Please Help!! much appreciated! :D
Find the value of y.
In the largest triangle, the missing side has length
√((11 + 5)² - x ²) = √(256 - x ²)
But it's also the hypotenuse of the triangle with side lengths 11 and y, so that its length can also be written as
√(11² + y ²) = √(121 + y ²)
so that
√(256 - x ²) = √(121 + y ²)
or, by taking the squares of both sides,
256 - x ² = 121 + y ²
y ² = 135 - x ²
In the smallest triangle, you have
5² + y ² = x ² ==> x ² = 25 + y ²
Substitute this into the previous equation and solve for y :
y ² = 135 - (25 + y ²)
y ² = 110 - y ²
2y ² = 110
y ² = 55
y = √55
Simplify
x * x^5 / x^2 * x
f(x) = −16x2 + 24x + 16
what is the vertex
Answer:
VERTEX: (0.75,25)
Step-by-step explanation:
the vertex will be at [-b/2a, f(-b/2a)]
−16x2 + 24x + 16
4(-4x^2 + 6x +4)
a = -4, b=6,c=4
-6/-8 = 3/4
f(3/4) = 25
Evaluate the given expression for x = 5 and y=5. 6x2 + 7xy + 3y?
Step-by-step explanation:
Given, x = 5
y = 5
= 6(5)^2 +7(5)(5) +3(5)
= 6(25)+7(25) +15
= 150+175 + 15
= 150 + 190
=340
Answer:
x = 12 y = 7
Step-by-step explanation:
6x^2 + 7xy + 3y
6(5)^2+ 7(5) + 7(8)y
6(5+5)+25+35 + 7(8)-7y
60+25+35+ 56-7y
y - 5 = 120 + 35 - 5 (+49y)
sqrt 150 + sqrt 49
x = 12 y = 7
Plz help, fill in the blanks in order
A manager records the repair cost for 14 randomly selected dryers. A sample mean of $88.34 and standard deviation of $19.22 are subsequently computed. Determine the 90% confidence interval for the mean repair cost for the dryers. Assume the population is approximately normal. Step 1 of 2 : Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places.
Answer:
Hence the 90% confidence interval estimate of the population mean is [tex](79.24 , 97.44)[/tex]
Step-by-step explanation:
Given that,
Point estimate = sample mean = [tex]\bar x[/tex] = 88.34
sample standard deviation = s = 19.22
sample size = n = 14
Degrees of freedom = df = n - 1 = 13
Critical value =[tex]t\alpha /2,[/tex] df = 1.771
Margin of error
[tex]E = t\alpha/2,df \times (\frac{s}{\sqrt{n} } )\\= 1.771 \times (19.22 / \sqrt 14)[/tex]
Margin of error = E = 9.10
The 90% confidence interval estimate of the population mean is,
[tex]\bar x - E < \mu < \bar x + E\\\\88.34 - 9.10 < \mu < 88.34 + 9.10\\\\79.24 < \mu < 97.44\\(79.24 , 97.44)[/tex]
Function below, choose the correct description of its graph.
vertical
line
horizontal
line
line with a
negative
slope
line with a parabola
positive opening
slope down
O
O
O
O
O
h(x)=0
k(x) = 4x2 +312
f(x) = x-1
O
o
o
O
O
O
Step-by-step explanation:
I think something went wrong with the answer options you provided. and maybe with the problem statement itself.
I see 3 function definitions.
I can tell you what they are and use the provided option phrasing as closely as possible :
h(x) = 0 is a horizontal line (in fact the x-axis)
k(x) = 4x² + 312 is a parabola with the opening upwards
f(x) = x - 1 is a line with positive slope (going from left to right the line goes up)
Last year, the CDC claimed there were 1700 different strains of a virus around the
world. Since then, numbers have increased by 9.7% more than what the scientists
originally estimated. How many strains are estimated currently? Round to the nearest
number.
Answer: 1865
Step-by-step explanation:
Given
Claimed strains of virus is 1700
If it is increased by 9.7%
Estimated value can be given by
[tex]\Rightarrow 1700+1700\times 9.7\%\\\Rightarrow 1700(1+0.097)\\\Rightarrow 1700\times 1.097\\\Rightarrow 1864.9\approx 1865[/tex]
Thus, the estimated number is [tex]1865[/tex]
Find the sum of the geometric series given a1=−2, r=2, and n=8.
A. -510
B. -489
C. -478
D. 2
Answer:
A. -510
Step-by-step explanation:
We are given the variable values:
a = -2r = 2n = 8Geometric series formula:
[tex]s = \frac{a( {r}^{n} \times - 1) }{r - 1} [/tex]
Plugging in values we have:
[tex]s = \frac{ - 2( {2}^{8} - 1) }{2 - 1} [/tex]
Simplifying the equation we are left with:
[tex] \frac{ - 2(255)}{1} = - 510[/tex]
If 4 gallons of gasoline cost $13.76, how much will 11 gallons of gasoline cost?
