A 2100 kg truck traveling north at 38 km/h turns east and accelerates to 55 km/h. (a) What is the change in the truck's kinetic energy

Answers

Answer 1

Answer:

Change in kinetic energy (ΔKE) = 12.8 × 10⁴ J

Explanation:

Given:

Mass of truck(m) = 2,100 kg

Initial speed(v1) = 38 km/h = 38,000 / 3600 = 10.56 m/s

Final speed(v2) = 55 km/h = 55,000 / 3600 = 15.28 m/s

Find:

Change in kinetic energy (ΔKE)

Computation:

Change in kinetic energy (ΔKE) = 1/2(m)[v2² - v1²]

Change in kinetic energy (ΔKE) = 1/2(2100)[15.28² - 10.56²]

Change in kinetic energy (ΔKE) = 1,050[233.4784 - 111.5136]

Change in kinetic energy (ΔKE) = 1,050[121.9648]

Change in kinetic energy (ΔKE) = 128063.04

Change in kinetic energy (ΔKE) = 12.8 × 10⁴ J


Related Questions

Scientists today learn about the world by _____. 1. using untested hypotheses to revise theories 2. observing, measuring, testing, and explaining their ideas 3. formulating conclusions without testing them 4. changing scientific laws

Answers

Answer:

Option 2 (observing, measuring, testing, and explaining their ideas) is the correct choice.

Explanation:

A traditional perception of such a scientist is those of an individual who performs experiments in some kind of a white coat. The reality of the situation is, a researcher can indeed be described as an individual interested in the comprehensive as well as a recorded review of the occurrences occurring in nature but perhaps not severely constrained to physics, chemistry as well as biology alone.

The other three choices have no relation to a particular task. So the option given here is just the right one.

At what rate must Uranium 235 undergo fission by neutron bombardment to generate energy at a rate of 100 W (1 W

Answers

Complete Question

At what rate must Uranium 235 undergo fission by neutron bombardment to generate energy at a rate of 100 W (1 W = 1 J/s)? Assume each fission reaction releases 200 MeV of energy.

Answer

a. Approximately [tex]5*10^{10}[/tex] fissions per second.

b. Approximately [tex]6*10^{12 }[/tex]fissions per second.

c. Approximately [tex]4*10^{11}[/tex] fissions per second.

d. Approximately [tex]3*10^{12}[/tex] fissions per second.

e. Approximately[tex]3*10^{14}[/tex] fissions per second.

Answer:

The correct option is  d

Explanation:

From the question we are told that

       The energy released by each fission reaction [tex]E = 200 \ MeV = 200 *10^{6} * 1.60 *10^{-19} =3.2*10^{-11} \ J /fission[/tex]

Thus to generated  [tex]100 \ J/s[/tex] i.e  (100 W  ) the rate of fission is  

              [tex]k = \frac{100}{3.2 *10^{-11} }[/tex]

              [tex]k =3*10^{12} fission\ per \ second[/tex]

Now the friends are ready to tackle a homework problem. A pulse is sent traveling along a rope under a tension of 29 N whose mass per unit length abruptly changes, from 19 kg/m to 45 kg/m. The length of the rope is 2.5 m for the first section and 2.8 m for the second, and the second rope is rigidly fixed to a wall. Two pulses will eventually be detected at the origin: the pulse that was reflected from the medium discontinuity and the pulse that was originally transmitted, which hits the wall and is reflected back and transmitted through the first rope. What is the time difference, Δt, between the two pulses detected at the origin? s

Answers

Answer:

The time difference is 2.97 sec.

Explanation:

Given that,

Tension = 29 N

Mass per unit length [tex]\mu_{1}=19\ kg/m[/tex]

Mass per unit length [tex]\mu_{2}=45\ kg/m[/tex]

Length of first section = 2.5 m

Length of second section = 2.8 m

We need to total distance of first pulse

Using formula for distance

[tex]d=2.5+2.5[/tex]

[tex]d_{1}=5.0\ m[/tex]

We need to total distance of second pulse

Using formula for distance

[tex]d=2.8+2.8[/tex]

[tex]d_{2}=5.6\ m[/tex]

We need to calculate the speed of pulse in the first string

Using formula of speed

[tex]v_{1}=\sqrt{\dfrac{T}{\mu_{1}}}[/tex]

Put the value into the formula

[tex]v_{1}=\sqrt{\dfrac{29}{19}}[/tex]

[tex]v_{1}=1.24\ m/s[/tex]

We need to calculate the speed of pulse in the second string

Using formula of speed

[tex]v_{2}=\sqrt{\dfrac{T}}{\mu_{2}}}[/tex]

Put the value into the formula

[tex]v_{2}=\sqrt{\dfrac{29}{45}}[/tex]

[tex]v_{2}=0.80\ m/s[/tex]

We need to calculate the time for first pulse

Using formula of time

[tex]t_{1}=\dfrac{d_{1}}{v_{1}}[/tex]

Put the value into the formula

[tex]t_{1}=\dfrac{5.0}{1.24}[/tex]

[tex]t_{1}=4.03\ sec[/tex]

We need to calculate the time for second pulse

Using formula of time

[tex]t_{2}=\dfrac{d_{1}}{v_{1}}[/tex]

Put the value into the formula

[tex]t_{2}=\dfrac{5.6}{0.80}[/tex]

[tex]t_{2}=7\ sec[/tex]

We need to calculate the time difference

Using formula of time difference

[tex]\Delta t=t_{2}-t_{1}[/tex]

Put the value into the formula

[tex]\Delta t=7-4.03[/tex]

[tex]\Delta t=2.97\ sec[/tex]

Hence, The time difference is 2.97 sec.

A certain car traveling 33.0mph skids to a stop in 39m from the point where the brakes were applied. In approximately what distance would the car stop had it been going 66.0mph

Answers

Answer: 156.02 metre.

