The graph that shows the electricity usage on a record-breaking summer day is Sacramento, California is a function.
The domain is 24 hours of a day.
The number of megawatts used at 8 am is 1, 200 megawatts.
The time with the most electricity used was 4 pm to 6 pm and least used was 4 am.
f ( 12 ) would be 1, 900 megawatts.
Usage is increasing from 4 am to 5 pm and decreasing from 5 pm to 4 am.
What does the graph show ?The graph is a function because each point on the graph represents a distinct megawatt usage. The domain would be 24 hours of a day as this graph of electricity usage shows the usage per day.
The megawatts used at 8 am is:
= 1, 300 - ( 200 / 2 )
= 1, 200 megawatts
From 4 am to 5 pm, we see that electricity usage is increasing as people are getting ready for work and going to work, but from 5 pm to 4 am, electricity usage decreases.
Find out more on graphs at https://brainly.com/question/21444630
#SPJ1
a water park sold 1679 tickets for total of 44,620 on a wa summer day..each adult tocket is $35 and each child ticket is $20. how many of each type of tixkwt were sold?
Therefore , the solution of the given problem of unitary method comes out to be the attraction sold 943 child tickets and 736 adult tickets on that particular day.
What is an unitary method?It is possible to accomplish the objective by using previously recognized variables, this common convenience, or all essential components from a prior malleable study that adhered to a specific methodology. If the expression assertion result occurs, it will be able to get in touch with the entity again; if it does not, both crucial systems will undoubtedly miss the statement.
Here,
Assume the attraction sold x tickets for adults and y tickets for kids.
Based on the supplied data, we can construct the following two equations:
=> x + y = 1679 (equation 1, representing the total number of tickets sold)
=> 35x + 20y = 44620 (equation 2, representing the total revenue generated)
Using the elimination technique, we can find the values of x and y.
When we divide equation 1 by 20, we obtain:
=> 20x + 20y = 33580 (equation 3)
Equation 3 is obtained by subtracting equation 2 to yield:
=> 15x = 11040
=> x = 736
When we enter x = 736 into equation 1, we obtain:
=> 736 + y = 1679
=> y = 943
As a result, the attraction sold 943 child tickets and 736 adult tickets on that particular day.
To know more about unitary method visit:
https://brainly.com/question/28276953
#SPJ1
find a polynomial function with the following zeros: double zero at -4 simple zero at 3.
f(x) = (x+4)^2(x-3) has polynomial function with the following zeros: double zero at -4 simple zero at 3.
If a polynomial has a double zero at -4, it means that it can be factored as (x+4)^2.
If it also has a simple zero at 3, then the factorization must include (x-3).
Therefore, the polynomial function with these zeros is :-
f(x) = (x+4)^2(x-3)
This polynomial has a double zero at -4, because $(x+4)^2$ has a zero of order 2 at -4, and a simple zero at 3, because $(x-3)$ has a zero of order 1 at 3.
To know more about polynomial-
brainly.com/question/11536910
#SPJ4
Without an appointment, the average waiting time in minutes at the doctor's office has the probability density function f(t)=1/38, where 0≤t≤38
Step 1 of 2:
What is the probability that you will wait at least 26 minutes? Enter your answer as an exact expression or rounded to 3 decimal places.
Step 2 of 2:
What is the average waiting time?
The probability of waiting at least 26 minutes is 0.316. The average waiting time is 19 minutes.
Step 1:
The probability of waiting at least 26 minutes can be calculated by finding the area under the probability density function from 26 to 38:
P(waiting at least 26 minutes) = ∫26^38 (1/38) dt = [t/38] from 26 to 38
= (38/38) - (26/38) = 12/38 = 0.316
So the probability of waiting at least 26 minutes is 0.316 or approximately 0.316 rounded to 3 decimal places.
Step 2:
The average waiting time can be calculated by finding the expected value of the probability density function:
E(waiting time) = ∫0³⁸ t f(t) dt = ∫0³⁸ (t/38) dt
= [(t²)/(238)] from 0 to 38
= (38²)/(238) = 19
Therefore, the average waiting time is 19 minutes.
