Answer: [tex]-44\dfrac{4}{9}[/tex]
Step-by-step explanation:
The given expression: [tex]-36\dfrac{4}{9}-(-10\dfrac{2}{9})-(18\dfrac{2}{9})[/tex]
Here, [tex]36\dfrac{4}{9}=\dfrac{36\times9+4}{9}=\dfrac{328}{9}[/tex]
[tex](10\dfrac{2}{9})=\dfrac{92}{9}\\\\(18\dfrac{2}{9})=\dfrac{9\times18+2}{9}=\dfrac{164}{9}[/tex]
That is
[tex]-36(\dfrac{4}{9})-(-10\dfrac{2}{9})-(18\dfrac{2}{9}) = -\dfrac{328}{9}-(-\dfrac{92}{9})-\dfrac{164}{9}\\\\=-\dfrac{328}{9}+\dfrac{92}{9}-\dfrac{164}{9}\\\\=\dfrac{-328+92-164}{9}\\\\=\dfrac{-400}{9}\\\\=-44\dfrac{4}{9}[/tex]
If x = -1 then how much is 2x - 1
a) 1
b) -3
c) -2
hurry please need to turn in 10 min
Answer: -3
Step-by-step explanation: 2x = -2 then you subtract 1 from that which is the same as adding negative one so -2 - 1 or -2 + -1 = -3
How do you find x when knowing the probability?
Answer:
x
Step-by-step explanation:
probability is the branch of mathematics concerning numeral descriptions of how likely an event is to occur or how likely it is that a proposition is true
How do i do this equation
-3(-2y-4)-5y-2=
Answer:
Step-by-step explanation: distribute -3 to the parenthesis (-2y-4) to eliminate the parenthesis. you’ll be left with 6y +12 -5y-2. From there you combine like terms. do 6y-5y= 1y or just y and 12-2 = 10. your answer would be 10
PLEASE HELP !!! (5/5) -50 POINTS-
Answer:
at least one solution
Step-by-step explanation:
Consistent solutions have at least one solution, but may have more than one solution. Intersecting lines and Lines that are the same are consistent solutions
Answer:
[tex]\boxed{Atleast\ one \ Solution}[/tex]
Step-by-step explanation:
A consistent system of equations have at least one solution. It can be more than that. There are no compulsions.
(12x^(2)+x-35)-:(4x+17)
Answer:
(3x-5)(4x+7) / 4x + 17
Step-by-step explanation:
Rewrite the division as a fraction
12 x ^2 + x-35 / 4x+17
Factor by grouping
(3x-5)(4x+7) / 4x + 17
Hope this was the answer you were looking for
100 students are interviewed to see which of biology, chemistry or physics they prefer.
59 of the students are girls. 35 of the girls like biology best.
2 of the boys prefer physics.
6 out of the 30 who prefer chemistry are girls.
What percentage of the students prefer biology?
Answer:
50%
Step-by-step explanation:
Girls Boys
total: 59 total: 41
- Chemistry 35 - Physics 2
= 24 = 39
- Chemistry ( 30 - 6 ) 24
= 15
Total boys and girls for Biology = 35 + 15 = 50
% = 50/100*100
= 50%
Hope it helps and also mark it as brainliest!!!!Let A and B be any two sets. Show that:
Show that (
AUB)', (BUA)' = 0
Step-by-step explanation:
(AUB)' means they are all outside the set A and B so thats 0. Hope it helps
Please answer this correctly without making mistakes
Answer: 7 mi
Step-by-step explanation: since the distance from bluepoint to Manchester is 12 9/10 mi and you know that bluepoint to Silverstone is 5 9/10 subtract that and you get 7 mi as your answer
Answer:
7 miles
Step-by-step explanation:
Hey there!
Well given BM and BS, we need to subtract them.
12 9 /10 - 5 9/10
9/10 - 9/10 = 0
12 - 5 = 7
Silvergrove to Manchester is 7 miles.
Hope this helps :)
What is the rate of change from x = 0 to x = pi over 2 ? (6 points) trig graph with points at (0, -4) and (pi over 2, 0) and (pi, 4) and (3 pi over 2, 0) and (2 pi, -4)
Answer: [tex]\dfrac{8}{\pi}[/tex] .