Explanation:

Give that a certain car traveling 33.0mph skids to a stop in 39m from the point where the brakes were applied.

Let us use third equation of motion,

V^2 = U^2 + 2as

Since the car is decelerating, V = 0

And acceleration a will be negative.

U = 33 mph

S = 39 m

Substitute both into the formula

0 = 33^2 - 2 × a × 39

0 = 1089 - 78a

78a = 1089

a = 1089 / 78

a = 13.96 m/h^2

If we assume that the car decelerate at the same rate.

the distance the car will stop had it been going 66.0mph will be achieved by using the same formula

V^2 = U^2 + 2as

0 = 66^2 - 2 × 13.96 × S

4356 = 27.92S

S = 4356 / 27.92

S = 156.02 m

Therefore, the car would stop at

156.02 m

A rectangular conducting loop of wire is approximately half-way into a magnetic field B (out of the page) and is free to move. Suppose the magnetic field B begins to decrease rapidly in strength

Requried:
What happens to the loop?

1. The loop is pushed to the left, toward the magnetic field.
2. The loop doesn’t move.
3. The loop is pushed downward, towards the bottom of the page.
4. The loop will rotate.
5. The loop is pushed upward, towards the top of the page.
6. The loop is pushed to the right, away from the magnetic field

Answers

Answer:

. The loop is pushed to the right, away from the magnetic field

Explanation

This decrease in magnetic strength causes an opposing force that pushes the loop away from the field

A projectile is shot from the edge of a cliff 80 m above ground level with an initial speed of 60 m/sec at an angle of 30° with the horizontal. Determine the time taken by the projectile to hit the ground below.

Answers

Answer:

8 seconds

Explanation:

Answer:

Explanation:

Going up

Time taken to reach maximum height= usin∅/g

=3 secs

Maximum height= H+[(usin∅)²/2g]

=80+[(60sin30)²/20]

=125 meters

Coming Down

Maximum height= ½gt²

125= ½(10)(t²)

t=5 secs

Each proton-proton cycle generates 26.7 MeV of energy. If 9.9 Watts are generated via by the proton-proton cycle, how many billion neutrinos are produced

Answers

Answer:

4.635 *10^12 Neutrinos

Explanation:

Here in this question, we are to determine the number of neutrinos in billions produced, given the power generated by the proton-proton cycle.

We proceed as follows;

In proton-proton cycle generates 26.7 MeV of energy and in this cycle two neutrinos are produced.

From the question, we are given that

Power P = 9.9 watts = 9.9 J/s

Watts is same as J/s

The number of proton-proton cycles required to generate E energy is N = E / E '

Where E ' = Energy generated in proton-proton cycle which is given as 26.7 Mev in the question

Converting Mev to J, we have

= 26.7 x1.6 x10 -13 J

To get the number N which is the number of proton-proton cycle required, we have;

N = 9.9 /(26.7 x1.6 x10^-13) = 2.32 * 10^12

Since we have two proton cycles( proton-proton), it automatically means 2 neutrinos will be produced.

Therefore number of neutrions produced = 2 x Number of proton-proton cycles = 2 * 2.32 * 10^12 = 4.635 * 10^12 neutrinos

The place you get your hair cut has two nearly parallel mirrors 6.5 m apart. As you sit in the chair, your head is

Answers

Complete question is;

The place you get your hair cut has two nearly parallel mirrors 6.50 m apart. As you sit in the chair, your head is 3.00 m from the nearer mirror. Looking toward this mirror, you first see your face and then, farther away, the back of your head. (The mirrors need to be slightly nonparallel for you to be able to see the back of your head, but you can treat them as parallel in this problem.) How far away does the back of your head appear to be?

Answer:

13 m

Explanation:

We are given;

Distance between two nearly parallel mirrors; d = 6.5 m

Distance between the face and the nearer mirror; x = 3 m

Thus, the distance between the back-head and the mirror = 6.5 - 3 = 3.5m

Now, From the given values above and using the law of reflection, we can find the distance of the first reflection of the back of the head of the person in the rear mirror.

Thus;

Distance of the first reflection of the back of the head in the rear mirror from the object head is;

y' = 2y

y' = 2 × 3.5

y' = 7

The total distance of this image from the front mirror would be calculated as;

z = y' + x

z = 7 + 3

z = 10

Finally, the second reflection of this image will be 10 meters inside in the front mirror.

Thus, the total distance of the image of the back of the head in the front mirror from the person will be:

T.D = x + z

T.D = 3 + 10

T.D = 13m

an electric device is plugged into a 110v wall socket. if the device consumes 500 w of power, what is the resistance of the device

Answers

Answer: R=24.2Ω

Explanation: Power is rate of work being done in an electric circuit. It relates to voltage, current and resistance through the following formulas:

P=V.i

P=R.i²

[tex]P=\frac{V^{2}}{R}[/tex]

The resistance of the system is:

[tex]P=\frac{V^{2}}{R}[/tex]

[tex]R=\frac{V^{2}}{P}[/tex]

[tex]R=\frac{110^{2}}{500}[/tex]

R = 24.2Ω

For the device, resistance is 24.2Ω.

Figure (3) shows a car travelling along the route PQRST in 30 minutes. What is the average speed of the car in km/hour?

Answers

Answer:

60 km/hour.

Explanation:

We'll begin by calculating the total distance traveled by the car. This is illustrated below:

Total distance traveled = sum of distance between PQRST

Total distance = 10 + 5 + 10 + 5

Total distance = 30 km

Next, we shall convert 30 mins to hour. This can obtained as follow:

Recall:

60 mins = 1 hour

Therefore,

30 mins = 30/60 = 0.5 hour.

Finally, we shall determine the average speed of the car as follow:

Distance = 30 km

Time = 0.5 hour

Speed =?