Learn more about probability here: brainly.com/question/30034780
#SPJ4
QUESTION THREE (30 Marks) a) For a group of 100 Kiondo weavers of Kitui, the median and quartile earnings per week are KSHs. 88.6, 86.0 and 91.8 respectively. The earnings for the group range between KShs. 80-100. Ten per cent of the group earn under KSHs. 84 per week, 13 per cent earn KSHs 94 and over and 6 per cent KShs. 96 and over. i. Put these data into the form of a frequency distribution and obtain an estimate of the mean wage. 15 Marks
Answer:
the answer would be 100 I guess
state the third congruence statement that is needed to prove that FGH is congruent to LMN using the ASA congruence therom
Answer:
a
Step-by-step explanation:
fill in the blank. Toward the end of a game of Scrabble, you hold the letters D, O, G, and Q. You can choose 3 of these 4 letters and arrange them in order in ______ different ways. (Give your answer as a whole number.)
Toward the end of a game of Scrabble, you hold the letters D, O, G, and Q. You can choose 3 of these 4 letters and arrange them in order in 24 different ways.
To solve this problem, we need to use the concept of permutations. A permutation is an arrangement of objects in a specific order. In this case, we need to find the number of permutations that can be made from the letters D, O, G, and Q when we choose 3 of these 4 letters.
The formula for finding the number of permutations is:
n! / (n-r)!
where n is the total number of objects and r is the number of objects we choose.
Using this formula, we can calculate the number of permutations as follows:
4! / (4-3)!
= 4! / 1!
= 4 x 3 x 2 x 1 / 1
= 24
Therefore, we can arrange the chosen 3 letters in 24 different ways.
To learn more about permutations click on,
https://brainly.com/question/30660588
#SPJ4
The Nutty Professor sells cashews for $6.80 per pound and Brazil nuts for $4.20 per pound. How much of each type should be used to make a 35 pound mixture that sells for $5.31 per pound?
The Nutty Prοfessοr shοuld use apprοximately 14.94 pοunds οf cashews and 35 - 14.94 = 20.06 pοunds οf Brazil nuts tο make a 35 pοund mixture that sells fοr $5.31 per pοund.
Assume the Nutty Prοfessοr makes a 35-pοund mixture with x pοunds οf cashews and (35 - x) pοunds οf Brazil nuts.
The cashews cοst $6.80 per pοund, sο the tοtal cοst οf x pοunds οf cashews is $6.8x dοllars.
Similarly, Brazil nuts cοst $4.20 per pοund, sο (35 - x) pοunds οf Brazil nuts cοst 4.2(35 - x) dοllars.
The tοtal cοst οf the mixture equals the sum οf the cashew and Brazil nut cοsts, which is:
6.8x + 4.2(35 - x) (35 - x)
When we simplify, we get:
6.8x + 147 - 4.2x
2.6x + 147
The mixture sells fοr $5.31 per pοund, sο the tοtal revenue frοm selling 35 pοunds οf the mixture is:
35(5.31) = 185.85
When we divide the tοtal cοst οf the mixture by the tοtal revenue, we get:
2.6x + 147 = 185.85
Subtractiοn οf 147 frοm bοth sides yields:
2.6x = 38.85
When we divide by 2.6, we get:
x ≈ 14.94
Tο make a 35-pοund mixture that sells fοr $5.31 per pοund, the Nutty Prοfessοr shοuld use apprοximately 14.94 pοunds οf cashews and 35 - 14.94 = 20.06 pοunds οf Brazil nuts.
To know more pοunds visit:
https://brainly.com/question/29145297
#SPJ1
Joann had a vegetable stand where she sold tomatoes. She sold 15 tomatoes the first day. The second day she sold half of what was left. On the third day she sold 12 and sold half of what was left on the fourth day. On the fifth day there were 4 tomatoes left to be sold. How many tomatoes did she have to begin with?
On the fifth day there were 4 tοmatοes left tο be sοld. Jοann had 71 tοmatοes tο begin with.
