Answer:
g: -7/10 or -0.7
Step-by-step explanation:
[tex]6g+5=-2\left(1+2g\right)[/tex]
Apply the distributive law:-
[tex]-2\left(1+2g\right)[/tex]
[tex]=-2-4g[/tex]
[tex]6g+5=-2-4g[/tex]
Now, we´ll Subtract 5 from both sides :-
[tex]6g+5-5=-2-4g-5[/tex]
[tex]6g=-4g-7[/tex]
Add 4g to both sides :-
[tex]6g+4g=-4g-7+4g[/tex]
[tex]10g=-7[/tex]
Now, divide both sides by 10:-
[tex]\frac{10g}{10}=\frac{-7}{10}[/tex]
[tex]g=-\frac{7}{10}[/tex]
OAmalOHopeO
Determining a Local Maximum and Minimum
Analyze the table of values for the continuous function,
f(x), to complete the statements.
A local maximum occurs over the interval __
A local minimum occurs over the interval ___
Answer:
x=-1x=-3Step-by-step explanation:
Algebra level
find the measure of one exterior angle for the following regular polygon
Answer:
36 degrees
Step-by-step explanation:
10 corners/sides.
the sum of all exterior angles in a polygon is always 360 degrees.
so, one exterior angle here is 360/10 = 36 degrees
8.52 The heights of 2-year-old children are normally distributed with a mean of 32 inches and a standard deviation of 1.5 inches. Pediatricians regularly measure the heights of toddlers to determine whether there is a problem. There may be a problem when a child is in the top or bottom 5% of heights. Determine the heights of 2-year-old children that could be a problem.
Answer:
Heights of 29.5 and below could be a problem.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The heights of 2-year-old children are normally distributed with a mean of 32 inches and a standard deviation of 1.5 inches.
This means that [tex]\mu = 32, \sigma = 1.5[/tex]
There may be a problem when a child is in the top or bottom 5% of heights. Determine the heights of 2-year-old children that could be a problem.
Heights at the 5th percentile and below. The 5th percentile is X when Z has a p-value of 0.05, so X when Z = -1.645. Thus
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.645 = \frac{X - 32}{1.5}[/tex]
[tex]X - 32 = -1.645*1.5[/tex]
[tex]X = 29.5[/tex]
Heights of 29.5 and below could be a problem.
Combine like terms. (Simplify your answer completely.)
2/5x+6+8/5x
Answer:
16/5x
Step-by-step explanation:
as there is 2 5x so it will be 2 by 5x +6+ 8 by 5x
next there is two 5x and it will be 1 5x
then we will add 2+6+8=16
and there is already 5x ..simple.
hope it will help
3a
[tex] \frac{3a + a {}^{2} }{a} [/tex]
Simplify.
Answer:
(3+a)
Step-by-step explanation:
3a + a^2
-------------
a
Factor out an a in the numerator
a(3+a)
-------------
a
Cancel like terms
(3+a)
Step-by-step explanation:
[tex] \frac{3a + {a}^{2} }{a} \\ = \frac{3a}{a} + \frac{ {a}^{2} }{a} \\ = 3 + a \\ thank \: you[/tex]
PLEASE help me!!!
Amina has two bags.
In the first bag there are 3 red balls and 7 green balls.
In the second bag there are 5 red balls and 4
green balls.
Amina takes at random a ball from the first bag.
She then takes at random a ball from the second bag.
(a) Complete the probability tree diagram.
Answer:
Step-by-step explanation:
first
3/10 & 7/10
second
5/9 & 4/9
please help:
give an example of an undefined term and how it relates to a circle.
is 23/17 a rational number?
Answer:
rational number
Step-by-step explanation:
a rational number can be written as a/b where a and b are integers
23/17 = a/b where a = 23 and b = 17
This is a rational number
please help if you can
Answer:
x= 10
Step-by-step explanation:
(whole secant) x (external part) = (whole secant) x (external part)
(8+x) * 8 = (9+-3+x) * 9
8(8+x) = 9(6+x)
Distribute
64+8x=9x+54
Subtract 8x from each side
64 = x+54
Subtract 54 from each side
10 =x
find the length of UT
Answer:
I think it would be
A .39
I hope that it helps you
Please help explanation if possible
Answer:
[tex]y = 2x + 7[/tex]
Step-by-step explanation:
Use Point Slope Form since we are given the slope and coordinates. Why is the slope 2x?
