Hi there!
A.) Begin by verifying that both endpoints have the same y-value:
g(-1) = 2(-1)² - 4(-1) + 3
Simplify:
g(-1) = 2 + 4 + 3 = 9
g(2) = 2(2)² - 4(2) + 3 = 8 - 8 + 3 = 3
Since the endpoints are not the same, Rolle's theorem does NOT apply.
B.)
Begin by ensuring that the function is continuous.
The function is a polynomial, so it satisfies the conditions of the function being BOTH continuous and differentiable on the given interval (All x-values do as well in this instance). We can proceed to find the values that satisfy the MVT:
[tex]f'(c) = \frac{f(a)-f(b)}{a-b}[/tex]
Begin by finding the average rate of change over the interval:
[tex]\frac{g(2) - g(-1)}{2-(-1)} = \frac{3 - 9 }{2-(-1)} = \frac{-6}{3} = -2[/tex]
Now, Find the derivative of the function:
g(x) = 2x² - 4x + 3
Apply power rule:
g'(x) = 4x - 4
Find the x value in which the derivative equals the AROC:
4x - 4 = -2
Add 4 to both sides:
4x = 2
Divide both sides by 4:
x = 1/2
Help Please
2(-1+-4)-d^2
If a state issued license plates using the scheme of 3 letters followed by 3 digits, how many plates could it issue?
Answer:
17,576,000
Step-by-step explanation:
there are 26 english letters (A-Z) and 10 digits(0-9).
there are 3 spaces for letters. therefore Any of the 26 letters can be combined with any 26 other letters and any of those can be combined with any of another 26 letters.
26*26*26= 17576
similarly 10 digits can combined in 1000 ways
10*10*10=1000
17576 letter combination can combine with 1000 digits combination.
so 17,576 x 1000 = 17,576,000 different plates could issue.
The length of a rectangle is shown below:
On a coordinate grid from negative 6 to positive 6 on the x-axis and on the y-axis, two points A and B are shown. Point A is on ordered pair negative 4, 5, and the point B is on ordered pair 5, 5.
If the area of the rectangle to be drawn is 90 square units, where should points C and D be located, if they lie vertically below A and B, to make this rectangle?
C(4, −5), D(−3, −5)
C(5, −4), D(−4, −4)
C(5, −5), D(−4, −5)
C(−5, 5), D(−5, −4)
Answer:
C(5, −5), D(−4, −5)
Step-by-step explanation:
9 across
A(-4, 5) ————————— B(5, 5)
| |
| 90 square units | 10 down
| |
D(-4, -5) ————————— C(5, -5)
The black graph is the graph of
y = f(x). Choose the equation for the
red graph.
a. y = f(x + 3)
b. y = f(x – 3)
c. y + 3 = f(x)
d. y - 3 = f(x)
9514 1404 393
Answer:
b. y = f(x -3)
Step-by-step explanation:
The translation right h and up k units is ...
y -k = f(x -h)
Here, the red graph is translated right 3 and up 0, so the translated function is ...
y = f(x -3)
_____
Additional comment
You can check this if you like by listing a couple of corresponding points:
y = f(x)
1 = f(-3) . . . . left-most point on black graph.
The corresponding point on the red graph is (0, 1). Putting this into the equation (b), we get ...
1 = f(0 -3) = f(-3) . . . . . correct value for f(-3)
−12x+y=10 in slope-intercept form
Answer:
y=12x+10
Step-by-step explanation:
Slope-intercept form is y=mx+b
1. Add -12x to both sides of the equation
find the derivative of y=(x³-5)⁴(x⁴+3)⁵
Answer:
[tex]12x^{2} (x^{3}-5)^{3} (x^{4}+3)^{5} +20x^{3} (x^{3}-5)^{4} (x^{4}+3)^{4}[/tex]
Step-by-step explanation:
Which expression is equivalent to 3√x10
Answer:
Hes correct ^
Step-by-step explanation:
What is the mean of 86, 80, and 95
87 is the mean.