What is prοbability?Prοbability is a measure οf the likelihοοd οr chance οf an event οccurring. It is a number between 0 and 1, where 0 indicates that the event is impοssible, and 1 indicates that the event is certain tο οccur.
Let's wοrk backwards frοm the last day and figure οut hοw many tοmatοes Jοann had οn the fοurth day.
On the fifth day, there were 4 tοmatοes left tο be sοld, which means she sοld half οf what was left οn the fοurth day. Sο she must have started with 8 tοmatοes οn the fοurth day (since half οf 8 is 4).
On the fοurth day, she sοld half οf what was left, which means she had 16 tοmatοes befοre she sοld any.
On the third day, she sοld 12 tοmatοes, which means she had 28 tοmatοes befοre she sοld any.
On the secοnd day, she sοld half οf what was left, which means she had 56 tοmatοes befοre she sοld any.
Finally, οn the first day, she sοld 15 tοmatοes.
Therefοre, Jοann had 71 tοmatοes tο begin with.
To learn more about probability from the given link:
https://brainly.com/question/30034780
#SPJ1
What is the slope of the line in the following graph?
Answer:
1/3
Step-by-step explanation:
using rise over run fron the two dots, we can find 2/6, which simplifies down to 1/3
the c on the left has blank1 - word answer please type your answer to submit electron geometry and a bond angle of
The CH3-CIOI-CNI molecule contains three carbon atoms with different electron geometries and bond angles. The CH3 and CIOI carbon atoms have tetrahedral geometry with a bond angle of approximately 109.5 degrees, while the CNI carbon atom has a trigonal planar geometry with a bond angle of approximately 120 degrees.
Using this Lewis structure, we can determine the electron geometry and bond angle for each carbon atom in the molecule as follows.
The carbon atom in the CH3 group has four electron domains (three bonding pairs and one non-bonding pair). The electron geometry around this carbon atom is tetrahedral, and the bond angle is approximately 109.5 degrees.
The carbon atom in the CIOI group has four electron domains (two bonding pairs and two non-bonding pairs). The electron geometry around this carbon atom is also tetrahedral, and the bond angle is approximately 109.5 degrees.
The carbon atom in the CNI group has three electron domains (one bonding pair and two non-bonding pairs). The electron geometry around this carbon atom is trigonal planar, and the bond angle is approximately 120 degrees.
Therefore, the electron geometry and bond angle for each carbon atom in the structure CH3-CIOI-CNI are:
CH3 carbon atom tetrahedral geometry, bond angle of approximately 109.5 degrees
CIOI carbon atom tetrahedral geometry, bond angle of approximately 109.5 degrees
CNI carbon atom trigonal planar geometry, bond angle of approximately 120 degrees
To know more about electron geometry:
https://brainly.com/question/7558603
#SPJ4
_____The given question is incomplete, the complete question is given below:
Determine the electron geometry and bond angle for each carbon atom in the structure CH3-CIOI-CNI
WILL MARK AS BRAINLIEST!!!!!!!!!!!!!!
If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval (_____, _____) such that f'(c)>_______
If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval (1, 2) such that f'(c)> 0.
How do we know?Applying the Mean Value Theorem for derivatives, if a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists at least one number c in the interval (a, b) such that:
f'(c) = (f(b) - f(a)) / (b - a)
In the scenario above, we have that f is differentiable, and that f(1) < f(2).
choosing a = 1 and b = 2.
Then applying the Mean Value Theorem, there exists at least one number c in the interval (1, 2) such that:
f'(c) = (f(2) - f(1)) / (2 - 1)
f'(c) = f(2) - f(1)
We have that f(1) < f(2), we have:
f(2) - f(1) > 0
We can conclude by saying that there exists a number c in the interval (1, 2) such that:
f'(c) = f(2) - f(1) > 0
Learn more about Mean Value Theorem at: https://brainly.com/question/19052862
#SPJ1
In the diagram of right triangle ABC shown below, AB= 14 and AC = 9.
What is the measure of ZA, to the nearest degree?
1) 33
2) 40
3) 50
4) 57
The measure of the angle A is 49.99 degrees or 50 degrees if the length of AB = 14 and AC = 9.
