Answer:
-32 shall be multiplied to get the answer.
Step-by-step explanation:
DON'T MIND MY WRITING!!
Determine the value of x.
8 2
8 3
4
8
Answer:
Step-by-step explanation:
can anyone help with integers?
Fill in the blanks.
6) 83 + 17 = 17 +
7) |46| – |50| =
8) 42 – 2 + (18 – 10) =
9) 18 – (3 – 1) =
10) 8 - 0 =
Answer:
a) 83,b) -4,c) 48,d) 16,e) 8
Which equation can be used to determine the reference angle
Answer:
2nd option
Step-by-step explanation:
[tex]\frac{7\pi }{12}[/tex] is an angle in the second quadrant
Thus to find the reference angle, subtract from π , that is
r = π - θ
Solve the system of equations.
−5x−3y−9=0
4x−18y−54=0
y=? x=?
Answer:
Step-by-step explanation:
Eq. 1 ) −5x−3y−9=0
Eq. 2) 4x−18y−54=0
there are two routes to solve this, Substitution or elimination, I'll go for the 2nd one because I can see that the y values are a multiple of each other :)
6 *( −5x−3y−9=0 )
Eq. 3) -30x -18y =54
subtract Eq. 2 from Eq. 3 :)
-30x -18y =54
-( 4x−18y=54)
-34x = 0
so according to the equations then x =0 but, that's not really a full answer, so now we should go back and try the other method, substitution,
then:
-5x = 9 +3y
x = - 9/5 + (-3/5)y
now plug that into Eq. 2
4( - 9/5 + (-3/5)y ) - 18y = 54
-36/5 + (-12/5)y -18y = 54
(-12/5)y - (90/5)y = 54+36/5
-(102/5)*y =270/5+36/5
-(102/5)y = 306/5
y = (-5/102)*(306/5)
y = -306/102
y = -3
then plug in for either equation
-5x-3( -3) = 9
-5x + 9 = 9
-5x = 0
x = 0
now we have the full answer
check it by plugging in both x and y into the 2nd equation
4(0) - 18(-3) = 54
54= 54
this seems good
Given that the expression 2x^3 + mx^2 + nx + c leaves the same remainder when divided by x -2 or by x+1 I prove that m+n =-6
Given:
The expression is:
[tex]2x^3+mx^2+nx+c[/tex]
It leaves the same remainder when divided by x -2 or by x+1.
To prove:
[tex]m+n=-6[/tex]
Solution:
Remainder theorem: If a polynomial P(x) is divided by (x-c), thent he remainder is P(c).
Let the given polynomial is:
[tex]P(x)=2x^3+mx^2+nx+c[/tex]
It leaves the same remainder when divided by x -2 or by x+1. By using remainder theorem, we can say that
[tex]P(2)=P(-1)[/tex] ...(i)
Substituting [tex]x=-1[/tex] in the given polynomial.
[tex]P(-1)=2(-1)^3+m(-1)^2+n(-1)+c[/tex]
[tex]P(-1)=-2+m-n+c[/tex]
Substituting [tex]x=2[/tex] in the given polynomial.
[tex]P(2)=2(2)^3+m(2)^2+n(2)+c[/tex]
[tex]P(2)=2(8)+m(4)+2n+c[/tex]
[tex]P(2)=16+4m+2n+c[/tex]
Now, substitute the values of P(2) and P(-1) in (i), we get
[tex]16+4m+2n+c=-2+m-n+c[/tex]
[tex]16+4m+2n+c+2-m+n-c=0[/tex]
[tex]18+3m+3n=0[/tex]
[tex]3m+3n=-18[/tex]
Divide both sides by 3.
[tex]\dfrac{3m+3n}{3}=\dfrac{-18}{3}[/tex]
[tex]m+n=-6[/tex]
Hence proved.
which graph best represents the line y= -1/5x+2
Answer:
B
Step-by-step explanation:
Line crosses y-axis at 2.