To find the mean, you must
- add all of the numbers
- divide by the amount of numbers given
In this case, you would want to do (86 + 80 + 95)/3. This would give you an answer of 87.
Help me please and thank you
Answer:
Option C is correct
Step-by-step explanation:
[tex]log( {10}^{3} )[/tex]
Use logarithm rules to move 3 out of the exponent.[tex]3 \: log \: (10)[/tex]
Logarithm base 10 of 10 is 1.[tex]3×1[/tex]
Multiply 3 by 1.[tex]3[/tex]
Hope it is helpful....identify an equation in point slope form for the line perpendicular to the y=-1/2x+11 that passes through (4,-8). a. y+8=1/2(x-4) b. y-4=2(x+8) c. y-8=1/2(x+4) d. y+8=2(x-4)
Answer:
d. y+8=2(x-4)
Step-by-step explanation:
There are 2 important parts to this question. First, understanding which slopes are perpendicular. The negative reciprocal of a number will be perpendicular to it. So, since the original slope is -1/2 the new slope should be 2.
Then, remember what the point-slope formula is. The point-slope formula is: [tex]y-y_{2}=m(x-x_{2})[/tex]. So if you plug in the point and slope the new equation looks like, [tex]y--8=2(x-4)[/tex]. Then, simplify for the final answer of [tex]y+8=2(x-4)[/tex].
Your car can go 2/7 of the way on 3/8 of a tank of gas how far can you go on the remaining gas?
A proportion that can be used is a/b=c/d
Answer:
10/21 of the distance
Step-by-step explanation:
2/7 distance
------------------
3/8 tank
The rest of the tank is 8/8 - 3/8 = 5/8
2/7 distance x
------------------ = ----------------------
3/8 tank 5/8 tank
Using cross products
2/7 * 5/8 = 3/8x
10/56 = 3/8x
Multiply each side by 8/3
10/56 * 8/3 = 3/8x * 8/3
10/3 * 8/56=x
10/3 * 1/7 =x
10/21 =x
10/21 of the distance
I need help with ged
Answer:
General Educational Development (GED) tests
What do subject do you need help?
Step-by-step explanation:
The GED® exam is made up of 4 subjects, broken into separate exams: Mathematical Reasoning, Reasoning Through Language Arts, Social Studies, and Science.
pls help! I need the answer fast!
Answer:
B is the answer
Step-by-step explanation:
hope it helps
Which equation represents an exponential function that passes through the point (2, 36)?
O f(x) = 4(3)
O fx) = 4(x)
O f(x) = 6(3)
O f(x) = 6(x)
Answer: It would be the first equation because:
Step-by-step explanation:
In order to be an exponential function, the X
variable has to be in the exponent, that eliminates
the second and fourth answers
f(X) = 4(3)X
using the point (2,36)
f(2) = 4 (3)2
= 4 (9 )
= 36
The equation which represents an exponential function is f ( x ) = 4 ( 3 )ˣ
What are the laws of exponents?When you raise a quotient to a power you raise both the numerator and the denominator to the power. When you raise a number to a zero power you'll always get 1. Negative exponents are the reciprocals of the positive exponents.
The different Laws of exponents are:
mᵃ×mᵇ = mᵃ⁺ᵇ
mᵃ / mᵇ = mᵃ⁻ᵇ
( mᵃ )ᵇ = mᵃᵇ
mᵃ / nᵃ = ( m / n )ᵃ
m⁰ = 1
m⁻ᵃ = ( 1 / mᵃ )
Given data ,
Let the exponential equation be represented as A
Now , the value of A is
Let the point on the graph be P ( 2 , 36 )
So , when x = 2 , the value of y = 36
f ( x ) = 4 ( 3 )ˣ be equation (1)
when x = 2
f ( 2 ) = 4 ( 3 )²
f ( 2 ) = 4 x 9
f ( 2 ) = 36
Hence , the exponential equation is f ( x ) = 4 ( 3 )ˣ
To learn more about exponents click :
https://brainly.com/question/28966438
#SPJ7
Explain why the equation x=x+1 is a contradiction
Answer:
It results in no solution.