Answer:
x=37.84
Step-by-step explanation:
We can write a ratio to solve
4 gallons 11 gallons
--------------- = ----------------
13.76 x dollars
Using cross products
4x = 11*13.76
4x=151.36
Divide by 4
4x/4 = 151.36/4
x=37.84
You wish to create a 5 digit number from all digits; 0 1 2 3 4 5 6 7 8 9
Repetition is not allowed
* 0 cannot be first as it does not count as a place value if it is first. Ie. 027 is a 2 digit number
How many even numbers can you have?
Answer:
10234
Step-by-step explanation:
one is the smallest number so its first
and then you can place zero
after that just place the second smallest number
and so on
What is 10+2
Please I need help
Answer: 12
Step-by-step explanation:
Answer:
12
Step-by-step explanation:
Check the picture below
11 + box equals 19 find box
Answer:
8
Step-by-step explanation:
11 + x = 19
Subtract 11 from each side
11+x -11 = 19-11
x = 8
Answer:
8
Step-by-step explanation:
11 + box = 19
=> box = 19 - 11
.°. box = 8
Last year Diana sold 800 necklaces. This year she sold 1080 necklaces. what is the percentage increase of necklaces she sold?
Answer:
13.5% is the increase in percentage
Answer:
74%
Step-by-step explanation:
To get the answer, divide 800 by 1080, and you will get a decimal. That decimal is 0.74074074074. Then, move the decimal point two times two the right, so you should have 074.074074074. Ignore everything after the decimal point as well as the 0 before the decimal point, and if done correctly, it should be 74%.
So, the final answer would be 74%.
Hope this helped!
Write the sum using summation notation, assuming the suggested pattern continues.
2, -10, 50, -250, +…
Is this sequence arithmetic or geometric? How do you know?
Answer:
[tex]\sum_{n = 1} 2*(-5)^{n-1}[/tex]
Step-by-step explanation:
An arithmetic sequence is of the form:
[tex]A_n = A_{n-1} + d[/tex]
While a geometric sequence is of the form:
[tex]A_n = A_{n-1}*r[/tex]
notice that first, we have a change of sign in our sequence, so we already can discard the arithmetic sequence.
In fact, the pattern is kinda easy to see.
The first term is:
A₁ = 2
the second term is:
A₂ = -10
notice that:
A₂/A₍ = r = -10/2 = -5
The third term is:
A₃ = 50
the quotient between the third term and the second term is:
A₃/A₂ = 50/-10 = -5
Whit this we can already conclude that the n-th term of our sequence will be:
[tex]A_n = A_{n-1}*(-5)[/tex]
Then the summation will be something like:
[tex]\sum_{n = 1} A_n = A_1 + A_2 + A_3 + ... = 2 - 10 + 50 - ...[/tex]
We can write:
[tex]A_n = A_{n-1}*(-5) = (A_{n-2}*(-5))*(-5)) = A_1*(-5)^{n-1} = 2*(-5)^{n-1}[/tex]
Then the summation is just:
[tex]\sum_{n = 1} 2*(-5)^{n-1}[/tex]
Write the point-slope form of an equation of the line through the points (-2, 6) and (3,-2).
Answer:
[tex]y-6=-\frac{\displaystyle 8}{\displaystyle 5}(x+2)[/tex]
OR
[tex]y+2=-\frac{\displaystyle 8}{\displaystyle 5}(x-3)[/tex]
Step-by-step explanation:
Hi there!
Point-slope form: [tex]y-y_1=m(x-x_1)[/tex] where [tex](x_1,y_1)[/tex] is a point and [tex]m[/tex] is the slope
1) Determine the slope
[tex]m=\frac{\displaystyle y_2-y_1}{\displaystyle x_2-x_2}[/tex] where two given points are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]
Plug in the given points (-2, 6) and (3,-2):
[tex]m=\frac{\displaystyle -2-6}{\displaystyle 3-(-2)}\\\\m=\frac{\displaystyle -8}{\displaystyle 3+2}\\\\m=-\frac{\displaystyle 8}{\displaystyle 5}[/tex]
Therefore, the slope of the line is [tex]-\frac{\displaystyle 8}{\displaystyle 5}[/tex]. Plug this into [tex]y-y_1=m(x-x_1)[/tex]:
[tex]y-y_1=-\frac{\displaystyle 8}{\displaystyle 5}(x-x_1)[/tex]
2) Plug in a point [tex](x_1,y_1)[/tex]
[tex]y-y_1=-\frac{\displaystyle 8}{\displaystyle 5}(x-x_1)[/tex]
We're given two points, (-2, 6) and (3,-2), so there are two ways we can write this equation:
[tex]y-6=-\frac{\displaystyle 8}{\displaystyle 5}(x-(-2))\\\\y-6=-\frac{\displaystyle 8}{\displaystyle 5}(x+2)[/tex]
OR
[tex]y-(-2)=-\frac{\displaystyle 8}{\displaystyle 5}(x-3)\\y+2=-\frac{\displaystyle 8}{\displaystyle 5}(x-3)[/tex]
I hope this helps!