Slope = [tex]\frac{-1}{5}[/tex]
For each 1 square the line rises/falls it moves to the right/left 5 squares.
Negative slope lines are downhill left to right.
The correct graph to represent the line y = -1/5 x + 2 will be;
⇒ Graph 2
What is Equation of line?
The equation of line with slope m and y intercept at point b is given as;
y = mx + b
Given that;
The equation of line is;
⇒ y = - 1/5 x + 2
Now,
The standard form of the equation of line with slope m and y intercept at point b is given as;
y = mx + b
By comparing we get;
Slope (m) = - 1/5
In the second figure;
Let two points on the graph (0, 2) and (5 , 1).
So, Slope is defined as;
m = (1 - 2) / (5 - 0)
m = - 1 / 5
And, Clearly the y - intercept is at point 2.
Therefore,
Graph 2 shows the correct graph to represent the line y = -1/5 x + 2.
Learn more about the equation of line visit:
https://brainly.com/question/18831322
#SPJ2
lic/activity/6000001/assessment
1 Pretest: Unit 6
Question 1 of 21
What is the domain of the exponential function shown below?
Rx) = 5.3x
Given:
The exponential function is:
[tex]R(x)=(5.3)^x[/tex]
To find:
The domain of the given exponential function.
Solution:
We know that the general form of an exponential function is:
[tex]f(x)=ab^x[/tex]
Where, a is the initial value and b is growth/decay factor.
This function is defined for all real values of x, so the domain of these type of functions is the set of all real number.
We have,
[tex]R(x)=(5.3)^x[/tex]
Here, a is 1 and b is 5.3. This function is defined for all real values of x
Therefore, the domain of these type of functions is the set of all real number or it can be written as [tex](-\infty,\infty)[/tex].
plz help ASAP with explanation
Answer:
(in image attached)
Step-by-step explanation:
A.
Left: 6×-3
Right: -3×-2
Bottom: 6×-2
B.
48÷6 = 8
-42÷6 = -7
-56÷8 = -7
-56÷-7= 8
Twice a number minus 25 is less than 89. Translate it into an inequality and find the solution
Answer:
2x-25<89
x<57
Step-by-step explanation:
2x-25<89
2x<89+25
2x<114
Divide by 2...
x<57
Hope this helped! Please mark brainliest :)
What is the solution to the equation One-fourth x + 2 = negative StartFraction 5 Over 8 EndFraction x minus 5?
x = negative 8
x = negative 7
pls hurry
x = 7
x = 8
Answer:
c = 24
Step-by-step explanation:
given the figure below, what is the value of x?
Answer:
x = 6
Step-by-step explanation:
6 is x so this is the answer
Find the rate of change for the function of change from x=-3 to x=1
Answer:
She's, "HOT"!
Step-by-step explanation:
When a constant force acts upon an object, the acceleration of the object varies inversely with its mass. When a certain constant force acts upon an object with
mass 7 kg, the acceleration of the object is 4 m/s?. If the same force acts upon another object whose mass is 2 kg, what is this object's acceleration?
Answer:
14 m/s²
Step-by-step explanation:
From the question
a ∝ F/m.............. Equation 1
Where a = aceleration, m = mass, F = force
make F the subject of the equation
F = ma............ equation 2
Given: m = 7 kg, a = 4 m/s²
Therefore,
F = 7(4)
F = 28 N
For another object whose mass is 2 kg,
Make a the subject of equation 2
a = F/m
a = 28/2
a = 14 m/s²
The length of a side of an equilateral triangle is 40 centimeters.
What is the length of the altitude of the triangle?
Answer:
34.64 cm
Step-by-step explanation:
sin 60 = [tex]\frac{x}{40}[/tex]
sin 60 (40) = x
34.64 = x
equilateral triangles have 60° angles.
sin Ф = [tex]\frac{opposite}{hypotenuse}[/tex]
hypotenuse is 40. All sides are 40.
x = opposite or height of triangle.
the width of a newspaper is 13 3/4 inches. The left margin is 7/16 inch and the right margin is 1/2 inch. what is the width of the written page inside the margin?
