -5 and 4 are used
The y values used in the bottom line range from -5 to 0, and in the top one they range from 2 to 4 (not including the 2, as shown by the open circle). Therefore, the bottom range is [-5, 0] and the top range is (2, 4]. We can combine these to say the range is [-5, 0] U (2, 4]
What is the solution to the equation x^2 + 10x + 75 = 0?
A ladder leans against the side of the a house. The ladder is 19 feet long and forms an angle of elevation of 75 degree when leaned against the house. How far away from the house is the ladder? Round your answer to the nearest tenth.
=============================================================
Explanation:
Focus entirely on the triangle on the right side. The other parts of the drawing are not necessary. In my opinion, they are distracting filler.
Refer to the diagram below.
We have an unknown adjacent side, let's call it x, that's along the horizontal part of the triangle.
The hypotenuse however is known and it is 19 ft
We use the cosine ratio to tie the two sides together
cos(angle) = adjacent/hypotenuse
cos(75) = x/19
19*cos(75) = x
x = 19*cos(75)
x = 4.9175618569479 which is approximate
x = 4.9
The base of the ladder is roughly 4.9 feet away from the base of the house.
Side note: make sure your calculator is in degree mode.
Please help me with this question and don't report
Answer:
50 ft
Step-by-step explanation:
For this problem we will use the Pythagorean theorem which is: a^2+b^2= c^2
I found the length for both of the legs on this triangle which are: 30 ft (for the side on the far left) and 40ft (for the other leg of the triangle whose hypotenuse is the walkway).
Now that we know the two legs we can use the Pythagorean theorem:
40^2 + 30^2 = 2500
then take the square root of 2500 in order to find the hypotenuse length:
Square root of 2500= 50ft
plz consider marking me as brainliest, it truly helps me!
Answer:
50ft
Step-by-step explanation:
trust me on this answer
Solve 3t + 2 = 5t - 4
Answer:
3
Step-by-step explanation:
3t + 2 = 5t - 4
3t - 5t = -4 - 2
-2t = -6
t = 6/2
t = 3
Answer:
t = 3
Step-by-step explanation:
3t + 2 = 5t - 4
3t - 5t = - 4 - 2
-2t = -6
(Cut those two -)
t = 6÷2
t = 3
Oil leaked from a tank at a rate of r(t) liters per hour. The rate decreased as time passed, and values of the rate at two hour time intervals are shown in the table. Find lower and upper estimates for the total amount of oil that leaked out.
t (h) 0 2 4 6 8 10
r(t) (L/h) 8.8 7.6 6.8 6.2 5.7 5.3
V=_____ upper estimate
V= ______lower estimate
The exact amount of oil that leaks out for 0 ≤ t ≤ 10 is given by the integral,
[tex]\displaystyle\int_0^{10}r(t)\,\mathrm dt[/tex]
Then the upper and lower estimates of this integral correspond to the upper and lower Riemann/Darboux sums. Since r(t) is said to be decreasing, this means that the upper estimate corresponds to the left-endpoint Riemann sum, while the lower estimate would correspond to the right-endpoint sum.
So you have
• upper estimate:
(8.8 L/h) (2 h - 0 h) + (7.6 L/h) (4 h - 2h) + (6.8 L/h) (6 h - 4h) + (6.2 L/h) (8 h - 6h) + (5.7 L/h) (10 h - 8 h)
= (2 h) (8.8 + 7.6 + 6.8 + 6.2 + 5.7) L/h)
= 70.2 L
• lower estimate:
(7.6 L/h) (2 h - 0 h) + (6.8 L/h) (4 h - 2h) + (6.2 L/h) (6 h - 4h) + (5.7 L/h) (8 h - 6h) + (5.3 L/h) (10 h - 8 h)
= (2 h) (7.6 + 6.8 + 6.2 + 5.7 + 5.3) L/h)
= 63.2 L
A satellite orbits earth at a speed of 22100 feet per second (ft/s). Use the following facts to convert this speed to miles per hour (mph). 1 mile = 5280 ft 1 min = 60 sec 1 hour = 60 min
15,068 mi/hr
Step-by-step explanation:
[tex]22100\:\frac{\text{ft}}{\text{s}}×\frac{1\:\text{mi}}{5280\:\text{ft}}×\frac{60\:\text{s}}{1\:\text{min}}×\frac{60\:\text{min}}{1\:\text{hr}}[/tex]
[tex]=15,068\:\text{mi/hr}[/tex]
The speed of 22100 feet per second will be 15068.18 miles per hour.
What is unit conversion?Multiplication or division by a numerical factor, selection of the correct number of significant figures, and unit conversion are all steps in a multi-step procedure.
Unit conversion is the expression of the same property in a different unit of measurement. Time, for example, can be expressed in minutes rather than hours, and distance can be converted from miles to kilometres, feet, or any other length measurement.
Given that the speed of the satellite is 22100 feet per second. The speed in miles per hour will be calculated as,
22100 ft /s = ( 22100 x 3600 ) / 5280
22100 ft/s = 79560000 / 5280
22100 ft/s = 15068.18 miles per hour
To know more about unit conversion follow
https://brainly.com/question/28901160
#SPJ2
3.) Determine the percent of change. Round to the
nearest whole percent if necessary. State whether the
percent of change is an INCREASE or DECREASE.
Original: $84
New: $100
Answer:
is 84
Step-by-step explanation:
why aronou much and yes so many sorry
PLEASE HELP AND BE CORRECT BEFORE ANSWERING PLEASE AND THANK YOU
9514 1404 393
Answer:
6 units
Step-by-step explanation:
The dilation factor is 2, so the length of A'B' will be 2 times the length of AB.
AB can be seen to be 3 units, so A'B' will be 2×3 = 6 units.
(12 1/3 * 2) + (10 3/4 * 2)
Answer:
[tex](12\frac{1}{3} *2)+(10\frac{3}{4} *2)\\\\=(\frac{12(3)+1}{3} *2)+(\frac{10(4)+3}{4} *2)\\\\=\frac{37*2}{3} +\frac{43*2}{4} \\\\=\frac{74}{3} +\frac{86}{4} \\\\=\frac{74(4)+86(3)}{3*4} \\\\=\frac{296+258}{12} \\\\=\frac{554}{12}[/tex]