Answer:
Step-by-step explanation:
6x47
Which multiple of 10 is closest to 47?
Answer:
50 is your answer:)Step-by-step explanation:
Answer:
50
Step-by-step explanation:
50 is the multiple of 10 that is closest to 47.
8 A test rocket is fired and follows a path described by y = 0.1x(200 – x). The height is y metres above
ground and x is the horizontal distance in metres.
How far does the rocket travel horizontally?
b How high does the rocket reach mid-flight?
Answer:
a) The rocket travels 200 meters horizontally.
b) The height of the rocket mid-flight is of 1000 meters.
Step-by-step explanation:
Height of the rocket:
The height of the rocket, in meters, after an horizontal distance of x, is given by:
[tex]y = 0.1x(200 - x)[/tex]
a) How far does the rocket travel horizontally?
This is x when [tex]y = 0[/tex]. So
[tex]0.1x(200 - x) = 0[/tex]
Then
[tex]0.1x = 0[/tex]
[tex]x = 0[/tex]
And
[tex]200 - x = 0[/tex]
[tex]x = 200[/tex]
So
The rocket travels 200 meters horizontally.
b How high does the rocket reach mid-flight?
This it the height y when x = 0, so:
[tex]y = 20*100 - 0.1*100^2 = 1000[/tex]
The height of the rocket mid-flight is of 1000 meters.
A tank is filled at a constant rate. 10 minutes after filling is started, the tank contains 4.8L of water. After 35 minutes the tank contains 7.3L of water.
a. Find the rate at which the tank is being filled?
b. Find the initial volume of fluid in the tank and express it as a function in terms of V and t.
c. Find how long it takes to filled, if the tank has a maximum capacity of 60L?
Answer:
Part A)
0.1 liters per minute.
Part B)
There was initially 3.8 liters of water.
[tex]\displaystyle V(t) = 0.1(t - 10) + 4.8[/tex]
Part C)
562 minutes.
Step-by-step explanation:
A tank is filled at a constant rate. After 10 minutes, the tank contains 4.8 L of water and after 35 minutes, the tank contains 7.3 L of water.
Part A)
We can represent the current data with two points: (10, 4.8) and (35, 7.3). The x-coordinate is measured in minutes since the tank began to be filled and the y-coordinate is measured in how full the tank is in liters.
To find the rate at which the tank is being filled, find the slope between the two points:
[tex]\displaystyle m = \frac{\Delta y}{\Delta x} = \frac{(7.3)-(4.8)}{(35)-(10)} = \frac{2.5}{25} = 0.1[/tex]
In other words, the rate at which the tank is being filled is 0.1 liters per minute.
Part B)
To find the function of the volume of the tank, we can use the point-slope form to first find its equation:
[tex]\displaystyle y - y_1 = m( x - x_1)[/tex]
Where m is the slope/rate of change and (x₁, y₁) is a point.
We will substitute 0.1 for m and let (10, 4.8) be the point. Hence:
[tex]\displaystyle y - (4.8) = 0.1(x - 10)[/tex]
Simplify:
[tex]\displaystyle y = 0.1(x-10) + 4.8[/tex]
Since y represent how full the tank is and x represent the time in minutes since the tank began to be filled, we can substitute y for V(t) and x for t. Thus, our function is:
[tex]\displaystyle V(t) = 0.1(t - 10) + 4.8[/tex]
The initial volume is when t = 0. Evaluate:
[tex]\displaystyle V(0) = 0.1 ((0) - 10) + 4.8 = 3.8[/tex]
There was initially 3.8 liters of water.
Part C)
To find how long it will take for the tank to be completely filled given its maximum capacity of 60 liters, we can let V(t) = 60 and solve for t. Hence:
[tex]60 = 0.1(t - 10) + 4.8[/tex]
Subtract:
[tex]55.2 = 0.1(t - 10)[/tex]
Divide:
[tex]552 = t - 10[/tex]
Add. Therefore:
[tex]t = 562\text{ minutes}[/tex]
It will take 562 minutes for the tank to be completely filled.
