Answer:
six in parenthesis n minus two
Step-by-step explanation:
2 ways could be:
A. N minus two then multiply by six
B. Six times parentheses n minus two end parentheses
Jarvis invested some money at 6% interest. Jarvis also invested $58 more than 3 times that amount at 9%. How much is invested at each rate if Jarvis receives $1097.19 in interest after one year? (Round to two decimal places if necessary.)
Use the variables x and y to set up a system of equations to solve the given problem.
9514 1404 393
Answer:
$3309 at 6%$9985 at 9%Step-by-step explanation:
Let x and y represent amounts invested at 6% and 9%, respectively.
y = 3x +58 . . . . . . . the amount invested at 9%
0.06x +0.09y = 1097.19 . . . . . . total interest earned
__
Substituting for y, we have ...
0.06x +0.09(3x +58) = 1097.19
0.33x + 5.22 = 1097.19 . . . . . . . . . simplify
0.33x = 1091.97 . . . . . . . . . . . . subtract 5.22
x = 3309 . . . . . . . . . . . . . . . . divide by 0.33
y = 3(3309) +58 = 9985
$3309 is invested at 6%; $9985 is invested at 9%.
Find the area of the shaded regions: the green is the shaded area
PLS HELP ME!!!! I NEED THE ANSWER BY THIS EVENING CUZ I HAVE RSM TOMORROW. PLS HELP!!!!!
Answer:
the green area stands for the safe operation space
Step-by-step explanation:
u say b×h meaning say 80degrees ×9cm which is 720..
The height (in meters) of a shot cannonball follows a trajectory given by h(t) = -4.9t^2 + 14t - 0.4 at time t (in seconds). As an improper fraction, for how long is the cannonball above a height of 6 meters? Please show steps. Thank you!
Find the missing length Indicated
Answer:
60
Step-by-step explanation:
x² = 144×25
= 3600
x =√3600 =60
A street light is mounted at the top of a 15-ft-tall pole. A man 6 feet tall walks away from the pole with a speed of 5 ft/s along a straight path. How fast (in ft/s) is the tip of his shadow moving when he is 45 feet from the pole
Answer:
25/3 ft/s
Step-by-step explanation:
Height of pole , h=15 ft
Height of man, h'=6 ft
Let BD=x
BE=y
DE=BE-BD=y-x
All right triangles are similar
When two triangles are similar then the ratio of their corresponding sides are equal.
Therefore,
[tex]\frac{AB}{CD}=\frac{BE}{DE}[/tex]
[tex]\frac{15}{6}=\frac{y}{y-x}[/tex]
[tex]\frac{5}{2}=\frac{y}{y-x}[/tex]
[tex]5y-5x=2y[/tex]
[tex]5y-2y=5x[/tex]
[tex]3y=5x[/tex]
[tex]y=\frac{5}{3}x[/tex]
Differentiate w.r.t t
[tex]\frac{dy}{dt}=\frac{5}{3}\frac{dx}{dt}[/tex]
We have dx/dt=5ft/s
Using the value
[tex]\frac{dy}{dt}=\frac{5}{3}(5)=\frac{25}{3}ft/s[/tex]
Hence, the tip of his shadow moving with a speed 25/3 ft/s when he is 45 feet from the pole.
Answer:
The tip pf the shadow is moving with speed 25/3 ft/s.
Step-by-step explanation:
height of pole = 15 ft
height of man = 6 ft
x = 45 ft
According to the diagram, dx/dt = 5 ft/s.
Now
[tex]\frac{y-x}{y}=\frac{6}{15}\\\\15 y - 15 x = 6 y \\\\y = \frac{5}{3} x\\\\\frac{dy}{dt} = \frac{5}{3}\frac{dx}{dt}\\\\\frac{dy}{dt}=\frac{5}{3}\times 5 =\frac{25}{3} ft/s[/tex]
The radius of a sphere is increasing at a rate of 3 mm/s. How fast is the volume increasing when the diameter is 60 mm
Answer:
The volume is increasing at a rate of 33929.3 cubic millimeters per second.