Step-by-step explanation:
We know that the rate of change of function f(x) from x=a to x= b is given by :-
[tex]k=\dfrac{f(b)-f(a)}{b-a}[/tex]
The given points on graph : (0, -4) and (pi over 2, 0) and (pi, 4) and (3 pi over 2, 0) and (2 pi, -4).
The rate of change from x = 0 to x = pi over 2 will be :-
[tex]\dfrac{0-(-4)}{\dfrac{\pi}{2}-0}=\dfrac{4}{\dfrac{\pi}{2}}[/tex] [By using points (0, -4) and (pi over 2, 0) ]
[tex]=\dfrac{8}{\pi}[/tex]
Hence, the rate of change from x = 0 to x = pi over 2 is [tex]\dfrac{8}{\pi}[/tex] .
Write 11 numbers in a row so that the sum of any 3 consecutive numbers is negative, while the sum of all the numbers is positive. Is it possible?
Explanation:
Let the 11 numbers be {a1, a2, ..., a11} such that a1 is the smallest and a11 is the largest. So, a1 < a2 < ... < a11. Furthermore, these numbers are consecutive.
If we add consecutive numbers to get a negative result, then each of the numbers must be negative. So every value in the set {a1, a2, ..., a11} is a negative value which makes it impossible to have a1+a2+...a11 be a positive sum.
write a letter to your friend in Ghana stating your experience in your presentation school in nigeria
Answer:
hi Ghana how are you doing I am fine here. I really miss u and my friends in the old.U know what in Nigeria this school is really awesome and fantastic we have a swimming pool here and we can go to trip and we can have many things here I really loved this school.
at starting I was not have any friends and know I have many friends. But I really miss u this is what about our . Come to my house I can show you my school it is very near to my house .
Ur friend
writ ur name
Ax + By = C for x. plz sove
Answer:
[tex]\boxed{\boxed{ x=\frac{C-By}{A}; A\neq 0}}[/tex]
Step-by-step explanation:
[tex]Ax+By=C\\\\Ax+By-By=C-By\\\\Ax=C-By\\\\\frac{Ax=C-By}{A}\\\\\boxed{ x=\frac{C-By}{A}; A\neq 0}[/tex]
Hope this helps.
Find the Vertical asymptotes of the graph of f
[tex]f(x) = \frac{x + 2}{ {x}^{2} - 4}[/tex]
Answer:
x = 2 and x = -2
Step-by-step explanation:
To find the vertical asymptotes, set the denominator equal to zero and solve for x:
vertical asymptotes are x = 2 and x = -2
What is the slope of a line perpendicular to y=-7/4x
O A.
IN
O B.
7
O c.
4
-
O D.
7
4
Answer:
y=4/7x
Step-by-step explanation:
perpendicular lines have opposite slopes. that means reciprocal and opposite sign.
List the sides in order from the largest to the smallest. A. XY, YW, WX B. XY, WX, YW C. WX, YW, XY D. WX, XY, YW
Answer:
Option (D)
Step-by-step explanation:
By applying Sine rule in the given triangle WXY,
[tex]\frac{\text{SinW}}{\text{XY}}=\frac{\text{SinY}}{\text{XW}}=\frac{\text{SinX}}{\text{WY}}[/tex]
[tex]\frac{\text{Sin59}}{\text{XY}}=\frac{\text{Sin82}}{\text{XW}}=\frac{\text{Sin39}}{\text{WY}}[/tex]
[tex]\frac{\text{Sin59}}{\text{XY}}=\frac{\text{Sin82}}{\text{XW}}[/tex]
[tex]\frac{\text{XW}}{\text{XY}}=\frac{\text{Sin82}}{\text{Sin59}}[/tex]
= 1.1489
XW : XY ≈ 1.15 : 1
[tex]\frac{\text{Sin59}}{\text{XY}}=\frac{\text{Sin39}}{\text{WY}}[/tex]
[tex]\frac{\text{XY}}{\text{WY}}=\frac{\text{Sin59}}{\text{Sin39}}[/tex]
[tex]\frac{\text{XY}}{\text{WY}}=\frac{1.36}{1}[/tex]
[tex]\frac{\text{XY}}{\text{WY}}=\frac{\frac{1}{1}}{\frac{1}{1.36} }[/tex]
[tex]\frac{\text{XY}}{\text{WY}}=\frac{1}{0.7342}[/tex]
XY : WY = 1 : 0.7342
XW : XY : WY = 1.15 : 1 : 0.7342
Therefore, WX > XY > WY
Option (D). will be the correct option.