Speed = distance /time

Speed = 30/0.5

Speed = 60 km/hour

Therefore, the speed of the car is 60 km/hour.

What is the power P of the eye when viewing an object 61.0 cm away? Assume the lens-to-retina distance is 2.00 cm , and express the answer in diopters.

Answers

Answer:

The power of the eye is 51.64 diopters

Explanation:

The power of the eye is given by;

[tex]P = \frac{1}{f} = \frac{1}{d_o} +\frac{1}{d_i}[/tex]

where;

P is the power of the eye in diopter

f is the focal length of the eye

[tex]d_o[/tex] is the distance between the eye and the object

[tex]d_i[/tex] is the distance between the eye and the image

Given;

[tex]d_o[/tex] = 61.0 cm = 0.61 m

[tex]d_i[/tex] = 2.0 cm = 0.02 m

[tex]P = \frac{1}{d_o} +\frac{1}{d_i} \\\\P = \frac{1}{0.61} + \frac{1}{0.02} \\\\P = 51.64 \ D[/tex]

Therefore, the power of the eye is 51.64 diopters.

The power P of the eye when viewing an object 61.0 cm away is 51.639D

The power of a lens is a reciprocal of its focal length and it is expressed as:

[tex]P=\frac{1}{f}[/tex]

According to the mirror formula

[tex]\frac{1}{f} =\frac{1}{d_i} +\frac{1}{d_0}[/tex]

where

[tex]d_i[/tex] is the distance from the lens to the image = 61.0cm = 0.61m

[tex]d_0[/tex] is the distance from the lens to the object = 2.00cm = 0.02m

[tex]P=\frac{1}{f} =\frac{1}{0.02} +\frac{1}{0.61}\\P=50+1.639\\P=51.639D[/tex]

Hence the power P of the eye when viewing an object 61.0 cm away is 51.639D

Learn more here: https://brainly.com/question/14870552

what effect does decreasing the field current below its nominal value have on the speed versus voltage characteristic of a separately excited dc motor

Answers

Answer

The effect is that it Decreases the field current IF and increases slope K1

The primary difference between a barometer and a manometer is
A. a barometer is used to measure atmospheric pressure, and a manometer is used to measure gauge pressure.
B. a barometer uses mercury, while a manometer can use any liquid. a barometer is used to measure atmospheric pressure, and a manometer is used to measure absolute pressure.
C a barometer reads in mm, while a manometer reads in Pa.
D a barometer can measure either positivee or negative pressure, while a manometer only
E positive pressure. measures

Answers

Answer:

a barometer is used to measure atmospheric pressure, and a manometer is used to measure gauge pressure.

Explanation:

A barometer measures air pressure at any locality with sea level as the reference.

However, a manometer is used to measure all pressures especially gauge pressures. Thus, if the aim is to measure the pressure at any point below a fluid surface, a barometer is used to determine the air pressure. The manometer may now be used to determine the gauge pressure

The algebraic sum of these two values gives the absolute pressure.

which category would a person who has an IQ of 84 belong ?

Answers

answer: below average

In a physics laboratory experiment, a coil with 250 turns enclosing an area of 14 cm2 is rotated in a time interval of 0.030 s from a position where its plane is perpendicular to the earth's magnetic field to a position where its plane is parallel to the field. The earth's magnetic field at the lab location is 5.0×10^−5 T.Required:a. What is the total magnetic flux through the coil before it is rotated? After it is rotated? b. What is the average emf induced in the coil?

Answers

Explanation:

Consider a loop of wire, which has an area of [tex]A=14 \mathrm{cm}^{2}[/tex] and [tex]N=250[/tex] turns, it is initially placed perpendicularly in the earth magnetic field. Then it is rotated from this position to a position where its plane is parallel to the field as shown in the following figure in [tex]\Delta t=0.030[/tex] s. Given that the earth's magnetic field at the position of the loop is [tex]B=5.0 \times 10^{-5} \mathrm{T}[/tex], the flux through the loop before it is rotated is,

[tex]\Phi_{B, i} &=B A \cos \left(\phi_{i}\right)=B A \cos \left(0^{\circ}\right[/tex]

[tex]=\left(5.0 \times 10^{-5} \mathrm{T}\right)\left(14 \times 10^{-4} \mathrm{m}^{2}\right)(1)[/tex]

[tex]=7.0 \times 10^{-8} \mathrm{Wb}[/tex]

[tex]\quad\left[\Phi_{B, i}=7.0 \times 10^{-8} \mathrm{Wb}\right[/tex]

after it is rotated, the angle between the area and the magnetic field is [tex]\phi=90^{\circ}[/tex] thus,

[tex]\Phi_{B, f}=B A \cos \left(\phi_{f}\right)=B A \cos \left(90^{\circ}\right)=0[/tex]

[tex]\qquad \Phi_{B, f}=0[/tex]

(b) The average magnitude of the emf induced in the coil equals the change in the flux divided by the time of this change, and multiplied by the number of turns, that is,

[tex]{\left|\mathcal{E}_{\mathrm{av}}\right|=N\left|\frac{\Phi_{B, f}-\Phi_{B, i}}{\Delta t}\right|}{=} & \frac{1.40 \times 10^{-5} \mathrm{Wb}}{0.030 \mathrm{s}}[/tex]

[tex]& 3.6 \times 10^{-4} \mathrm{V}=0.36 \mathrm{mV}[/tex]

[tex]\mathbb{E}=0.36 \mathrm{mV}[/tex]

(a) The initial and final flux through the coil is 1.75 × 10⁻⁵ Wb and 0 Wb

(b) The induced EMF in the coil is 0.583 mV

Flux and induced EMF:

Given that the coil has N = 250 turns

and an area of A = 14cm² = 1.4×10⁻³m².