In Depth: Parallel lines never touch so they are Lines that have same slope but different y intercept. An example is a square. A square has four parallel sides. The upper and lower sides will never touch because they are the same slope and they both have a finite distance vertically between them.
Back to the question, let use the Point Slope Form,
[tex]y - y_{1} = m(x - x_{1})[/tex]
Where y1 is the y coordinate of the given point, m is the slope and x is the x coordinates of the given points.
Substitute
[tex]y - ( - 1) = 2(x - ( - 4)[/tex]
[tex]y + 1 = 2(x + 4)[/tex]
Simplify
[tex]y + 1 = 2x + 8[/tex]
[tex]y = 2x + 7[/tex]
What is the correct answer to this multiple choice question? Please help!!!
Answer:
By translating the function cos(x) 90 degrees to the right.
Step-by-step explanation:
The sine function is just the cosine function translated 90 degrees to the right. You can see the visualization below. They overlap.
If you're wondering why the diagram shows a shift in
[tex]\pi / 2[/tex]
That's just the equivalent to 90 degrees in radians.
Darryl has written 60 percent, or 12 pages, of his history report. Darryl wants to figure out how many total pages he needs to write. Darryl’s work is shown below.
Step 1: Write 60 percent as a ratio. StartFraction part Over whole EndFraction = StartFraction 60 Over 100 EndFraction
Answer:
total pages = 20
Step-by-step explanation:
60% of an unknown number is 12
Let the unknown number (total pages) be x.
60/100 of x = 12
60/100 * x = 12
3/5 x = 12
x = 12 * 5/3
x = 20
if n(u) = 800. n(a) = 400. n(b) = 300 n(āūb) = 200 what is n(anb) and n(a)
As above, let
$$f(x) = 3\cdot\frac{x^4+x^3+x^2+1}{x^2+x-2}.$$Give a polynomial $g(x)$ so that $f(x) + g(x)$ has a horizontal asymptote of $y=0$ as $x$ approaches positive infinity.
Answer:
Hello,
Step-by-step explanation:
[tex]\dfrac{f(x)}{3} =\dfrac{x^4+x^3+x^2+1}{(x-1)(x+2)} \\\\=\dfrac{(x^2+3)(x-1)(x+2)-3x+7}{(x-1)(x+2)} \\=x^2+3-\dfrac{3x-7}{(x-1)(x+2)} \\\\=x^2+3-\dfrac{3}{x-1} +\dfrac{1}{(x-1)(x-2)} \\\\\dfrac{f(x)}{3}-\dfrac{3x^2+9}{3} =-\dfrac{3}{x-1} +\dfrac{1}{(x-1)(x-2)} \\\\\\ \lim_{x \to +\infty} (\dfrac{f(x)}{3}-\dfrac{3x^2+9}{3} )\\\\=0+0=0\\\\\\P(x)=-x^2-3[/tex]
Answer:
[tex]g(x)=-3x^2-9[/tex]
Explanation:
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{p(x)(x^2+x-2)}{x^2+x-2}[/tex]
We need p(x) need to be a degree 2 polynomial so the numerator of the second fraction is degree 4. Our goal is to cancel the terms of the first fraction's numerator that are of degree 2 or higher.
So let p(x)=ax^2+bx+c.
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{p(x)(x^2+x-2)}{x^2+x-2}[/tex]
Plug in our p:
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{(ax^2+bx+c)(x^2+x-2)}{x^2+x-2}[/tex]
Take a break to multiply the factors of our second fraction's numerator.