Solve for 2 in the diagram below.
120°
32°
T=
Step-by-step explanation:
Hello, there!!!
It's so simple here,
Here,
we have is 1 angle is 120°and other is 3x°.
now,
3x°=120° {because when two st.line intersects eachother then the opposite angle formed are equal}
so, 3x°=120
or, x=120°/3
=40°
Therefore, the value of x is 40°.
Hope it helps....
I need some help with this please :)
Answer:18 ft
Step-by-step explanation: Perimeter=2(L+B)
Perimeter=2(7 + 2)
2×9=18
Answer:
18feet.
Step-by-step explanation:
To find the perimemter of a rectangle, you just add all the sides.
A rectangle has 4 sides in total, where 2 are equal, and the other 2 are als equal.
So, you just add 7+2+7+2, which gives 18.
This is why, the perimeter of this rectangle is 18feet.
Hope this helped, have a nice day!
The value (in dollars) of an airplane depends on the flight hours as given by the formula V= 1,800,000 - 250x . After one year, the value of the plane is between $1,200,000 and $1,300,000. Which range for the flight hours does this correspond to?
a. 1800 <= x <= 2100
b. 2200<= x <= 2500
c. 1500<= x <= 1800
d. 2000<= x <= 2400
Answer:
D
Step-by-step explanation:
To determine the range we must solve this inequality;
● 1200000<1800000-250x<1300000
Substract 1800000 from both sides.
● 1200000-1800000<1800000-250x<1300000-1800000
● -600000< -250x < -500000
Divide both sides by 250
● -600000/250 < -250x/250 < -500000/250
● -2400 < -x < -2000
Multiply both sides by -1 and switch the signs
● 2000 < x < 2400
The correct option is D. 2000<= x <= 2400
Given, the value of an airplane depends on the flight hours,
[tex]V= 1800000-250x[/tex], here x is the flight hours.
We have to calculate the range of x After one year.
Since, [tex]V= 1800000-250x[/tex]
[tex]250x=1800000-V\\\\x=\dfrac{1800000-V}{250}[/tex]
Since the value of the plane is between $1,200,000 and $1,300,000. So,
[tex]x=\dfrac{1800000-1200000}{250}[/tex]
[tex]x=\dfrac{600000}{250}[/tex]
[tex]x=2400\\[/tex]
When V is 1300000 then x will be,
[tex]x=\dfrac{1800000-1300000}{250} \\[/tex]
[tex]x=\dfrac{500000}{250}[/tex]
[tex]x=2000[/tex]
Hence the range of x will be from 2000 to 2400.
The correct option is D. 2000<= x <= 2400.
For more details on range follow the link:
https://brainly.com/question/10185991
(Algebra)
Plz help me ASAP!! I’ll be so grateful!
Answer:
y > 1
Step-by-step explanation:
-2(7 + y) > -8(y + 1)
-14 -2y > -8y -8
-2y +8y > -8 +14
6y > 6
6y/6 > 6/6
y > 1
7 less than the quotient of a number and 3 is 5. Find the number.
Answer:
The answer is 36
Step-by-step explanation:
Let the number be x
7 less than the quotient of a number and 3 is written as
[tex] \frac{x}{3} - 7[/tex]The result is 5
So we have
[tex] \frac{x}{3} - 7 = 5[/tex]Move - 7 to the right side of the equation
That's
[tex] \frac{x}{3} = 7 + 5[/tex][tex] \frac{x}{3} = 12[/tex]Multiply both sides by 3 to make x stand alone
We have
[tex]3 \times \frac{x}{3} = 12 \times 3[/tex]We have the final answer as
x = 36Hope this helps you
Find the length of AB¯¯¯¯¯¯¯¯ A. 19.56 B. 51.86 C. 42.99 D. 34.98
Answer:
Apllying cos on the triangle
cos(angle)= Base/ Hyp
cos(34)= 29/ AB
AB= 29/0.8290
AB=34.98
Step-by-step explanation:
The length of AB is 34.98 units which the correct answer would be an option (D).
What is the right triangle?A right triangle is defined as a triangle in which one angle is a right angle or two sides are perpendicular.
What are Trigonometric functions?Trigonometric functions are defined as the functions which show the relationship between the angle and sides of a right-angled triangle.