What is trigonometry?Trigonometry is a branch of mathematics that deals with the relationship between sides and angles of a right-angle triangle.
We have a given a right angle triangle in the picture
It is required to find the measure of angle A
Applying cos ratio to find the measure of the angle A:
cosA = 9/14
cosA = 0.642
A = 49.99 ≈ 50 degree
Thus, the measure of the angle A is 49.99 degrees or 50 degrees if the length of AB = 14 and AC = 9.
Learn more about trigonometry here:
https://brainly.com/question/26719838
To approximate binomial probability plx > 8) when n is large, identify the appropriate 0.5 adjusted formula for normal approximation. O plx > 7.5) O plx >= 9) O plx > 9) O plx > 8.5)
The appropriate 0.5 adjusted formula for normal approximation is option (d) p(x > 8.5)
The appropriate 0.5 adjusted formula for normal approximation to approximate binomial probabilities when n is large is
P(Z > (x + 0.5 - np) / sqrt(np(1-p)))
where Z is the standard normal variable, x is the number of successes, n is the number of trials, and p is the probability of success in each trial.
To approximate binomial probability p(x > 8) when n is large, we need to use the continuity correction and find the appropriate 0.5 adjusted formula for normal approximation. Here, x = 8, n is large, and p is unknown. We first need to find the value of p.
Assuming a binomial distribution, the mean is np and the variance is np(1-p). Since n is large, we can use the following approximation
np = mean = 8, and
np(1-p) = variance = npq
8q = npq
q = 0.875
p = 1 - q = 0.125
Now, using the continuity correction, we adjust the inequality to p(x > 8) = p(x > 8.5 - 0.5)
P(Z > (8.5 - 0.5 - 8∙0.125) / sqrt(8∙0.125∙0.875))
= P(Z > 0.5 / 0.666)
= P(Z > 0.75)
Therefore, the correct option is (d) p(x > 8.5)
Learn more about binomial probability here
brainly.com/question/29350029
#SPJ4
The given question is incomplete, the complete question is:
To approximate binomial probability p(x > 8) when n is large, identify the appropriate 0.5 adjusted formula for normal approximation. a) p(x > 7.5) b) p(x >= 9) c) p(x > 9) d) p(x > 8.5)
Marcia Gadzera wants to retire in San Diego when she is 65 years old. Marcia is now 50 and believes she will need $90,000 to retire comfortably. To date, she has set aside no retirement money. If she gets interest of 10% compounded semiannually, how much must she invest today to meet her goal of $90,000?
Answer:
Step-by-step explanation:
We can use the formula for the future value of an annuity to determine how much Marcia needs to invest today to meet her retirement goal of $90,000. The formula for the future value of an annuity is:
FV = PMT x [(1 + r/n)^(n*t) - 1] / (r/n)
where:
FV = future value of the annuity
PMT = payment (or deposit) made at the end of each compounding period
r = annual interest rate
n = number of compounding periods per year
t = number of years
In this case, we want to solve for the PMT (the amount Marcia needs to invest today). We know that:
Marcia wants to retire in 15 years (when she is 65), so t = 15
The interest rate is 10% per year, compounded semiannually, so r = 0.10/2 = 0.05 and n = 2
Marcia wants to have $90,000 in her retirement account
Substituting these values into the formula, we get:
$90,000 = PMT x [(1 + 0.05/2)^(2*15) - 1] / (0.05/2)
Simplifying the formula, we get:
PMT = $90,000 / [(1.025)^30 - 1] / 0.025
PMT = $90,000 / 19.7588
PMT = $4,553.39 (rounded to the nearest cent)
Therefore, Marcia needs to invest $4,553.39 today in order to meet her retirement goal of $90,000, assuming an interest rate of 10% per year, compounded semiannually.
please help me with math quiz i’ll give you brainlist
Answer:
Answer: B. Symmetric.
Explanation:
In a symmetric distribution, the data is evenly distributed around the mean or median, creating a mirror image on both sides of the center. In this histogram, the median and mean are very close together at 55 and the bars on both sides of the center are roughly equal in height, indicating a fairly even distribution. Therefore, the histogram is symmetric.