Step-by-step explanation:
Volume of a sphere:
The volume of a sphere of radius r is given by:
[tex]V = \frac{4\pi r^3}{3}[/tex]
In this question:
We have to derivate V and r implicitly in function of time, so:
[tex]\frac{dV}{dt} = 4\pi r^2\frac{dr}{dt}[/tex]
The radius of a sphere is increasing at a rate of 3 mm/s.
This means that [tex]\frac{dr}{dt} = 3[/tex]
How fast is the volume increasing when the diameter is 60 mm?
Radius is half the diameter, so [tex]r = 30[/tex]. We have to find [tex]\frac{dV}{dt}[/tex]. So
[tex]\frac{dV}{dt} = 4\pi r^2\frac{dr}{dt}[/tex]
[tex]\frac{dV}{dt} = 4\pi (30)^2(3) = 33929.3[/tex]
The volume is increasing at a rate of 33929.3 cubic millimeters per second.
52 POINTS I need help!
Question 1
The vertex form of the equation of a vertical parabola is given by
, where (h, k) is the vertex of the parabola and the absolute value of p is the distance from the vertex to the focus, which is also the distance from the vertex to the directrix. You will use the GeoGebra geometry tool to create a vertical parabola and write the vertex form of its equation. Open GeoGebra, and complete each step below. If you need help, follow these instructions for using GeoGebra.
Part A
Mark the focus of the parabola you are going to create at F(6, 4). Draw a horizontal line that is 6 units below the focus. This line will be the directrix of your parabola. What is the equation of the line?
Part B
Construct the line that is perpendicular to the directrix and passes through the focus. This line will be the axis of symmetry of the parabola. What are the coordinates of the point of intersection, A, of the axis of symmetry and the directrix of the parabola?
Part C
Explain how you can locate the vertex, V, of the parabola with the given focus and directrix. Write the coordinates of the vertex.
Part D
Which way will the parabola open? Explain.
Part E
How can you find the value of p? Is the value of p for your parabola positive or negative? Explain.
Part F
What is the value of p for your parabola?
Part G
Based on your responses to parts C and E above, write the equation of the parabola in vertex form. Show your work.
Part H
Construct the parabola using the parabola tool in GeoGebra. Take a screenshot of your work, save it, and insert the image below.
Part I
Once you have constructed the parabola, use GeoGebra to display its equation. In the space below, rearrange the equation of the parabola shown in GeoGebra, and check whether it matches the equation in the vertex form that you wrote in part G. Show your work.
Part J
To practice writing the equations of vertical parabolas, write the equations of these parabolas in vertex form:
focus at (-5, -3), and directrix y = -6
focus at (10, -4), and directrix y = 6.
Answer:
Step-by-step explanation:
A. Directrix: y = 4-6 = -2
:::::
B. Axis of symmetry: x = 6
Axis of symmetry intersects directrix at (6,-2)
:::::
C . Vertex is halfway between focus and directrix, at (6,1)
:::::
D. The focus lies above the directrix, so the parabola opens upwards.
:::::
E. Focal length p = 1/(4×0.5)
:::::
F. p = 0.5
::::
G. y = 0.5(x-6)² + 1
Answer:
the one above is correct
Step-by-step explanation:
h.We start with a circle and a line that goes through the center of the circle (C) and one vertex of the triangle (E).
Using the point on the line opposite the vertex as a center (D), we draw an arc with the same radius the circle has.
The two points of intersection with the circle are the other two vertices of the inscribed triangle (F, G).
Given f(x) = 3sqrt(2x-1).
6(2x-1)^2-3
What is lim f(x)?