It is rotated for a time period of Δt = 0.030s such that it is parallel with the earth's magnetic field that is B = 5×10⁻⁵T

(a) The flux passing through the coil is given by:

Ф = NBAcosθ

where θ is the angle between area vector and the magnetic field

The area vector is perpendicular to the plane of the coil.

So, initially, θ = 0°, as area vector and earth's magnetic field both are perpendicular to the plane of the coil

So the initial flux is:

Φ = NABcos0° = NAB

Ф = 250×1.4×10⁻³×5×10⁻⁵ Wb

Ф = 1.75 × 10⁻⁵ Wb

Finally, θ = 90°, and since cos90°, the final flux through the coil is 0

(b) The EMF induced is given by:

E = -ΔФ/Δt

E = -(0 - 1.75 × 10⁻⁵)/0.030

E = 0.583 × 10⁻³ V

E = 0.583 mV

Learn more about magnetic flux:

https://brainly.com/question/15359941?referrer=searchResults

What physical feature of a wave is related to the depth of the wave base? What is the difference between the wave base and still water level?

Answers

Answer:

physical feature of a wave is related to the depth of the wave base is The circular orbital motion

B. The wave base is the depth, and the still water level is the horizontal level

A bar magnet is dropped from above and falls through the loop of wire. The north pole of the bar magnet points downward towards the page as it falls. Which statement is correct?a. The current in the loop always flows in a clockwise direction. b·The current in the loop always flows in a counterclockwise direction. c. The current in the loop flows first in a clockwise, then in a counterclockwise direction. d. The current in the loop flows first in a counterclockwise, then in a clockwise direction. e. No current flows in the loop because both ends of the magnet move through the loop.

Answers

Answer:

b. The current in the loop always flows in a counterclockwise direction.

Explanation:

When a magnet falls through a loop of wire, it induces an induced current on the loop of wire. This induced current is due to the motion of the magnet through the loop, which cause a change in the flux linkage of the magnet. According to Lenz law, the induced current acts in such a way as to repel the force or action that produces it. For this magnet, the only opposition possible is to stop its fall by inducing a like pole on the wire loop to repel its motion down. An induced current that flows counterclockwise in the wire loop has a polarity that is equivalent to a north pole on a magnet, and this will try to repel the motion of the magnet through the coil. Also, when the magnet goes pass the wire loop, this induced north pole will try to attract the south end of the magnet, all in a bid to stop its motion downwards.

The current in the loop always flows in a counterclockwise direction. Hence, option (b) is correct.

The given problem is based on the concept and fundamentals of magnetic bars. When a magnet falls through a loop of wire, it induces an induced current on the loop of wire. There is some magnitude of current induced in the wire.

This induced current is due to the motion of the magnet through the loop, which cause a change in the flux linkage of the magnet. According to Lenz law, the induced current acts in such a way as to repel the force or action that produces it. For this magnet, the only opposition possible is to stop its fall by inducing a like pole on the wire loop to repel its motion down. An induced current that flows counterclockwise in the wire loop has a polarity that is equivalent to a north pole on a magnet, and this will try to repel the motion of the magnet through the coil. Also, when the magnet goes pass the wire loop, this induced north pole will try to attract the south end of the magnet, all in a bid to stop its motion downwards.

Thus, we can say that the current in the loop always flows in a counterclockwise direction. Hence, option (b) is correct.

Learn more about the magnetic field here:

https://brainly.com/question/14848188

Give an example of a fad diet that is not healthy and one that is healthy. Explain how you know the difference.

Answers

Answer:

 Good Diet: ! gallon of water a day, Fruits, Vegetables, White meats(Chicken), Don't eat past 3 PM.

Bad Diet: Pizza, Red meat, Baked goods, Eating at late hours.

Explanation: I know the difference because, When you drink water first thing in the morning it gets your metabolism running. Than means you can digest foods better, you want to feed your body good foods but you should not eat until you feel stuffed. You should eat until you are no longer starving. Than you should drink a cup of water in between meals. I know you should not eat past 3 pm because your body needs time to digest foods because you should never go to sleep with a full stomach. I know the difference between good food and bad food because when you eat healthy food and a balanced diet, your body will have more energy and you wont feel tired afterwards. Eating bad foods and food with artificial sugars will clump up in your kidneys, and your body will have small bursts of energy but you will feel lazy afterwards...Your body is supposed to stay energized from a healthy meal in order to give you the energy your body needs to exercise. If you feel droopy all the time and you don't want to do anything, than you are unhealthy.

Answer:

A vegetarian diet is an example of a good fad diet if you do it correctly. It can help you get lots of veggies and good nutrients from them while still following the non-meat diet you want. This can be effective and good for weight loss becasue you are still eating and getting all the good nutrients and calories from less fatty foods. 

Vegan diet (some can be successful but many people fail and do not do good that is why I choose this) The problem with this fad diet is that it can cause nutritional deficiencies and lead to a host of additional health problems, including negatively impacting hormonal health and metabolism. Many people also struggle to find healthy vegan food and end up eating bad and fatty foods instead. 

Explanation:

Got a 100

If you stood on a planet having a mass four times higher than Earth's mass, and a radius two times 70) lon longer than Earth's radius, you would weigh:________
A) four times more than you do on Earth.
B) two times less than you do on Earth.
C) the same as you do on Earth
D) two times more than you do on Earth.

Answers

CHECK COMPLETE QUESTION BELOW

you stood on a planet having a mass four times that of earth mass and a radius two times of earth radius , you would weigh?

A) four times more than you do on Earth.

B) two times less than you do on Earth.