Hari earns Rs 4300 per month. He spends 80% from his income. How much amount does he save in a year?
Answer:
Hari saves $ 10,320 in a year.
Step-by-step explanation:
Given that Hari earns $ 4300 per month, and he spends 80% from his income, to determine how much amount does he save in a year, the following calculation must be performed:
100 - 80 = 20
4300 x 0.20 x 12 = X
860 x 12 = X
10320 = X
Therefore, Hari saves $ 10,320 in a year.
A market surveyor wishes to know how many energy drinks teenagers drink each week. They want to construct a 98% confidence interval for the mean and are assuming that the population standard deviation for the number of energy drinks consumed each week is 1.1. The study found that for a sample of 1027 teenagers the mean number of energy drinks consumed per week is 5.9. Construct the desired confidence interval. Round your answers to one decimal place.
Answer:
The 98% confidence interval for the mean number of energy drinks consumed per week by teenagers is (5.8, 6).
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.98}{2} = 0.01[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.01 = 0.99[/tex], so Z = 2.327.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 2.327\frac{1.1}{\sqrt{1027}} = 0.1[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 5.9 - 0.1 = 5.8 drinks per week.
The upper end of the interval is the sample mean added to M. So it is 5.9 + 0.1 = 6 drinks per week.
The 98% confidence interval for the mean number of energy drinks consumed per week by teenagers is (5.8, 6).
The triangles are similar.
What is the value of x?
Enter your answer in the box.
x =
Answer:
x=12
Step-by-step explanation:
each side of the smaller triangle, we can multiply by 4 to get the side of the larger triangle
ex: 8*4=32 and 17*4=68
so we can assume that 15*4= 4x+12
60=4x+12
48=4x
x=12
Answer:
x = 12
Step-by-step explanation:
The triangles are similar so we can use ratios
4x+12 32
------- = ------------
15 8
Using cross products
(4x+12) *8 = 15 * 32
(4x+12) *8 = 480
Divide each side by 8
(4x+12) *8/8 = 480/8
4x+12 = 60
Subtract 12 from each side
4x+12 -12 = 60-12
4x = 48
Divide by 4
4x/4 = 48/4
x = 12
Alonzo finish history assignment and 5/8 hours then he completed his math assignment and 1/3 hours what was the total amount of time allowed to spend doing these two assignments
Step-by-step explanation:
The answer is 5/8 + 1/3
Answer = 5*3 /(8*3) +8/24 =23/24
Answer = 23/24
Describe the system of equations
How many solutions does this system have.
Answer:
Step-by-step explanation:
One solution, at the point of intersection, (3,3)
A scientist has acid solutions with concentrations of 4% and 15%. He wants to mix some of each solution to get 44 milliliters of solution with a 12% concentration. How many milliliters of each solution does he need to mix together?
Let x and y be the amounts (in mL) of the 4% and 15% solutions, respectively, that the scientist needs to use.
He wants to end up with a 44 mL solution, so
x + y = 44 mL
Each milliliter of 4% solution contains 0.04 mL of acid, while each mL of 15% contains 0.15 mL of acid. The resulting solution should have a concentration of 12%, so that each mL of it contains 0.12 mL of acid. Then the solution will contain
0.04x + 0.15y = 0.12 × (44 mL) = 5.28 mL
of acid.
Solve for x and y. In the first equation, we have y = 44 mL - x, and substituting into the second equation gives
0.04x + 0.15 (44 mL - x) = 5.28 mL
0.04x + 6.6 mL - 0.15x = 5.28 mL
1.32 mL = 0.19x
x ≈ 6.95 mL
==> y ≈ 37.05 mL
Critical Thinking: Empirical/Quantitative Skills
United flight 15 from New York's JFK to San Francisco uses a Boeing 757-200 with 180 seats. Because some
people with tickets don't show up. United will overbook by selling more than 180 tickets. If the flight is not
overbooked, the airline will lose revenue due to empty seats, but if too many tickets are sold and some
passengers are denied seats, the airline loses money from the compensation that must be given to bumped
passengers. Assume that there is a 0.905 probability that a passenger with a ticket will show up for the
flight. Also assume that the airline sells 200 tickets for the 180 seats that are available.
1. When 200 tickets are sold, calculate the probability that exactly 180 passengers show up for the flight.
Show your calculation (i.e. what you put in the calculator) and round to 4 decimals.