Multiply:
[tex](ax^2+bx+c)(x^2+x-2)[/tex]
=[tex]ax^4+ax^3-2ax^2[/tex]
+[tex]bx^3+bx^2-2bx[/tex]
+[tex]cx^2+cx-2c[/tex]
=[tex]ax^4+(a+b)x^3+(-2a+b+c)x^2+(-2b+c)-2c[/tex]
Let's go back to the problem:
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{ax^4+(a+b)x^3+(-2a+b+c)x^2+(-2b+c)x-2c}{x^2+x-2}[/tex]
Let's distribute that 3:
[tex]\frac{3x^4+3x^3+2x^2+3}{x^2+x-2}[/tex]
+[tex]\frac{ax^4+(a+b)x^3+(-2a+b+c)x^2+(-2b+c)x-2c}{x^2+x-2}[/tex
So this forces [tex]a=-3[/tex].
Next we have [tex]a+b=-3[/tex]. Based on previous statement this forces [tex]b=0[/tex].
Next we have [tex]-2a+b+c=-3[/tex]. With [tex]b=0[/tex] and [tex]a=-3[/tex], this gives [tex]6+0+c=-3[/tex].
So [tex]c=-9[tex].
Next we have the x term which we don't care about zeroing out, but we have [tex]-2b+c[/tex] which equals [tex]-2(0)+-9=-9[/tex].
Lastly, [tex]-2c=-2(-9)=18[/tex].
This makes [tex]p(x)=-3x^2-9[/tex].
This implies [tex]g(x)\frac{(-3x^2-9)(x^2+x-2)}{x^2+x-2}[/tex] or simplified [tex]g(x)=-3x^2-9[/tex]
1.4 (x + 5) + 1.6x = 52
Simplify <3
amusement park is 1.50$ for children and $4 for adults. on certain day 220 people entered the park, and the admission fee collected totalled 630.00. how many children and how many adults were admitted? write and use an equation to solve
230.000 childrenㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
Answer:
230 children
Step-by-step explanation:
which expression is equivalent to (4^-3)^-6
a.) 4^3
b.) 4^-9
c.) 4^-18
d.) 4^18
Answer:
Answer:
The answer is d.) 4^18
Which plane geometry has countless symmetry axis ? (except for circle)
Sorry if there are some grammatical mistakes in my question because English isn't my first language. Thank you very much !
Countless symmetry axis of a parabola is vertical line which divides the parabola into two congruent halves.
The axis of symmetry always passes through vertex of parabola. These will cause the plane to divide into two parts.
The geometric shape may have countless symmetry axis. This actually divides the shape into two halves and creates a mirror like effect.
The x-coordinate of vertex is equation of axis symmetry of parabola. Lets say if we take an example of quadratic equation which is ,
y = ax^2 + bx + c , here in this equation the axis of symmetry is vertical line which is x = - b^2 a
Learn more at https://brainly.com/question/24375722
Find m<DCV and m<VBD
Answer:
∠ DCV = ∠ VBD = 50°
Step-by-step explanation:
The inscribed angles DCV and VBD are half the measure of their intercepted arcs, that is
∠ DCV = [tex]\frac{1}{2}[/tex] DV = [tex]\frac{1}{2}[/tex] × 100° = 50°
∠ VBD = [tex]\frac{1}{2}[/tex] DV = [tex]\frac{1}{2}[/tex] × 100° = 50°
2/5 divided by 8/5 .......
Answer:
1/4
Step-by-step explanation:
2/5 divided by 8/5 is the same as 2/5 * 5/8. we cross out the same 5's to get 2/8. We simplify that to 1/4.
1/4 is our answer.
write down amultiple of 4 and 14 which is less than 30
28
How?
Multiples of 4=8,12,16,20,24,28Multiples of 14=28,42We can see that 28 is the lowest common multiple also it is <30
Answer: 28.
Step-by-step explanation: 28 is divisible by 4: 28 / 4 = 7. 28 is divisible by 14: 28 / 14 = 2. And 28 is less than 30
whats (-3,6) and (3,4) in y=mx+b form?
Answer:
y = -1/3x + 5
Step-by-step explanation:
First you want to find the slope with the formula y2-y1/x2-x1.