Step-by-step explanation:
If you subtract x on both sides, this will leave you with 0 ≠ 3. The result is no solution. This is why it is contradictory.
Algebra II Part 1
Choose the expression or equation that correctly represents this information
Rose works eight hours a day for five days a week. How many hours will she work in sa
weeks?
hours = 40 = 6
hours = 40.6
hours = 6 = 40
Answer:
240 i.e 40*6
Step-by-step explanation:
if rose works 8hrs per day then she works 40 hrs per week (5 days) therefore 40 hrs per 6 weeks =40*6=240
Answer:
40
Step-by-step explanation:
Please due in 1 hour
I hope that helped you
9514 1404 393
Answer:
d + q = 440.10d +0.25q = 8.30Step-by-step explanation:
The first equation describes the total number of coins. It says the sum of the numbers of dimes and quarters is 44, the total number of coins.
__
The second equation describes the total value of the coins. It will say that 0.10 times the number of dimes plus 0.25 times the number of quarters is 8.30, the total dollar value of the coins.
The two equations are ...
d + q = 44
0.10d +0.25q = 8.30
__
Additional comment
The solution can be found by substituting for d:
0.10(44 -q) +0.25q = 8.30
0.15q = 3.90
q = 26
d = 44 -26 = 18
Vinnie has 18 dimes and 26 quarters in his bag.
someone help me pls i need to pass summer school
Answer:
A
Step-by-step explanation:
The be the inverse function the domain {4,5,6,7} becomes the range and the range {14,12,10,8} becomes the domain
14 → 4
12 →5
10 →6
8 →7
The diameters of ball bearings are distributed normally. The mean diameter is 7373 millimeters and the variance is 44. Find the probability that the diameter of a selected bearing is less than 7676 millimeters. Round your answer to four decimal places.
Answer:
0.9332
Step-by-step explanation:
We are given that
Mean diameter, [tex]\mu=73[/tex]
Variance, [tex]\sigma^2=4[/tex]
We have to find the probability that the diameter of a selected bearing is less than 76.
Standard deviation, [tex]\sigma=\sqrt{variance}=\sqrt{4}=2[/tex]
[tex]P(x<76)=P(\frac{x-\mu}{\sigma}<\frac{76-73}{2})[/tex]
[tex]P(x<76)=P(Z<\frac{3}{2})[/tex]
Where [tex]Z=\frac{x-\mu}{\sigma}[/tex]
[tex]P(x<76)=P(Z<1.5)[/tex]
[tex]P(x<76)=0.9332[/tex]
Hence, the probability that the diameter of a selected bearing is less than 76=0.9332
If 6x + 5y = 10, what is y in terms of x?
Please include an explanation!
what you're trying to do is form an equation for y
6x + 5y = 10
5y = -6x + 10 we need y to be singular so divide by numeral before y
y = - 6x/5 + 10/5
y = - 6x/5 + 2
I’m new to this app and I need help with those two questions please help!!
y=x²-10x-7
a>0 so we will be looking for minimum
x=-b/2a=10/2=5
y=25-50-7=-32
Answer: (5;32)
y=-4x²-8x+1
а<0 so we will be looking for maximum
х=-b/2a=8/-8=-1
у=4+8+1=13
Maximum point (-1;13)
Can someone help me with this plz
Answer:
170.7
Step-by-step explanation:
We are aware that the base is a square, with side lengths 8cm, and we are given that the height is 8 cm. Since the volume of a square based pyramid is 1/3 x base area x height, we receive 1.3 x 64 x 8 which is 512/3 which is in turn 170.666 recurring. However, since this question asks you to round the the nearest tenth, you get 170.7
A grocery store buys cereal using the cost function
c(n) = { 2n when n < 100 1.9n when 100
Sn = 500 1.8n when n > 500 where n is
the number of boxes of cereal the grocery store
buys and c(n) is the cost of the cereal. The grocery
store then sells the cereal using the sales function
s(c) = 1.3c. What is the cost of the cereal if the
grocery store buys 250 boxes?