Answer:
[tex]\displaystyle 51[/tex]
General Formulas and Concepts:
Algebra I
Terms/CoefficientsFactoringFunctionsFunction NotationAlgebra II
Piecewise functionsCalculus
Limits
Right-Side Limit: [tex]\displaystyle \lim_{x \to c^+} f(x)[/tex]Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]
Limit Property [Addition/Subtraction]: [tex]\displaystyle \lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)[/tex]
Limit Property [Multiplied Constant]: [tex]\displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle f(x) = \left \{ {{3\sqrt{2x - 1}, \ x \leq 2} \atop {6(2x - 1)^2 - 3, \ x > 2}} \right.[/tex]
Step 2: Solve
Substitute in function [Limit]: [tex]\displaystyle \lim_{x \to 2^+} 6(2x - 1)^2 - 3[/tex]Factor: [tex]\displaystyle \lim_{x \to 2^+} 3[2(2x - 1)^2 - 1][/tex]Rewrite [Limit Property - Multiplied Constant]: [tex]\displaystyle 3\lim_{x \to 2^+} 2(2x - 1)^2 - 1[/tex]Evaluate [Limit Property - Variable Direct Substitution]: [tex]\displaystyle 3[2(2 \cdot 2 - 1)^2 - 1][/tex]Simplify: [tex]\displaystyle 51[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Book: College Calculus 10e
Marquise has 200200200 meters of fencing to build a rectangular garden.
The garden's area (in square meters) as a function of the garden's width xxx (in meters) is modeled by:
A(x)=-x^2+100xA(x)=−x
2
+100xA, left parenthesis, x, right parenthesis, equals, minus, x, squared, plus, 100, x
WHAT IS THE MAXIMUM AREA POSSIBLE SQUARE METERS
Hence the maximum possible area is 2500 square meters
Given the area of the rectangular garden expressed as;
[tex]A(x)=-x^2+100x\\[/tex]
The maximum area occurs when dA(x)/dx = 0
[tex]\frac{dA(x)}{dx} = -2x + 100\\0= -2x + 100\\ 2x = 100\\x = \frac{100}{2}\\x = 50[/tex]
Next is to get the maximum area possible. Substitute x = 50 into the original function as shown;
[tex]A(50)= -50^2 + 100(50)\\A(50) = -2500+5000\\A(50) = 2500[/tex]
Hence the maximum possible area is 2500 square meters
Learn more here: https://brainly.com/question/17134596
2500 square meters
This question was on Khan Academy and I got it correct
Determine la razón de la siguiente progresión geométrica: 81,27,9,3,1,....
Answer:
BẠN BỊ ĐIÊN À
Step-by-step explanation:
CÚT
HELP ME WITH THIS MATHS QUESTION
PICTURE IS ATTACHED
Answer:
In picture.
Step-by-step explanation:
To do this answer, you need to count the boxes up to the mirror line. This will give us the exact place to draw the triangle.
The picture below is the answer.
help me please pls this ur really hard help
I need help ASAP is anyone available
Answer:
C
Step-by-step explanation:
The graph has asymptotes at x = 2 and x = -1 corresponding to the denominator of option C.
Given: F = {(0, 1), (2, 4), (4, 6), (6, 8)} and G = {(2, 5), (4, 7), (5, 8), (6, 9), (7, 5)}
(F + G) (2) =
4
5
9
9514 1404 393
Answer:
9
Step-by-step explanation:
The ordered pair (2, 4) in the relation for function F tells you F(2) = 4.
The ordered pair (2, 5) in the relation for function G tells you G(2) = 5.
Then the sum is ...
(F+G)(2) = F(2) +G(2) = 4 +5
(F+G)(2) = 9
Find the tangent line equations for the given functions at the given point(s): f(x) = tan x + 9 sin x at (π, 0)
Answer:
[tex]{ \bf{f(x) = \tan x + 9 \sin x }}[/tex]
For gradient, differentiate f(x):
[tex]{ \tt{ \frac{dy}{dx} = { \sec }^{2}x + 9 \cos x }}[/tex]
Substitute for x as π:
[tex]{ \tt{gradient = { \sec }^{2} \pi + 9 \cos(\pi ) }} \\ { \tt{gradient = - 8 }}[/tex]
Gradient of tangent = -8
[tex]{ \bf{y =mx + b }} \\ { \tt{0 = ( - 8\pi) + b}} \\ { \tt{b = 8\pi}} \\ y - intercept = 8\pi[/tex]
Equation of tangent:
[tex]{ \boxed{ \bf{y = - 8x + 8\pi}}}[/tex]
The electric cooperative needs to know the mean household usage of electricity by its non-commercial customers in kWh per day. They would like the estimate to have a maximum error of 0.09 kWh. A previous study found that for an average family the variance is 5.76 kWh and the mean is 16.6 kWh per day. If they are using a 98% level of confidence, how large of a sample is required to estimate the mean usage of electricity
Answer:
A sample of 3851 is required.