4-6/3-(-3)
-2/6
-1/3
Second you want to substitute one point and the slope to find the y-intercept.
6 = -3(-1/3) + b
6 = 1 + b
5 = b
Third you can fill in the information we solved for.
y = -1/3x + 5
Best of Luck!
PLS HELP WILL MAKE FIRST RIGHT ANSWER GETS BRAINLIEST
(x^2+1)(x-1)=0 help me pls
Answer:
x = ±i , x=1
Step-by-step explanation:
(x^2+1)(x-1)=0
Using the zero product property
x^2 +1 = 0 x-1= 0
x^2 = -1 x=1
Taking the square root of the equation on the left
sqrt(x^2) = sqrt(-1)
x = ±i where i is the imaginary number
We still have x=1 from the equation on the right
please help have a lot of lessons
Which relation is not a function?
Answer:
A
For something to be a function every x value bust have at most 1 y value and in A 9 has 2 y values so it cant be a function
If the lengths of the legs of a right triangle are 4 and 8, what is the length of the hypotenuse?
PLEASE HELP
Answer:
[tex]4\sqrt{5}[/tex]
Step-by-step explanation:
In order to solve this problem, we can use the pythagorean theorem, which is
a^2 + b^2 = c^2, where and b are the legs of a right triangle and c is the hypotenuse. Since we are given the leg lengths, we can substitute them in. So, where a is we can put in a 4 and where b is we can put in an 8:
a^2 + b^2 = c^2
(4)^2 + (8)^2 = c^2
Now, we can simplify and solve for c:
16 + 64 = c^2
80 = c^2
c = [tex]\sqrt{80}[/tex]
Our answer is not in simplified radical form because the number under is divisible by a perfect square, 16. We can divide the inside, 80, by 16, and add a 4 on the outside, as it is the square root of 16:
c = [tex]4\sqrt{5}[/tex]
The length of the hypotenuse in the given right triangle, with legs measuring 4 and 8, is approximately 8.94.
To find the length of the hypotenuse in a right triangle, we can use the Pythagorean theorem. According to the theorem, in a right triangle, the square of the hypotenuse's length is equal to the sum of the squares of the lengths of the other two sides.
In this case, let's label the lengths of the legs as 'a' and 'b', with 'a' being 4 and 'b' being 8. The hypotenuse, which we need to find, can be represented as 'c'.
Applying the Pythagorean theorem, we have:
[tex]a^2 + b^2 = c^2[/tex]
Substituting the given values:
[tex]4^2 + 8^2 = c^2[/tex]
16 + 64 = [tex]c^2[/tex]
80 = [tex]c^2[/tex]
To find the length of the hypotenuse 'c', we need to take the square root of both sides:
√80 = √ [tex]c^2[/tex]
√80 = c
The square root of 80 is approximately 8.94.
Therefore, the length of the hypotenuse in the given right triangle, with legs measuring 4 and 8, is approximately 8.94.
To know more about hypotenuse , here
https://brainly.com/question/2217700
#SPJ2
1.Given the function f(x) = -2c + cx - x^2? and f^-1(5) = -1, find c
Here we have a quadratic function and we want to find the value of a constant with a given restriction.
We will find that c = 8.
So we have the function:
[tex]f(x) = -2c + cx - x^2[/tex]
We know that:
[tex]f(5)^{-1} = -1 = \frac{1}{-2c + c\cdot 5 - (5)^2}[/tex]
Notice that the above equation means that:
[tex]-2c + c\cdot5 - (5)^2 = -1[/tex]
Then we just need to solve the above equation for c:
[tex]-2c + 5c - (5)^2 = -1\\\\(-2 + 5)\cdot c - 25 = -1\\\\3\cdot c = -1 + 25\\\\3\cdot c = 24\\\\c = 24/3 = 8[/tex]
So we found that the value of c is 8.
This means that the function is:
[tex]f(x) = -16 + 8\cdot x - x^2[/tex]
You can see the graph below:
If you want to learn more, you can read:
https://brainly.com/question/24215686
halp me children it's important
Answer:
64 cm³
Does the answer help you?