C) the same as you do on Earth

D) two times more than you do on Earth

Answer:

OPTION C is correct

The same as you do on Earth

Explanation :

According to law of gravitation :

F=GMm/R^2......(a)

F= mg.....(b)

M= mass of earth

m = mass of the person

R = radius of the earth

From law of motion

Put equation b into equation a

mg=GMm/R^2

g=GMm/R^2

g=GM/R^2

We know from question a planet having a mass four times that of earth mass and a radius two times of earth radius if we substitute we have

m= 4M

r=(2R)^2=4R^2

g= G4M/4R^2

Then, 4in the denominator will cancel out the numerator we have

g= GM/R^2

Therefore, g remain the same

The momentum of an electron is 1.75 times larger than the value computed non-relativistically. What is the speed of the electron

Answers

Answer:

Speed of the electron is 2.46 x 10^8 m/s

Explanation:

momentum of the electron before relativistic effect = [tex]M_{0} V[/tex]

where [tex]M_{0}[/tex] is the rest mass of the electron

V is the velocity of the electron.

under relativistic effect, the mass increases.

under relativistic effect, the new mass M will be

M = [tex]M_{0}/ \sqrt{1 - \beta ^{2} }[/tex]

where

[tex]\beta = V/c[/tex]

c  is the speed of light = 3 x 10^8 m/s

V is the speed with which the electron travels.

The new momentum will therefore be

==> [tex]M_{0}V/ \sqrt{1 - \beta ^{2} }[/tex]

It is stated that the relativistic momentum is 1.75 times the non-relativistic momentum. Equating, we have

1.75[tex]M_{0} V[/tex] = [tex]M_{0}V/ \sqrt{1 - \beta ^{2} }[/tex]

the equation reduces to

1.75 = [tex]1/ \sqrt{1 - \beta ^{2} }[/tex]

square both sides of the equation, we have

3.0625 = 1/[tex](1 - \beta ^{2} )[/tex]

3.0625 - 3.0625[tex]\beta ^{2}[/tex] = 1

2.0625 = 3.0625[tex]\beta ^{2}[/tex]

[tex]\beta ^{2}[/tex] = 0.67

β = 0.819

substitute for  [tex]\beta = V/c[/tex]

V/c = 0.819

V = c x 0.819

V = 3 x 10^8 x 0.819 = 2.46 x 10^8 m/s

What is the angle between a wire carrying an 8.40 A current and the 1.20 T field it is in, if 50.0 cm of the wire experiences a magnetic force of 2.55 N? ° (b) What is the force (in N) on the wire if it is rotated to make an angle of 90° with the field? N

Answers

Answer:

A. 30.38°

B 5.04N

Explanation:

Using

F= ILBsin theta

2 .55N= 8.4Ax 0.5mx 1.2T x sintheta

Theta = 30.38°

B. If theta is 90°

Then

F= 8.4Ax 0.5mx 1.2x sin 90°

F= 5.04N

Let surface S be the boundary of the solid object enclosed by x^2+z^2=4, x+y=6, x=0, y=0, and z=0. and, let f(x,y,z)=(3x)i+(x+y+2z)j + (3z)k be a vector field (for example, the velocityfaild of a fluid flow). the solid object has five sides, S1:bottom(xy-plane), S2:left side(xz-plane), S3 rear side(yz-plane), S4:right side, and S5:cylindrical roof.

a. Sketch the solid object.
b. Evaluate the flux of F through each side of the object (S1,S2,S3,S4,S5).
c. Find the total flux through surface S.

Answers

a. I've attached a plot of the surface. Each face is parameterized by

• [tex]\mathbf s_1(x,y)=x\,\mathbf i+y\,\mathbf j[/tex] with [tex]0\le x\le2[/tex] and [tex]0\le y\le6-x[/tex];

• [tex]\mathbf s_2(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf k[/tex] with [tex]0\le u\le2[/tex] and [tex]0\le v\le\frac\pi2[/tex];

• [tex]\mathbf s_3(y,z)=y\,\mathbf j+z\,\mathbf k[/tex] with [tex]0\le y\le 6[/tex] and [tex]0\le z\le2[/tex];

• [tex]\mathbf s_4(u,v)=u\cos v\,\mathbf i+(6-u\cos v)\,\mathbf j+u\sin v\,\mathbf k[/tex] with [tex]0\le u\le2[/tex] and [tex]0\le v\le\frac\pi2[/tex]; and

• [tex]\mathbf s_5(u,y)=2\cos u\,\mathbf i+y\,\mathbf j+2\sin u\,\mathbf k[/tex] with [tex]0\le u\le\frac\pi2[/tex] and [tex]0\le y\le6-2\cos u[/tex].

b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.

[tex]\mathbf n_1=\dfrac{\partial\mathbf s_1}{\partial y}\times\dfrac{\partial\mathbf s_1}{\partial x}=-\mathbf k[/tex]

[tex]\mathbf n_2=\dfrac{\partial\mathbf s_2}{\partial u}\times\dfrac{\partial\mathbf s_2}{\partial v}=-u\,\mathbf j[/tex]

[tex]\mathbf n_3=\dfrac{\partial\mathbf s_3}{\partial z}\times\dfrac{\partial\mathbf s_3}{\partial y}=-\mathbf i[/tex]

[tex]\mathbf n_4=\dfrac{\partial\mathbf s_4}{\partial v}\times\dfrac{\partial\mathbf s_4}{\partial u}=u\,\mathbf i+u\,\mathbf j[/tex]

[tex]\mathbf n_5=\dfrac{\partial\mathbf s_5}{\partial y}\times\dfrac{\partial\mathbf s_5}{\partial u}=2\cos u\,\mathbf i+2\sin u\,\mathbf k[/tex]

Then integrate the dot product of f with each normal vector over the corresponding face.