Step-by-step explanation:
We have that to find our level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.98}{2} = 0.01[/tex]
Now, we have to find z in the Z-table as such z has a p-value of .
That is z with a pvalue of , so Z = 2.327.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
Variance is 5.76 kWh
This means that [tex]\sigma = \sqrt{5.76} = 2.4[/tex]
They would like the estimate to have a maximum error of 0.09 kWh. How large of a sample is required to estimate the mean usage of electricity?
This is n for which M = 0.09. So
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]0.09 = 2.327\frac{2.4}{\sqrt{n}}[/tex]
[tex]0.09\sqrt{n} = 2.327*2.4[/tex]
[tex]\sqrt{n} = \frac{2.327*2.4}{0.09}[/tex]
[tex](\sqrt{n})^2 = (\frac{2.327*2.4}{0.09})^2[/tex]
[tex]n = 3850.6[/tex]
Rounding up:
A sample of 3851 is required.
which of the following statements must br true about this diagram exterior and interior angles
Answer:
C: w > y
D: w > x
E: x + y = w
Use what you know about decomposing fractions to write 11/10 as a mixed number.
Help please :(
Answer:
11/10 is 1 1/10
Step-by-step explanation:
Student Engineers Council at an Indiana college has one student representative from each of the five engineering majors (civil, electrical, industrial, materials, and mechanical). Compute how many ways a president, a vice president, and a secretary can be selected.
Answer:
A president, a vice president, and a secretary can be selected in 60 ways.
Step-by-step explanation:
The order in which the people are chosen is important(first president, second vice president and third secretary), which means that the permutations formula is used to solve this question.
Permutations formula:
The number of possible permutations of x elements from a set of n elements is given by the following formula:
[tex]P_{(n,x)} = \frac{n!}{(n-x)!}[/tex]
In this question:
3 students from a set of 5, so:
[tex]P_{(5,3)} = \frac{5!}{2!} = 5*4*3 = 60[/tex]
A president, a vice president, and a secretary can be selected in 60 ways.
Rachel and Hugo sorted 236 crayons into boxes for a local arts project. Each box had 10 crayons. How many crayons were left over?
Help please lol
Answer:
6
Step-by-step explanation:
236/10 = 23 remainder 6, so 6 crayons is the answer
Solve the following equation for
a
a. Be sure to take into account whether a letter is capitalized or not.
Answer:
6/5 n = a
Step-by-step explanation:
n = 5/6a
Multiply each side by 6/5
6/5 n = 6/5 * 5/6a
6/5 n = a
Identify the domain of the function shown in the graph.
A. -5
B. x> 0
C. 0
D. x is all real numbers.
Suppose an airline policy states that all baggage must be box-shaped with a sum of length, width, and height not exceeding 144 in. What are the dimensions and volume of a square-based box with the greatest volume under these conditions?
Answer:
110592 in³
Step-by-step explanation:
Since baggage should take the shape of a box; with the sum of it's dimension not exceeding 144 ;
Dimensions of a box : length, width, height
If ; l + w + h = 144
Greatest volume is obtained when the dimension is equal : such that l = w = h
Hence, each dimension becomes ; 144 / 3 = 48 in
Volume of box = length * width * height
Volume = 48 * 48 * 48
Volume = 48³ = 110592
A cable that weighs 6 lb/ft is used to lift 600 lb of coal up a mine shaft 500 ft deep. Find the work done. Show how to approximate the required work by a Riemann sum. (Let x be the distance in feet below the top of the shaft. Enter xi* as xi.)
Answer:
A cable that weighs 6 lb/ft is used to lift 600 lb of coal up a mine shaft 500 ft deep. Find the work done. Show how to approximate the required work by a Riemann sum.