2. When 200 tickets are sold, calculate the probability that at most 180 passengers show up for the flight.
Show your calculation (ie. what you put in the calculator) and round to 4 decimals.
3. When 200 tickets are sold, calculate the probability that more than 180 passengers show up for the flight.
Show your calculation (i.e. what you put in the calculator) and round to 4 decimals.
Answer:
1. 0.0910 = 9.10% probability that exactly 180 passengers show up for the flight.
2. 0.4522 = 45.22% probability that at most 180 passengers show up for the flight.
3. 0.5478 = 54.78% probability that more than 180 passengers show up for the flight.
Step-by-step explanation:
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
Can be approximated to a normal distribution, using the expected value and the standard deviation.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
Normal probability distribution
Problems of normally distributed distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].
Assume that there is a 0.905 probability that a passenger with a ticket will show up for the flight.
This means that [tex]p = 0.905[/tex]
Also assume that the airline sells 200 tickets
This means that [tex]n = 200[/tex]
Question 1:
Exactly, so we can use the P(X = x) formula, to find P(X = 180).
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 180) = C_{200,180}.(0.905)^{180}.(0.095)^{20} = 0.0910[/tex]
0.0910 = 9.10% probability that exactly 180 passengers show up for the flight.
2. When 200 tickets are sold, calculate the probability that at most 180 passengers show up for the flight.
Now we have to use the approximation.
Mean and standard deviation:
[tex]\mu = E(X) = np = 200*0.905 = 181[/tex]
[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{200*0.905*0.095} = 4.15[/tex]
Using continuity correction, this is [tex]P(X \leq 180 + 0.5) = P(X \leq 180.5)[/tex], which is the p-value of Z when X = 180.5. Thus
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{180.5 - 181}{4.15}[/tex]
[tex]Z = -0.12[/tex]
[tex]Z = -0.12[/tex] has a p-value of 0.4522.
0.4522 = 45.22% probability that at most 180 passengers show up for the flight.
3. When 200 tickets are sold, calculate the probability that more than 180 passengers show up for the flight.
Complementary event with at most 180 passengers showing up, which means that the sum of these probabilities is 1. So
[tex]p + 0.4522 = 1[/tex]
[tex]p = 1 - 0.4522 = 0.5478[/tex]
0.5478 = 54.78% probability that more than 180 passengers show up for the flight.
If (-3)^-5 = 1/x, what is the value of x?
Answer:
-243
Step-by-step explanation:
(-3) (-3) (-3) (-3) (-3) = - 243
[tex]\frac{1}{-243 }[/tex]
How many counting numbers have three distinct nonzero digits such that the sum of the three digits is 7?
Answer:
6
Step-by-step explanation:
You have 2 conditions.
1. The digits must be different.
2. The digits must add to 7.
There aren't very many
124
142
214
241
412
421
That's it. That's your answer. There are 6 of them
Which one is greater 4.5% or 0.045
Answer:
They are equal
Step-by-step explanation:
4.5% is 0.045 in decimal form
Answer: They are equal
Step-by-step explanation:
I always remember by taking the two o's in percent and moving them two spots to the left and vise versa if you want to make a decimal into a percent (move it two spots to the right).
Solve for x and y…….
The shapes are the same size. Match the sides.
3x -1 = 17
Add 1 to both sides:
3x = 18
Divide both sides by 3:
X = 6
2y = 16
Divide both sides by 2
Y = 8
Answer: x = 6, y = 8
REVISED 2/3/
the following using the picture below.
4
a) Two pairs of supplementary angles:
b) A pair of complementary angles:
Please explain this! Thank you!
Supplementary angles are those angles which make a sum of 180°.
Complementary angles are those angles which make a sum of 90°.
The supplementary angles are given by the straight lines making angles of 180°.
There are two straight lines CB and DE
The angles DAF and FAE are the two angles making a straight line DE
The angles CAF and FAB are the two angles making a straight line CB
The complementary angles are given by angles formed between the perpendicular lines making angles of 90°.
Angle BAF is formed by angle BAE and angle AEF
Supplementary Angle given by the straight line DE is formed by the angles DAF and FAE.
Complementary Angle BAF is formed by angle BAE and angle AEF.
https://brainly.com/question/12919120
Is the answer right?
Answer:
one solution.. your answer is correct
Step-by-step explanation:
discriminate = 900 - (4*9*25) = 0
thus only one solution
One month Ivanna rented 7 movies and 9 video games for a total of $80. The next month she rented 5 movies and 3 video games for a total of $34. Find the rental cost for each movie and each video game.
Answer:
each movie costs $2.75, each video game costs $6.75
Step-by-step explanation:
x = movies, y = video games
7x + 9y = 80
5x + 3y = 34
simplified to
x = 11/4 , y = 27/4