[tex]\displaystyle\iint_{S_1}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{6-x}f(x,y,0)\cdot\mathbf n_1\,\mathrm dy\,\mathrm dx[/tex]

[tex]=\displaystyle\int_0^2\int_0^{6-x}0\,\mathrm dy\,\mathrm dx=0[/tex]

[tex]\displaystyle\iint_{S_2}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,0,u\sin v)\cdot\mathbf n_2\,\mathrm dv\,\mathrm du[/tex]

[tex]\displaystyle=\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=-8[/tex]

[tex]\displaystyle\iint_{S_3}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^6\mathbf f(0,y,z)\cdot\mathbf n_3\,\mathrm dy\,\mathrm dz[/tex]

[tex]=\displaystyle\int_0^2\int_0^60\,\mathrm dy\,\mathrm dz=0[/tex]

[tex]\displaystyle\iint_{S_4}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,6-u\cos v,u\sin v)\cdot\mathbf n_4\,\mathrm dv\,\mathrm du[/tex]

[tex]=\displaystyle\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=\frac{40}3+6\pi[/tex]

[tex]\displaystyle\iint_{S_5}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^{\frac\pi2}\int_0^{6-2\cos u}\mathbf f(2\cos u,y,2\sin u)\cdot\mathbf n_5\,\mathrm dy\,\mathrm du[/tex]

[tex]=\displaystyle\int_0^{\frac\pi2}\int_0^{6-2\cos u}12\,\mathrm dy\,\mathrm du=36\pi-24[/tex]

c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.

Alternatively, since S is closed, we can find the total flux by applying the divergence theorem.

[tex]\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_R\mathrm{div}\mathbf f(x,y,z)\,\mathrm dV[/tex]

where R is the interior of S. We have

[tex]\mathrm{div}\mathbf f(x,y,z)=\dfrac{\partial(3x)}{\partial x}+\dfrac{\partial(x+y+2z)}{\partial y}+\dfrac{\partial(3z)}{\partial z}=7[/tex]

The integral is easily computed in cylindrical coordinates:

[tex]\begin{cases}x(r,t)=r\cos t\\y(r,t)=6-r\cos t\\z(r,t)=r\sin t\end{cases},0\le r\le 2,0\le t\le\dfrac\pi2[/tex]

[tex]\displaystyle\int_0^2\int_0^{\frac\pi2}\int_0^{6-r\cos t}7r\,\mathrm dy\,\mathrm dt\,\mathrm dr=42\pi-\frac{56}3[/tex]

as expected.

Problem 25.40 What is the energy (in eV) of a photon of visible light that has a wavelength of 500 nm

Answers

Answer:

E = 2.48 eV

Explanation:

The energy of a photon is given by the following formula:

E = hυ

where,

E = Energy of Photon = ?

h = Plank's Constant = 6.626 x 10⁻³⁴ J.s

υ = frequency of photon = c/λ

Therefore,

E = hc/λ

where,

c = speed of light = 3 x 10⁸ m/s

λ = wavelength of light = 500 nm = 5 x 10⁻⁷ m

Therefore,

E = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(5 x 10⁻⁷ m)

E = (3.97 x 10⁻¹⁹ J)(1 eV/1.6 x 10⁻¹⁹ J)

E = 2.48 eV

A photon of visible light that has a wavelength of 500 nm, has an energy of 2.48 eV.

We can calculate the energy (E) of a photon with a wavelength (λ) of 500 nm using the Planck's-Einstein relation.

[tex]E = \frac{h \times c}{\lambda } = \frac{(6.63 \times 10^{-34}J.s ) \times (3.00 \times 10^{8}m/s )}{500 \times 10^{-9}m } = 3.98 \times 10^{-19} J[/tex]

where,

h: Planck's constantc: speed of light

We can convert 3.98 × 10⁻¹⁹ J to eV using the conversion factor 1 J = 6.24 × 10¹⁸ eV.

[tex]3.98 \times 10^{-19} J \times \frac{6.24 \times 10^{18} eV }{1J} = 2.48 eV[/tex]

A photon of visible light that has a wavelength of 500 nm, has an energy of 2.48 eV.

Learn more: https://brainly.com/question/2058557

B. CO
A wave has frequency of 2 Hz and a wave length of 30 cm. the velocity of the wave is
A. 60.0 ms
B. 6.0 ms
D. 0.6 ms​

Answers

Answer:

0.6 m/s

Explanation:

2Hz = 2^-1 = 2 /s

30cm = .3m

Velocity is in the units m/s, so multiplying wavelength in meters by the frequency will give you the velocity.

(.3m)*(2 /s) = 0.6 m/s

The answer is 0.6 ms

How long will it take a spacecraft travelling at 99% the speed of light (gamma = 7) to reach

the star Sirius which is 8.6 light-years away according to people on Earth ? How long will it

take according to the crew of the ship?

Answers

Answer:

The time taken is  [tex]t = 2.739 *10^{8} \ s[/tex]

Explanation:

From the question we are told that

    The speed of the spacecraft is [tex]v = 0.99c[/tex]

    where c is the speed of light with value [tex]c = 3.0*10^{8} \ m/s[/tex]

    =>   [tex]v = 0.99 * 3.0 *10^{8 } = 2.97*10^{8}\ m/s[/tex]

    The distance of Sirius is [tex]d = 8.6 \ light-years = 8.6 * 9.461*10^{15}= 8.135*10^{16} \ m[/tex]

   

Generally the time taken is mathematically represented as

       [tex]t = \frac{d}{v}[/tex]

substituting values

      [tex]t = \frac{8.136 *10^{16}}{2.97 *10^{8}}[/tex]

      [tex]t = 2.739 *10^{8} \ s[/tex]

A lab technician uses laser light with a wavelength of 650 nmnm to test a diffraction grating. When the grating is 42.0 cmcm from the screen, the first-order maxima appear 6.09 cmcm from the center of the pattern. How many lines per millimeter does this grating have?