Answer:
biggafigure a
mnn
Step-by-step explanation:
What is the measure of angle ABC of a circle
Answer:
the angle <ABC is equal to 65°
Which is the graph of the linear inequality x - 2y > -6?
-10-
2
108
0
o
Answer:
the fourth option
Step-by-step explanation:
1/2x - 2y > -6
1/2x + 6 > y
or
y < 1/2x + 6
so, the solution is all the y values smaller (= below) the line function.
and because it is "<" and not "<=" the line itself is not included
Find the value of x,rounded to the nearest tenth
Answer:
Step-by-step explanation:
The formula for this is
14(20) = 25x and
280 =25x so
x = 11.2
The perimeter of a square is 16 cm. Find the length of its diagonal.
Answer:
perimeter of a square is l+l+l+l
16+16+16+16=64
Answer:
4√2 cm
Step-by-step explanation:
Perimeter of square = 4a = 16cm
a = 16 / 4
a = 4 cm
Length of each side = 4 cm
Diagonal^2 = side^2 + side^2
= 4^2 + 4^2
= 16 + 16
Diagonal^2 = 32
Diagonal = 4√2 cm
i need help trying to solve this question to the nearest tenth of a degree
Please help me I don’t understand I have been working on this question for 14 minutes!!!m
Answer:
<A = <B
=> 8x - 8 = 5x + 25
<=> 3x = 33
<=> x = 11
with x = 11 => mB = 5.11 + 25 = 55 + 25 = 80⁰
Answer:
x=11
B=80
Step-by-step explanation:
8x-8=5x+25
3x=33
x=11
B=5(11)+25
B=80
Find the area of the figure below
Answer:
35.2 cm²Step-by-step explanation:
The area is:
A = 2(3.5*2) + 7*2 + 2(1.8*2) = 35.2 cm²We can find the area,
→ 2(3.5 × 2)+ (7 × 2) + 2(1.8 × 2)
→ 14 + 14 + 7.2
→ 35.2 cm²
Thus, the area is 35.2 cm².
Which method is used in elimination to find the solutions of a - b = 9 and a + b = 5?
The substitution method is used in elimination to find the solution to the equation.
What is the system of two equations?A set of two linear equations with two variables is called a system of linear equations. They create a system of linear equations when evaluated collectively.
The given equation in the problem is;
Equation P: a - b = 9
Equation Q: a+b=5
The value obtained from the equation P is;
a - b = 9
a=b+9
Substitute the value in the equation Q;
a+b=5
b+9+b=5
2b=9-5
b=2
The value of a is;
a-b=9
a-2=9
a=9+2
a=11
Hence the value of a and b will be 11 and 2.
To learn more about the system of two equations, refer to the link;
https://brainly.com/question/21620502
#SPJ1
Consider the following equations and name the property of equality used to solve for the variable.
A. x + 3.75 = 7
B. –3b = 18
C. StartFraction m Over 5 EndFraction = negative 25
D. m – 4 = 9
Answer:
Subtraction property ; x = 3.25
Division property ; - 6
multiplication property ; - 125
Addition property ; 13
Step-by-step explanation:
A.)
x + 3.75 = 7
Using the subtraction property : subtract 3.75 from both sides
x + 3.75 - 3.75 = 7 - 3.75
x = 3.25
B. )
–3b = 18
According to the division property :
Divide both sides by - 3
-3b / - 3 = 18 / - 3
b = - 6
C.)
m/5 = - 25
Using the multiplication property :
m/5 * 5 = - 25 * 5
m = - 125
D.)
m – 4 = 9
Using the addition property :
Add 4 to both sides :
m - 4 + 4 = 9 + 4
m = 13
Answer:
A. Subtraction property ; x = 3.25
B. Division property ; - 6
C. multiplication property ; - 125
D. Addition property ; 13
Step-by-step explanation:
Please help!!
y= 1/2 x + 2
One equation in a system of two linear equations is
shown above. If the system has one solution (x, y),
where x = 2, which of the following could be the
other equation in the system?