11. A surveyor at point S discovers that the angle between peaks A and B is 3 times as large as the angle
between peaks B and C. The surveyor knows that ZASC is a right angle. Find mzASs and m2BSC.
The measures of the angles between the peaks are;
m∠BSC = 22.5°
m∠ASB = 67.5°
The reason for arriving at the above angles is as follows:
The known values are;
The location of the surveyor = Point S
The angle between peaks A and B = m∠ASB = 3 times as large as the angle between peaks B and C = 3 × m∠BSC
The measure of angle m∠ASC = A right angle = 90°
Required:
To find m∠ASB and m∠BSC
From the given diagram, we have;
m∠ASC = 90°
m∠ASC = m∠ASB + m∠BSC (angle addition postulate)
m∠ASB = 3 × m∠BSC
∴ m∠ASC = 3 × m∠BSC + m∠BSC = 4 × m∠BSC
m∠ASC = 4 × m∠BSC = 90°
m∠BSC = 90°/4 = 22.5°
m∠BSC = 22.5°
m∠ASB = 3 × m∠BSC
∴ m∠ASB = 3 × 22.5° = 67.5°
m∠ASB = 67.5°
Learn more about angle addition postulate here:
https://brainly.com/question/4208193
Which graph shows a set of ordered pairs that represent a function?
Answer:
Graph C.
*See attachment below
Step-by-step explanation:
A graph that shows a set of ordered pairs representing a function would have each x-value being plotted against only one y-value. That is, every x-value must have exactly one y-value. Every x-value must not have more than 1 y-value being plotted against it.
The graph that shows this is the graph in option as shown in the attachment below.
Farmer Dave harvested his corn. He stored 5/9 of his corn in one large silo and ¾ of the remaining corn in a small silo. The rest was taken to market to be sold.
a. What fraction of the corn was stored in the small silo?
b. If he harvested 18 tons of corn, how many tons did he take to market?
After storing 5/9 in the large silo there was 4/9 left ( 1-5/9 = 4/9)
A. Multiply 4/9 by 3/4:
4/9 x 3/4 = 12/36 = 1/3
1/3 of the corn was in the small silo.
B. 1-5/9 -1/3 = 4/9-1/3 = 4/9-3/9 = 1/9
1/9 of the corn went to market:
18 x 1/9 = 18/9 = 2
2 ton went to market.
You decide to go on a 4 day backpacking trip. The first day you walk 8 miles at northeast, on the second day, you walk 4 miles at eastsouth, and on the third day you walk 3 miles at southwest. On the fourth day you need to head straight back to your car. How far do you have to walk, and in what direction
Answer:5
Step-by-step explanation:
Where the above parameters are given, you need to walk a distance of approximately √41 miles back to your car.
How to compute the aboveTo calculate the total distance you need to walk, you can use the Pythagorean theorem since you have a right triangle formed by the north and east displacements.
Distance = √((Distance north)² + (Distance east)²)
= √((5 miles)² + (4 miles)²)
= √(25 miles + 16 miles)
= √41 miles
Hence, you need to walk a distance of approximately √41 miles back to your car.
As for the direction, based on the net displacements, you are 5 miles north and 4 miles east of your car, so the direction would be a combination of north and east, often referred to as northeast.
Learn more about distance at:
https://brainly.com/question/26046491
#SPJ2
find a factor of 5, 15 and 25
a common factor of 5, 15 and 25 is 1 and 5
Help me please guyss
An unfair coin is flipped. If a head turns up you win $1. The probability of a head is .54 and the probability of a tail is 0.46. What is the expected value of the game
Answer:
54 cents
Step-by-step explanation:
(.54 * 1)+(.46*0) = .54
9.2% written as a decimal is
the answer will be 0.092 as a decimal
Consider the line L(t)=⟨5+t,1+5t⟩. Then:
Choose perpendicular, parallel or neither. (PS. Answers below may not be true.)
If L(t) = ⟨5 + t, 1 + 5t⟩, then the tangent vector to L(t) is
dL/dt = ⟨1, 5⟩
Any line parallel to L(t) will have the same tangent vector, up to some scalar factor (that is, if the tangent vector is a multiple of ⟨1, 5⟩).