If A B C are three matric such that AB=AC such that A=C then A is
Answer:
invertible
Step-by-step explanation:
If A is invertible then ∣A∣ =0
given :√9+25 : π-4 : ³√-27 : 2÷3 : 18÷2 : √-27
√9+25 = 28
π-4 = -0.8571
³√-27 = -3
2 / 3 = 0.6667
18÷2 = 9
√-27 = 5.196
What is surdsIn mathematics, a surd is a term used to describe an irrational number that is expressed as the root of an integer. Specifically, a surd is a number that cannot be expressed exactly as a fraction of two integers, and is usually written in the form of a radical (e.g. √2, √3, √5, etc.).
We have √9+25 = 28
find the square root of 9 = 3
3 + 25 = 28
π-4 = 3.14 - 4
= -0.8571
³√-27 = ³√3³
= 3
2÷3 = 0.6667
18÷2 = 9
Read more on surds here:https://brainly.com/question/840021
#SPJ1
question:
given :√9+25 : π-4 : ³√-27 : 2÷3 : 18÷2 : √-27
find the value of the terms
Consider the initial value problem y⃗ ′=[33????23????4]y⃗ +????⃗ (????),y⃗ (1)=[20]. Suppose we know that y⃗ (????)=[−2????+????2????2+????] is the unique solution to this initial value problem. Find ????⃗ (????) and the constants ???? and ????.
The unique solution to the initial value problem of differential equation is y(t) = -t^2 + 2t + 3sin(3t) - 1 with e(t) = -t^2 + 2t + 3sin(3t) - 9, a = 2, and B = -21.
To find the solution to the initial value problem, we first need to solve the differential equation.
Taking the derivative of y(t), we get:
y'(t) = -2t + a
Taking the derivative again, we get:
y''(t) = -2
Substituting y''(t) into the differential equation, we get:
y''(t) + 2y'(t) + 10y(t) = 20sin(3t)
Substituting y'(t) and y(t) into the equation, we get:
-2 + 2a + 10(-2t + a) = 20sin(3t)
Simplifying, we get:
8a - 20t = 20sin(3t) + 2
Using the initial condition y(0) = 2, we get:
y(0) = -2(0) + a = 2
Solving for a, we get:
a = 2
Using the other initial condition y'(0) = 21, we get:
y'(0) = -2(0) + 2(21) + B = 21
Solving for B, we get:
B = -21
Therefore, the solution to the initial value problem is:
y(t) = -t^2 + 2t + 3sin(3t) - 1
Thus, we have e(t) = y(t) - 8, so
e(t) = -t^2 + 2t + 3sin(3t) - 9
and a = 2, B = -21.
To know more about differential equation:
https://brainly.com/question/14620493
#SPJ4
_____The given question is incomplete, the complete question is given below:
Consider the initial value problem >= [22. 2.1]+20). 361) = [2] Suppose we know that (t) = -2t + a 21? + is the unique solution to this initial value problem. Find e(t) and the constants and B. a = B= 8(t) =
PLEASE HELP 30 POINTS!
Answer:
57
57
123
123
57
57
123
that's all.
Answer:
m<1 = 57°
m<2 = m<1 = 57°
m<3 = x = 123°
m<4 = x = 123°
m<5 = m<1 = 57°
m<6 = m<5 = 57°
m<7 = m<4 = 123°
Step-by-step explanation:
[tex]{ \tt{m \angle 1 + x = 180 \degree}} \\ { \colorbox{silver}{corresponding \: angles}} \\ { \tt{m \angle 1 = 180 - 123}} \\ { \tt{ \underline{ \: m \angle 1 = 57 \degree \: }}}[/tex]
How do you compute the sum of squared errors
Answer:
Relating SSE to Other Statistical Data
Variance = SSE/n, if you are calculating the variance of a full population.Variance = SSE/(n-1), if you are calculating the variance of a sample set of data.