The cost of the cereal if the grocery store buys 250 boxes is $475
We know that:
The cost function is:
c(n) = 2*n if n < 100
c(n) = 1.9*n if 100 ≤ n ≤ 500
c(n) = 1.8*n if n > 500.
(we can assume that the cost function is in dollars)
This is a piecewise function, this means that we need to see in which interval we have the number n, and then select the correct function to use.
Now, we want to find the cost of the cereal if the store buys 250 boxes.
Then we have n = 250.
We can see that n = 250 is in the second interval, 100 ≤ n ≤ 500, then we will use the second function to find the cost.
We will get:
c(250) = 1.9*(250) = $475
We can conclude that the cost if the store buys 250 boxes is 475
If you want to learn more, you can read:
https://brainly.com/question/12561612
Someone help please
9514 1404 393
Answer:
B.
Step-by-step explanation:
The relation between a function f(x) and its inverse g(x) is ...
f(g(x)) = g(f(x)) = x
On can compute these functions of functions, or take an easier route and do the computation with a couple of numbers. It is often easiest to use x=0 or x=1. If we find g(f(x)) ≠ x, then we know the functions are not inverses. If we find g(f(x)) = x for one particular value of x, then we need to try at least one more to verify the relation.
__
If we call the two given functions f and g, then we have ...
A. f(0) = -2/3, g(-2/3) ≠ 0 . . . . not inverses
__
B. f(0) = -3/2, g(-3/2) = 0 . . . . possible inverses
f(1) = 4/2 = 2, g(2) = 7/7 = 1 . . . . probable inverses
__
C. f(0) = -2, g(-2) = 0 . . . . possible inverses
f(1) = 1/2, g(1/2) = -5/3 . . . . not inverses
__
D. f(0) = 5, g(5) = 27 . . . . not inverses
_____
Additional comment
Our assessment above is sufficiently convincing to let us choose an answer. If we want to verify the functions are inverses, we need to graph them or compute f(g(x)). The graph in the second attachment shows each appears to be the reflection of the other in the line y=x, as required of function inverses.
Find the coordinates of the vertices of the figure after the given transformation: T<0,7>
A. X′(1,−1),L′(0,2),W′(2,1)
B. X′(−4,2),L′(−5,5),W′(−3,4)
C. X′(3,2),L′(2,5),W′(4,4)
D. X′(0,−3),L′(−1,0),W′(1,−1)
Answer: B
Step-by-step explanation:
Why did historians choose to study this topic?
What is the perimeter of the octagon below!!
Answer:
C) sixty five units
Step-by-step explanation:
have a great day
the graph of f(x)=6(.25)^x and its reflection across the y-axis , g(x), are shown. what is the domain of g(x)
9514 1404 393
Answer:
all real numbers
Step-by-step explanation:
The domain of any exponential function is "all real numbers". Reflecting the graph across the y-axis, by replacing x by -x does not change that.
The domain of g(x) = f(-x) is all real numbers.
3 x {(300 - 70 ÷ 5) - [3 x 23 - (8 - 2 x 3)]}
A.657
B.2433
C. -843
Answer:
657
Step-by-step explanation:
pemdas
The value of the expression 3 x {(300 - 70 ÷ 5) - [3 x 23 - (8 - 2 x 3)]} is 657.
Hence option A is correct.