Given that ΔABC
∠C = 90°
Here base = BC = 29 units and hypotenuse = AB
To determine the length of AB
Apply the cosine on the given right triangle
⇒ cos(θ) = Base/hypotenuse
⇒ cos(34) = 29/ AB
∴ cos(34°) = 0.8290
⇒ 0.8290 = 29/ AB
⇒ AB= 29/0.8290
⇒ AB = 34.98 units
Hence, the length of AB is 34.98 units
Learn more about Trigonometric functions here:
https://brainly.com/question/6904750
#SPJ2
What is the difference? Complete the equation. -1 2/5 - (-4/5) = ?
Answer:
First convert them which will be
-7/5 - (-4/5)
so when you subtract a negative number from negative number they actually subtract ex = -4-(-2) = -2
so its simply 7/5-4/5 then add a negative sign
so
3/5
now add negative sign so
-3/5
. A discount brokerage selected a random sample of 64 customers and reviewed the value of their accounts. The mean was $32,000 with a population standard deviation of $8,200. What is a 90% confidence interval for the mean account value of the population of customers
Answer:
The 90% confidence interval is [tex]\$ \ 30313.9< \mu < \$ \ 33686.13[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is n = 64
The sample mean is [tex]\= x = \$ 32, 000[/tex]
The standard deviation is [tex]\sigma= \$ 8, 200[/tex]
Given that the confidence interval is 90% then the level of significance is mathematically evaluated as
[tex]\alpha = 100 - 90[/tex]
[tex]\alpha = 10 \%[/tex]
[tex]\alpha = 0.10[/tex]
Next we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table , the value is
[tex]Z_{\frac{\alpha }{2} } = 1.645[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{ \sigma }{ \sqrt{n} }[/tex]
=> [tex]E = 1.645 * \frac{ 8200 }{ \sqrt{64} }[/tex]
=> [tex]E = 1686.13[/tex]
The 90% confidence interval is mathematically represented as
[tex]\= x - E < \mu < \= x + E[/tex]
=> [tex]32000 - 1689.13 < \mu < 32000 + 1689.13[/tex]
=> [tex]\$ \ 30313.9< \mu < \$ \ 33686.13[/tex]
Consider the following ordered data. 6 9 9 10 11 11 12 13 14 (a) Find the low, Q1, median, Q3, and high. low Q1 median Q3 high (b) Find the interquartile range.
Answer:
Low Q1 Median Q3 High
6 9 11 12.5 14
The interquartile range = 3.5
Step-by-step explanation:
Given that:
Consider the following ordered data. 6 9 9 10 11 11 12 13 14
From the above dataset, the highest value = 14 and the lowest value = 6
The median is the middle number = 11
For Q1, i.e the median of the lower half
we have the ordered data = 6, 9, 9, 10
here , we have to values as the middle number , n order to determine the median, the mean will be the mean average of the two middle numbers.
i.e
median = [tex]\dfrac{9+9}{2}[/tex]
median = [tex]\dfrac{18}{2}[/tex]
median = 9
Q3, i.e median of the upper half
we have the ordered data = 11 12 13 14
The same use case is applicable here.
Median = [tex]\dfrac{12+13}{2}[/tex]
Median = [tex]\dfrac{25}{2}[/tex]
Median = 12.5
Low Q1 Median Q3 High
6 9 11 12.5 14
The interquartile range = Q3 - Q1
The interquartile range = 12.5 - 9
The interquartile range = 3.5
Please answer this correctly without making mistakes
Answer:
so to get a third you divide it by 3
first convert it to fraction
so it is 26/3
so do 26/3 divided by 3
so we do keep switch flip
26/3*1/3
so answer is 26/9 or 2 8/9
Step-by-step explanation:
Answer:
[tex]\large \boxed{\mathrm{2 \ 8/9 \ tablespoons \ of \ red \ chilies }}[/tex]
Step-by-step explanation:
8 2/3 tablespoons of red chilies is required for a recipe.
One-third of the original recipe would mean that the quantity of red chilies will be also one-third.
8 2/3 × 1/3
Convert to an improper fraction.
26/3 × 1/3
Multiply the fractions.
26/(3 × 3) = 26/9
Convert to a mixed fraction.
26/9 = 2 8/9
The sum of two polynomials is 10a^2b^2-8a^2b+6ab^2-4ab+2 if one addend is -5a^2b^2+12a^2b-5 what is the other addend
Answer:
The other addend is [tex]15\cdot a^{2}\cdot b^{2}-20\cdot a^{2}\cdot b + 6\cdot a \cdot b^{2}-4\cdot a \cdot b +7[/tex].