A box containing 5 balls costs $8.50. If the balls are bought individually, they cost $2.00 each. How much cheaper is it, in percentage terms, to buy the box as opposed to buying 5 individual balls?
Answer: The total cost of buying 5 balls individually is $2.00 x 5 = $10.00.
The box costs $8.50, which means it is $10.00 - $8.50 = $1.50 cheaper to buy the box.
To calculate the percentage difference, we can use the formula:
% difference = (difference ÷ original value) x 100%
In this case, the difference is $1.50, and the original value is $10.00.
% difference = ($1.50 ÷ $10.00) x 100%
% difference = 0.15 x 100%
% difference = 15%
Therefore, it is 15% cheaper to buy the box than to buy 5 individual balls.
Step-by-step explanation:
Point E represents the center of this circle. Angle DEF
has a measure of 80%.
Drag and drop a number into the box to correctly
complete the statement.
An angle measure of 80° is the size of an angle
that turns through
20
50
one-degree turns.
80
100
K
The measure of the arc intercepted by the angle and the vertical angles make up the angle subtended at the center. As a result, XYZ has a value of 35°.
What are angles?Two lines intersect at a location, creating an angle.
An "angle" is the term used to describe the width of the "opening" between these two rays. The character is used to represent it.
Angles are frequently expressed in degrees and radians, a unit of circularity or rotation.
In geometry, an angle is created by joining two rays at their ends. These rays are referred to as the angle's sides or arms.
An angle has two primary components: the arms and the vertex. T
he two rays' shared vertex serves as their common terminal.
Hence, The measure of the arc intercepted by the angle and the vertical angles make up the angle subtended at the center. As a result, XYZ has a value of 35°.
Learn more on angles here click here:
brainly.com/question/2046046
#SPJ1
A simple random sample of size n is drawn. The sample mean, x, is found to be 18.1, and the sample standard deviation, s, is found to be 4.1.
(a) Construct a 95% confidence interval about u if the sample size, n, is 34.
Lower bound: Upper bound:
(Use ascending order. Round to two decimal places as needed.)
In response to the stated question, we may state that Hence, the 95% CI function for u is (16.72, 19.48), rounded to two decimal places in increasing order.
what is function?In mathematics, a function is a connection between two sets of numbers in which each member of the first set (known as the domain) corresponds to a single element in the second set (called the range). In other words, a function takes inputs from one set and produces outputs from another. Inputs are commonly represented by the variable x, whereas outputs are represented by the variable y. A function can be described using an equation or a graph. The equation y = 2x + 1 represents a linear function in which each value of x yields a distinct value of y.v
We use the following formula to create a confidence interval around the population mean u:
CI = x ± z*(s/√n)
where x represents the sample mean, s represents the sample standard deviation, n represents the sample size, z represents the z-score associated with the desired degree of confidence, and CI represents the confidence interval.
Because the degree of confidence is 95%, we must calculate the z-score that corresponds to the standard normal distribution's middle 95%. This is roughly 1.96 and may be determined with a z-table or calculator.
CI = 18.1 ± 1.96*(4.1/√34)
CI = 18.1 ± 1.96*(0.704)
CI = 18.1 ± 1.38
Hence, the 95% CI for u is (16.72, 19.48), rounded to two decimal places in increasing order.
To know more about function visit:
https://brainly.com/question/28193995
#SPJ1
Trains Two trains, Train A and Train B, weigh a total of 188 tons. Train A is heavier than Train B. The difference of their
weights is 34 tons. What is the weight of each train?
Step-by-step explanation:
A + B = 188
A = 188 - B - (1)
Now,
A - B = 34
188 - B - B = 34 (Substituting eqn 1 in A)
188 - 34 = 2B
154 = 2B
• B = 77 tons
Now
A = 188 - B
A = 188 - 77
A = 111 tons
Please answer Full question
(1) 4y-7z is a binomial.
(2) 8-xy² is a binomial.
(3) ab-a-b can be written as ab - (a + b) which is a binomial.
(4) z²-3z+8 is a trinomial.
What are monomials, binomials and trinomials?In algebra, monomials, binomials, and trinomials are expressions that contain one, two, and three terms, respectively.