Answers

Answer:

221 lines per millimetre

Explanation:

We know that for a diffraction grating, dsinθ =mλ where d = spacing between grating, θ = angle to maximum, m = order of maximum and λ = wavelength of light.

Since the grating is 42.0 cm from the screen and its first order maximum (m = 1) is at 6.09 cm from the center of the pattern,

tanθ = 6.09 cm/42.0 cm = 0.145

From trig ratios, cot²θ + 1 = cosec²θ

cosecθ = √((1/tanθ)² + 1) = √((1/0.145)² + 1) = √48.562 = 6.969

sinθ = 1/cosecθ = 1/6.969 = 0.1435

Also, sinθ = mλ/d at the first-order maximum, m = 1. So

sinθ = (1)λ/d = λ/d

Equating both expressions we have  

0.1435 = λ/d

d = λ/0.1435

Now, λ = 650 nm = 650 × 10⁻⁹ m

d = 650 × 10⁻⁹ m/0.1435

d = 4529.62 × 10⁻⁹ m per line

d = 4.52962 × 10⁻⁶ m per line

d = 0.00452962 × 10⁻³ m per line

d = 0.00452962 mm per line

Since d = width of grating/number of lines of grating

Then number of lines per millimetre = 1/grating spacing

= 1/0.00452962

= 220.77 lines per millimetre

≅ 221 lines per millimetre since we can only have a whole number of lines.

What is the reason for the increase and decrease size of the moon and write down in a paragraph.

Answers

Answer:

The reason for the increase or decrease of the moon is due to the angular perception of the moon.

Explanation:

Also called lunar illusion, this phenomenon is due to the position in which the moon is, it can be at the zenith or on the horizon, both distances are different from each other with respect to the position of the person.

The zenith is the highest part of the sky and the horizon the lowest.

When there are landmarks such as trees, buildings or mountains on the horizon, the illusion of closeness is given and the illusion of distance is misinterpreted.

But when looking up at the sky as there is no reference point there will be a failure in the perception of size.

Two automobiles are equipped with the same singlefrequency horn. When one is at rest and the other is moving toward the first at 20 m/s , the driver at rest hears a beat frequency of 9.0 Hz.

Requried:
What is the frequency the horns emit?

Answers

Answer: f ≈ 8.5Hz

Explanation: The phenomenon known as Doppler Shift is characterized as a change in frequency when one observer is stationary and the source emitting the frequency is moving or when both observer and source are moving.

For a source moving and a stationary observer, to determine the frequency:

[tex]f_{0} = f_{s}.\frac{c}{c-v_{s}}[/tex]

where:

[tex]f_{0}[/tex] is frequency of observer;

[tex]f_{s}[/tex] is frequency of source;

c is the constant speed of sound c = 340m/s;

[tex]v_{s}[/tex] is velocity of source;

Rearraging for frequency of source:

[tex]f_{0} = f_{s}.\frac{c}{c-v_{s}}[/tex]

[tex]f_{s} = f_{0}.\frac{c-v_{s}}{c}[/tex]

Replacing and calculating:

[tex]f_{s} = 9.(\frac{340-20}{340})[/tex]

[tex]f_{s} = 9.(0.9412)[/tex]

[tex]f_{s} =[/tex] 8.5

Frequency the horns emit is 8.5Hz.

The following situation will be used for the next three problems: A rock is projected upward from the surface of the moon, at time t = -0.0s, with a velocity of 30m/s. The acceleration due to gravity at the surface of the moon is 1.62m/s2 the time when the rock is ascending at a height of 180m is closest to:______.
a. 8s .
b. 12s.
c. 17s.
d. 23s.
e. 30s
For the previous situation, the height of the rock when it is descending with a velocity of 20m/s is closest to:_____.
A. 115m.
B. 125m.
C. 135m.
D. 145m
E. 155m.

Answers

Explanation:

Given that,

Initial speed of the rock, u = 30 m/s

The acceleration due to gravity at the surface of the moon is 1.62 m/s².

We need to find the time when the rock is ascending at a height of 180 m.

The rock is projected from the surface of the moon. The equation of motion in this case is given by :

[tex]h=ut-\dfrac{1}{2}gt^2\\\\180=30t-\dfrac{1}{2}\times 1.62t^2[/tex]

It is a quadratic equation, after solving whose solution is given by:

t = 7.53 s

or

t = 8 seconds

(e)If it is decending, v = -20 m/s

Now t' is the time of descending. So,

[tex]v=-u+gt\\\\t=\dfrac{v+u}{g}\\\\t=\dfrac{20+30}{1.62}\\\\t=30.86\ s[/tex]

Let h' is the height of the rock at this time. So,

[tex]h'=ut-\dfrac{1}{2}gt^2\\\\h'=30\times 30.86-\dfrac{1}{2}\times 1.62\times 30.86^2\\\\h'=154.40\ m[/tex]

or

h' = 155 m

Determine the orbital period (in hours) of an observation satellite in a circular orbit 1,787 km above Mars.

Answers

Answer:

T = 3.14 hours

Explanation:

We need to find the orbital period (in hours) of an observation satellite in a circular orbit 1,787 km above Mars.

We know that the radius of Mars is 3,389.5 km.