Step-by-step explanation:
The other addend is determined by subtracting [tex]-5\cdot a^{2}\cdot b^{2}+12\cdot a^{2}\cdot b-5[/tex] from [tex]10\cdot a^{2}\cdot b^{2}-8\cdot a^{2}\cdot b + 6\cdot a\cdot b^{2}-4\cdot a \cdot b + 2[/tex]:
[tex]x = 10\cdot a^{2}\cdot b^{2}-8\cdot a^{2}\cdot b + 6\cdot a \cdot b^{2}-4\cdot a \cdot b + 2 - (-5\cdot a^{2}\cdot b^{2}+12\cdot a^{2}\cdot b -5)[/tex]
[tex]x = 10\cdot a^{2}\cdot b^{2}-8\cdot a^{2}\cdot b + 6\cdot a \cdot b^{2}-4\cdot a \cdot b +2 +5\cdot a^{2}\cdot b^{2}-12\cdot a^{2}\cdot b+5[/tex]
[tex]x = (10\cdot a^{2}\cdot b^{2}+5\cdot a^{2}\cdot b^{2})-(8\cdot a^{2}\cdot b+12\cdot a^{2}\cdot b)+6\cdot a \cdot b^{2}-4\cdot a \cdot b +7[/tex]
[tex]x = 15\cdot a^{2}\cdot b^{2}-20\cdot a^{2}\cdot b + 6\cdot a \cdot b^{2}-4\cdot a \cdot b +7[/tex]
The other addend is [tex]15\cdot a^{2}\cdot b^{2}-20\cdot a^{2}\cdot b + 6\cdot a \cdot b^{2}-4\cdot a \cdot b +7[/tex].
Answer:
A
Step-by-step explanation:
a sample from a mummified bull was taken from a certain place. The sample shows that 71% of the carbon-14 still remains. how old is the sample
Answer:
Step-by-step explanation:
Decay of carbon - 14 is exponential in nature . It decays as follows .
[tex]N=N_0e^{-\lambda t}[/tex] λ is called decay constant .
λ = .693 / T where T is half life .
Half life of carbon-14 is 5700 years
λ = .693 / T
= .693 / 5700
= 12.158 x 10⁻⁵ year⁻¹
[tex]N=N_0e^{-\lambda t}[/tex]
N = .71 N₀
[tex].71 N_0 =N_0e^{-\lambda t}[/tex]
[tex].71 =e^{-\lambda t}[/tex]
Taking ln on both sides
ln .71 = - λ t
ln .71 = - 12.158 x 10⁻⁵ t
-0.3425 = - 12.158 x 10⁻⁵ t
t = .3425 / 12.158 x 10⁻⁵
2817 years .
A random variable is not normally distributed, but it is mound shaped. It has a mean of 14 and a standard deviation of 3. If you take a sample of size 10, can you say what the shape of the sampling distribution for the sample mean is
Answer:
Step-by-step explanation:
from the question,
the mean 14
the standard deviation is 3
and sample size is 10.
since the n which is the sample size is 10, then the distribution is mound shaped.
why?
this is due to the fact that the random variable from which we took the sample is mound shaped.
The sampling distribution of the mean is normally distributed although the question says the random variable is not normally distributed. so the shape is bell shaped and normally distributed.
the standard deviation of the mean is
3/√10
= 0.948
Please Help quick!!! What is the value of a missing angle?
Answer:
69
Step-by-step explanation:
90-21=69
Answer:
69 degrees
Step-by-step explanation:
The full angle = 90 degrees.
One part of the full angle = 21 degrees
The other part of the full angle = x
Other angle = 90 - 21
=> the other angle = 69 degrees
-x + 3y = 3
x - 3y = 3
Does this system have a solution?
Answer:
No solution
Step-by-step explanation:
Slope-Intercept Form: y = mx + b
Step 1: Write out systems of equations
-x + 3y = 3
x - 3y = 3
Step 2: Rewrite equations into slope-intercept form
3y = 3 + x
y = 1 + x/3
-3y = 3 - x
y = -1 + x/3
Step 3: Rewrite systems of equations
y = x/3 + 1
y = x/3 - 1
Since we have the same slope for both equations but different y-intercepts, we know that both lines are parallel. If that is the case, they will never touch or intersect each other. Therefore, we have no solution.