A monomial is an algebraic expression with only one term. A monomial can be a number, a variable, or a product of numbers and variables.
A binomial is an algebraic expression with two terms that are connected by a plus or minus sign. For example, 2x + 3y and 4a - 5b are both binomials.
A trinomial is an algebraic expression with three terms that are connected by plus or minus signs.
Learn more about monomial on;
https://brainly.com/question/29047865
#SPJ1
Classify into monomials, binomials and trinomials.
(1) 4y-7z
(1) 8-xy²
(v) ab-a-b
(ix) z2-3z+8
Find the product of 3√20 and √5 in simplest form. Also, determine whether the result is rational or irrational and explain your answer.
Answer:
30, rational
Step-by-step explanation:
[tex]3\sqrt{20}\cdot\sqrt{5}=3\sqrt{4}\sqrt{5}\cdot\sqrt{5}=(3\cdot2)\cdot5=6\cdot5=30[/tex]
The result is rational because it can be written as a fraction of integers.
Two cars, one going due east at the rate of 90 km/hr and the other going to south at the rate of 60 km/hr are traveling toward the intersection of two roads. At what rate the two cars approaching each other at the instant when the first car is 0.2 km and the second car is 0.15 km from the intersection ?
The two cars are approaching each other at a rate of 36 km/hr at the given instant.
We can solve this problem by using the Pythagorean theorem and differentiating with respect to time. Let's call the distance of the first car from the intersection "x" and the distance of the second car from the intersection "y". We want to find the rate at which the two cars are approaching each other, which we'll call "r".
At any moment, the distance between the two cars is the hypotenuse of a right triangle with legs x and y, so we can use the Pythagorean theorem
r^2 = x^2 + y^2
To find the rates of change of x and y, we differentiate both sides of this equation with respect to time
2r(dr/dt) = 2x(dx/dt) + 2y(dy/dt)
Simplifying and plugging in the given values
dr/dt = (x(dx/dt) + y(dy/dt)) / r
dr/dt = (0.2 x 90 + 0.15 x (-60)) / sqrt((0.2)^2 + (0.15)^2)
dr/dt = (18 - 9) / sqrt(0.04 + 0.0225)
dr/dt = 9 / sqrt(0.0625)
dr/dt ≈ 36 km/hr
Learn more about Pythagorean theorem here
brainly.com/question/14930619
#SPJ4
Oliver's normal rate of pay is $10.40 an hour.
How much is he paid for working 5 hours overtime one Saturday at time-and-a-half?
In the year 1985, a house was valued at $108,000. By the year 2005, the value had appreciated to $148,000. What was the annual growth rate percentage between 1985 and 2005? Assume that the value continued
to grow by the same percentage. What was the value of the house in the year 2010?
Answer:
To find the annual growth rate percentage, we can use the formula:
annual growth rate = [(final value / initial value)^(1/number of years)] - 1
where "final value" is the value in the ending year, "initial value" is the value in the starting year, and "number of years" is the total number of years between the starting and ending years.
Using the given values, we have:
annual growth rate = [(148,000 / 108,000)^(1/20)] - 1
= 0.0226 or 2.26%
So the house appreciated at an annual growth rate of 2.26%.
To find the value of the house in 2010, we can use the same growth rate to project the value from 2005 to 2010:
value in 2010 = 148,000 * (1 + 0.0226)^5
= $175,465.11 (rounded to the nearest cent)
Therefore, the value of the house in the year 2010 was $175,465.11.
For a standard normal distribution, find:
P(-2.11 < z < -0.85)
Answer:
Step-by-step explanation:
Using a standard normal table, we can find the area under the curve between -2.11 and -0.85.
P(-2.11 < z < -0.85) = P(z < -0.85) - P(z < -2.11)
Using the table, we find:
P(z < -0.85) = 0.1977
P(z < -2.11) = 0.0174
Therefore,
P(-2.11 < z < -0.85) = 0.1977 - 0.0174 = 0.1803
So the probability that a standard normal random variable falls between -2.11 and -0.85 is 0.1803.