Step-by-step explanation:
Evaluate −3w − 6p for w=2 and p = −7
-3w-6p when w=2 and p=-7
-3(2)-6(-7)
= -6 + 42
= 36
Answer:
48
Step-by-step explanation:
-3w-6p when w=2 and p--7
you want to plug in the numbers to their letters
-3(2)-6(-7)
then you want to times the numbers.
-6-42
=48
Translate the triangle. Then enter the new coordinates. A(-3, 4) A'([?], [?]) B'([ ], [ ] C([],[]) B(0, 1) C(-4,1)
or
Answer:
The new coordinates are [tex]A'(x,y) = (3, 0)[/tex], [tex]B'(x,y) = (6, -3)[/tex] and [tex]C'(x,y) = (2, -3)[/tex].
Step-by-step explanation:
Vectorially speaking, the translation of a point can be defined by the following expression:
[tex]V'(x,y) = V(x,y) + T(x,y)[/tex] (1)
Where:
[tex]V(x,y)[/tex] - Original point.
[tex]V'(x,y)[/tex] - Translated point.
[tex]T(x,y)[/tex] - Translation vector.
If we know that [tex]A(x,y) = (-3,4)[/tex], [tex]B(x,y) = (0,1)[/tex], [tex]C(x,y) = (-4,1)[/tex] and [tex]T(x,y) = (6, -4)[/tex], then the resulting points are:
[tex]A'(x,y) = (-3, 4) + (6, -4)[/tex]
[tex]A'(x,y) = (3, 0)[/tex]
[tex]B'(x,y) = (0,1) + (6, -4)[/tex]
[tex]B'(x,y) = (6, -3)[/tex]
[tex]C'(x,y) = (-4, 1) + (6, -4)[/tex]
[tex]C'(x,y) = (2, -3)[/tex]
The new coordinates are [tex]A'(x,y) = (3, 0)[/tex], [tex]B'(x,y) = (6, -3)[/tex] and [tex]C'(x,y) = (2, -3)[/tex].
The combined value of the ages of Mary, Kate and Tom is 26 years. What will be their age in total after 2 years?
Answer:
32
Step-by-step explanation:
they will each age two years, 3x2 is 6, add 6 to 26
Answer:
32
Step-by-step explanation:
they will each age two years, 3x2 is 6, add 6 to 26
PLEASE HELP please I need this done now
The total cost of a truck rental, y, for x days, can be modeled by y = 35x + 25.
What is the rate of change for this function?
Answers
A- 35$
B-25$
C-60$
D-10$
Answer:
35
Step-by-step explanation:
y = 35x+23 is in the form
y = mx+b where m is the slope and b is the y intercept
The slope can also be called the rate of change
35 is the slope
Which set of statements explains how to plot a point at the location (Negative 3 and one-half, negative 2)?
A: Start at the origin. Move 3 and one-half units right because the x-coordinate is Negative 3 and one-half. Negative 3 and one-half is between 3 and 4. Move 2 units down because the y-coordinate is -2.
B: Start at the origin. Move 3 and one-half units down because the x-coordinate is Negative 3 and one-half. Negative 3 and one-half is between -3 and -4. Move 2 units left because the y-coordinate is -2.
C: Start at the origin. Move 3 and one-half units down because the x-coordinate is Negative 3 and one-half. Negative 3 and one-half is between -3 and -4. Move 2 units right because the y-coordinate is -2.
D: Start at the origin. Move 3 and one-half units left because the x-coordinate is Negative 3 and one-half. Negative 3 and one-half is between -3 and -4. Move 2 units down because the y-coordinate is -2.
Answer:
D: Start at the origin. Move 3 and one-half units left because the x-coordinate is Negative 3 and one-half. Negative 3 and one-half is between -3 and -4. Move 2 units down because the y-coordinate is -2.
Which answer choice correctly identifies the extraneous information in the problem?
Anna babysat 2 children on Saturday night. She charges $8 an hour to babysit. She wants to save the money she earns babysitting to buy a stereo system that cost $225. If Nina babysat for 5 hours, how much money did she earn?
Answer: $40 / $80
Step-by-step explanation: 40$ if it's $8 for BOTH per hour, or if it's $8 for ONE per hour it's $80