So, r = 1,787 + 3,389.5 = 5176.5 km

Using Kepler's law,

[tex]T^2=\dfrac{4\pi ^2}{GM}r^3[/tex]

M is mass of Mars, [tex]M=6.39\times 10^{23}\ kg[/tex]

So,

[tex]T^2=\dfrac{4\pi ^2}{6.67\times 10^{-11}\times 6.39\times 10^{23}}\times (5176.5 \times 10^3)^3\\\\T=\sqrt{\dfrac{4\pi^{2}}{6.67\times10^{-11}\times6.39\times10^{23}}\times(5176.5\times10^{3})^{3}}\\\\T=11334.98\ s[/tex]

or

T = 3.14 hours

So, the orbital period is 3.14 hours

Other Questions
Solve. 1/2(-4 2n) = -17 Please explain it to me if you can I dont really understand how to do these types of problems so it would be much appreciated! if 2x-y=2, what is the value of 9^x/3^y?1) 3 2) 9 3) 27 4) 81 Match each example to the correct categoryPlease help!! What is the value of the expression below when y = 2 and z8?8y - 2 Consider two parallel plate capacitors. The plates on Capacitor B have half the area as the plates on Capacitor A, and the plates in Capacitor B are separated by twice the separation of the plates of Capacitor A. If Capacitor A has a capacitance of CA-17.8nF, what is the capacitance of Capacitor? . How many and of which kind of roots does the equation f(x) = x3 x2 x + 1 have?A. 2 real; 1 complexB. 1 real; 2 complexC. 3 realD. 3 complex 2. Use the diagram and given information to answer the questions and prove the statement.a. Re-draw the diagram of the overlapping triangles so that the two triangles are separated.b. What additional information would be necessary to prove that the two triangles, XBY and ZAY , are congruent? What congruency would be applied? c. Prove (AZ) is congruent to (BX) using a flow chart proof. ( ):both have a line over them BRAINLIEST!!!What are the coordinates of P? for the functions f(x) = 4x^4+4x^3-8x^2-13x-5 and g(x) = x+1, find (f/g)(x) and (f/g)(2) The Extra Surplus Company's Balance Sheet for December 31, 2017 and the Income Statement for 2018 are shown below.Extra Surplus Company Balance Sheet December 31, 2017 Assets Cash $14,000Accounts Receivable 7,000Inventory 16,800Property and Equipment, Net 28,000$65,800Liabilities and Stockholders' Equity Accounts Payable $14,000Notes Payable, Long-Term 7,000Common Stock 28,000Retained Earnings 16,800$65,800Extra Surplus Company Income Statement For the Year Ended December 31, 2018 Sales $23,400Cost of Goods Sold 5,400Salaries and Wage Expense 5,400Interest Expense 1,800Other Expenses 900Net Income $9,900Additional data:A- Sales were $23,400; $14,400 in cash was received from customers.B- Bought new land for cash, $18,000.C- Sold other land for its book value of $9,000.D- Paid $1,800 principal on the long-term note payable and $1,800 in interest.E- Issued new shares of stock for $18,000 cash.F- Cash dividends of $3,800 were declared and paid to stockholders.G- Paid $10,300 on accounts payable.H- No inventory purchases were made: other expenses were incurred on account.I- All wages were paid in cash.J- Other expenses were on account.Required:a. Prepare a balance sheet as of December 31, 2020.b. Prepare the statement of cash flows using the direct method. round off 3867 in nearest 100 Which state of matter does this image represent? Image of water Solid Liquid Gas Plasma Solve the system of linear equations by graphing.9x + 3y = -32x - y = -4 In Sherif s (1936) study, when participants were first placed in a dark room alone and asked to estimate the apparent movement of a point of light, individuals were consistent in their own estimates, and these estimates differed greatly from participant to participant. When participants made the same estimates in a group setting, their estimates converged. This study demonstrated that conformity occurs when people ________.a. feel anonymous in a group.b. feel uncomfortable and insecure.c. can use others' behaviors as cues for what's right.d. can use anonymity to control others. Repeated-measures and matched-subjects experiments Aa Aa Repeated-measures experiments measure the same set of research participants two or more times, while matched-subjects experiments study participants who are matched on one or more characteristics. Which of the following are true for both a repeated-measures experiment and a matched-subjects experiment when used to compare two treatment conditions? Check all that apply. A. The researcher computes difference scores to compute a t statisticB. If the researcher has n number of participants to use in the experiment, then the degrees of freedom will be the same in a repeated-measures experiment or in a matched-subjects experimentC. The researcher must compute an estimated standard error for the mean difference score to compute a t statistic. D. Participants in both types of experiments are all measured the same number of times A matched-subjects experiment produced a t statistic with a df of 9. How many subjects participated in this study? A. 20 B. 10 C. 18 D. 9For a repeated-measures experiment comparing two treatment conditions, the t statistic has a df of 11. How many subjects participated in this study? A. 12 B. 22 C. 24 D. 11 Describe the direction of DNA replication. Why is that important? Which best explains a desirable outcome for energy efficiency? A) a low second law efficiency due to use of a low efficiency furnace B) a high second law efficiency due to use of a low efficiency furnace C) a high second law efficiency due to use of solar panels on the house D) a low second law efficiency due to use of solar panels on the house Factor Company is planning to add a new product to its line. To manufacture this product, the company needs to buy a new machine at a $620,000 cost with an expected four-year life and a $34,000 salvage value. All sales are for cash, and all costs are out-of-pocket, except for depreciation on the new machine. Additional information includes the following. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided. Round PV factor value to 4 decimal places.) Expected annual sales of new product $ 2,190,000 Expected annual costs of new product Direct materials 494,000 Direct labor 686,000 Overhead (excluding straight-line depreciation on new machine) 476,000 Selling and administrative expenses 174,000 Income taxes 30 % Required: 1. Compute straight-line depreciation for each year of this new machines life. 2. Determine expected net income and net cash flow for each year of this machines life. 3. Compute this machines payback period, assuming that cash flows occur evenly throughout each year. 4. Compute this machines accounting rate of return, assuming that income is earned evenly throughout each year. 5. Compute the net present value for this machine using a discount rate of 4% and assuming that cash flows occur at each year-end. (Hint: Salvage value is a cash inflow at the end of the assets life.) Given TS and TU are midsegments, PR=18.2, TS=6.5. Find QU . A. 9.1 B. 3.25 C. 13 D. 6.5 how can i solve this factorial? A 6,2- P6- A 5,3 + P5