A) y = -2x + 4
B) y = -x+ 5
C) y = 2x
D) y = 2x + 1
Answer: B) y = -x+ 5
Step-by-step explanation:
If the x-value in the solution (x, y) is 2, then the y-value is:
[tex]y=\frac{1}{2} (2)+2 = \frac{2}{2} +2=1+2=3[/tex]
So the solution coordinate is (2, 3).
Test each of the answer choices to see if whether the y-value is 3 when the x-value is 2. If it's true, then it could be the other equation in the system.
A) y = -2x + 4
[tex]y = -2x + 4\\\y = -2(2) + 4 = -4 + 4 = 0[/tex]
B) y = -x+ 5
[tex]y = -x+ 5\\y = -(2) + 5 = 5 - 2 =3[/tex]
C) y = 2x
[tex]y=2x\\y=2(2)=4[/tex]
D) y = 2x + 1
[tex]y = 2x + 1\\y=2(2)+1=4+1=5[/tex]
Someone please help me ASAP!
Answer:
y axis then translate x+1,y+1
suppose you start with a single bacterium of streptococcus at hour 0 , and it has a generation time of 60 minutes. how many bacteria will you have at the end of hour 24
Answer:
60x24
Step-by-step explanation:
60x24=1224
Maria has 72 flowers and four vases she put the same number of flowers in each vase how many flowers are in one vase
Mr. Lord borrowed $100,000 from a bank at a rate of 8% per annum for 3 years. Calculate the amount accruing for the loan
Answer: [tex]\$125,971.2[/tex]
Step-by-step explanation:
Given
Principal amount [tex]P=\$100,000[/tex]
Rate of interest [tex]r=8\%[/tex]
Time period [tex]t=3\ yr[/tex]
Amount in compound interest is given by
[tex]\Rightarrow A=P\left(1+r\%\right)^t\\\Rightarrow A=100,000(1+0.08)^3\\\Rightarrow A=\$125,971.2[/tex]
Thus, the amount accruing for loan is [tex]\$125,971.2[/tex]
Find the area of the region between the curve x^3+2x^2-3x and the x-axis over the interval [-3,1]
Answer:
[tex]\displaystyle A = \frac{32}{3}[/tex]
General Formulas and Concepts:
Calculus
Integrals
Definite IntegralsArea under the curveIntegration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Area of a Region Formula: [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
Curve: x³ + 2x² - 3x
Interval: [-3, 1]
Step 2: Find Area
Set up: [tex]\displaystyle A = \int\limits^1_{-3} {(x^3 + 2x^2 - 3x)} \, dx[/tex][Integral] Rewrite [Integration Property - Addition/Subtraction]: [tex]\displaystyle A = \int\limits^1_{-3} {x^3} \, dx + \int\limits^1_{-3} {2x^2} \, dx - \int\limits^1_{-3} {3x} \, dx[/tex][Integrals] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle A = \int\limits^1_{-3} {x^3} \, dx + 2\int\limits^1_{-3} {x^2} \, dx - 3\int\limits^1_{-3} {x} \, dx[/tex][Integrals] Integrate [Integration Rule - Reverse Power Rule]: [tex]\displaystyle A = (\frac{x^4}{4}) \bigg| \limits^1_{-3} + 2(\frac{x^3}{3}) \bigg| \limits^1_{-3} - 3(\frac{x^2}{2}) \bigg| \limits^1_{-3}[/tex]Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle A = -20 + 2(\frac{28}{3}) - 3(-4)[/tex]Evaluate: [tex]\displaystyle A = \frac{32}{3}[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e