Given is an expression, 3 x {(300 - 70 ÷ 5) - [3 x 23 - (8 - 2 x 3)]}, we need to simplify it,
Let's break down the expression step by step:
First, let's simplify the expression inside the innermost parentheses:
8 - 2 x 3 = 8 - 6 = 2
Next, let's simplify the expression inside the brackets:
3 x 23 - 2 = 69 - 2 = 67
Now, let's substitute the simplified expression inside the brackets back into the original expression:
(300 - 70 ÷ 5) - 67
Next, let's simplify the expression inside the remaining parentheses:
70 ÷ 5 = 14
Now, let's substitute the simplified expression inside the parentheses back into the expression:
(300 - 14) - 67
Next, let's simplify the expression inside the remaining parentheses:
300 - 14 = 286
Now, let's substitute the simplified expression inside the parentheses back into the expression:
286 - 67
Finally, let's perform the subtraction:
286 - 67 = 219
Now, let's multiply the result by 3:
3 x 219 = 657
Therefore, the value of the expression 3 x {(300 - 70 ÷ 5) - [3 x 23 - (8 - 2 x 3)]} is 657.
Learn more about expression click;
https://brainly.com/question/28170201
#SPJ2
f(x) = (2x – 1)(3x + 5)(x + 1) has zeros at I = -
1
cole
2= -1, and x =
What is the sign of f on the interval
5
<<
3
เล
?
Choose 1 answer:
А
f is always positive on the interval.
B
f is always negative on the interval.
f is sometimes positive and sometimes negative on the interval.
Interval of function f(x) is sometimes negative and sometimes positive.
What is interval of function?The function interval is said to be positive if the value of the function f (x) increases with an increase in the value of x. In contrast, the function interval is said to be negative if the value of the function f (x) decreases with the increase in the value of x.
Given function,
f(x) = (2x – 1)(3x + 5)(x + 1),
Zeros of function,
x = 1/2 = 0.5
x = -5/3 = - 1.6667
x = -1
From the graph
Interval of function is negative between -∞ < x < -1.6667
Interval of graph is positive between -5/3 < x < -1
Interval of function is negative between -1 < x < 0.5
Interval of graph is positive 0.5 < x < ∞
Hence, f(x) has sometimes positive interval and sometimes negative interval.
Learn more about interval of function here:
https://brainly.com/question/29197921
#SPJ1
Use Taylor series to evaluate
limx→0(tan x − x)/x^3
Recall that
tan(x) = sin(x)/cos(x)
and
sin(x) = x - x ³/6 + x ⁵/120 - x ⁷/5040 + …
cos(x) = 1 - x ²/2 + x ⁴/24 - x ⁶/720 + …
Truncate the series to three terms. Then
[tex]\displaystyle \lim_{x\to0}\frac{\tan(x)-x}{x^3} = \lim_{x\to0}\frac{\frac{x-x^3/6+x^5/120}{1-x^2/2+x^4/24}-x}{x^3} \\\\ = \lim_{x\to0}\left(\frac{x-x^3/6+x^5/120}{x^3-x^5/2+x^7/24}-\frac1{x^2}\right) \\\\ = \lim_{x\to0}\left(\frac{1-x^2/6+x^4/120}{x^2-x^4/2+x^6/24}-\frac1{x^2}\right) \\\\ = \lim_{x\to0}\left(\frac{1-x^2/6+x^4/120}{x^2\left(1-x^2/2+x^4/24\right)}-\frac1{x^2}\right) \\\\ = \lim_{x\to0}\left(\frac{1-x^2/6+x^4/120}{x^2\left(1-x^2/2+x^4/24\right)}-\frac{1-x^2/2+x^4/24}{x^2\left(1-x^2/2+x^4/24\right)}\right) \\\\ = \lim_{x\to0}\frac{x^2/3-x^4/30}{x^2\left(1-x^2/2+x^4/24\right)} \\\\ = \lim_{x\to0}\frac{1/3-x^2/30}{1-x^2/2+x^4/24} = \boxed{\frac13}[/tex]