Any line r(t) with tangent vector T(t) = dr/dt that is perpendicular to L(t) will satisfy
T(t) • ⟨1, 5⟩ = 0
• r(t) = ⟨-5, -2t, 1 - 10t⟩ is parallel to L(t) because its tangent vector is
T(t) = ⟨-2, -10⟩ = -2 ⟨1, 5⟩
• r(t) = ⟨1 + 1.5t, 3 + 7.5t⟩ is parallel to L(t) because
T(t) = ⟨1.5, 7.5⟩ = 1.5 ⟨1, 5⟩
• r(t) = ⟨-2 - t, 2 - 2t⟩ is neither parallel nor perpendicular to L(t) because
T(t) = ⟨-1, -2⟩ ≠ k ⟨1, 5⟩
for any real k (in other words, there is no k such that -1 = k and -2 = 5k), and
⟨-1, -2⟩ • ⟨1, 5⟩ = -1 - 10 = -11 ≠ 0
• r(t) = ⟨3 + 15t, -3t⟩ is perpendicular to L(t) because
T(t) = ⟨15, -3⟩
and
⟨15, -3⟩ • ⟨1, 5⟩ = 15 - 15 = 0
20. simplify each of the following: see the above picture
and get 40 points
Answer:
[tex]i)14 + 4 \sqrt{6} [/tex]
[tex]ii) \sqrt{10} + 28[/tex]
[tex]iii) 243[/tex]
Step-by-step explanation:
[tex]i)(2 \sqrt{3} + \sqrt{2} {)}^{2} [/tex]
➡️ [tex]12 + 4 \sqrt{6} + 2[/tex]
➡️ [tex]14 + 4 \sqrt{6} [/tex] ✅
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
[tex]ii)(3 \sqrt{5} - \sqrt{2} ) \times ( \sqrt{2} + 2 \sqrt{5} )[/tex]
➡️ [tex]3 \sqrt{10} + 30 - 2 - 2 \sqrt{10} [/tex]
➡️ [tex] \sqrt{10} + 28[/tex] ✅
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
[tex]iii)3 \sqrt{81} \times 3 \sqrt{9} [/tex]
➡️ [tex]3 \times 9 \times 3 \times 3[/tex]
➡️ [tex]243[/tex] ✅
find the surface area of the cylinder and round to nearest tenth HURRY HURRY
Answer:
Does the answer help you?
Identify the vertex of the function f(x) = |x-^1/2|-2
the negative will shift the graph right, so x = 1/2
the negative 2 will shift the graph down, so y = -2
Thus, the vertex is (1/2, -2)
Determine what type of model best fits the given situation: A 4% raise in salary each year.
the models aren't given..
Answer: no models given
Step-by-step explanation:
Figure A AA is a scale image of Figure B BB. 12 12 6 6 x x 9 9 Figure B Figure B Figure A Figure A What is the value of x xx?
1m
2m
3m
4m
5m
hgfdvwsdfweffffffffffffffffffffff
,
Jason has eaten 45 chocolates in 5 days. Each days, he ate 2 chocolates more than the previous day. How many chocolates did he ate on the first day?
Answer:5
Step-by-step explanation:
On the first day he ate 5. Second day he ate 7. Then 9, 11, and finally 13. That all equals to 45. I don't know for sure though...
I’m having trouble with this
Answer:
this will give you the answer: for cylinder
V = 3×2^2×7 = 84cm
this will give you the answer for cone:
V = 3× 2^2 × 6/3 = 24cm
then we just add
84 + 24 = 108cm^3
Step-by-step explanation:
hope it helps!
Find the largest positive integer that will divide 542, 436, 398 leaving reminders 7, 11, 15 respectively
Answer:
17
Step-by-step explanation:
Here in this question for finding the numbers that will divide 398, 436 and 542 leaving remainder 7, 11 and 15 respectively we have to first subtract the remainder of the following. By this step we find the highest common factor of the numbers.
And then the required number is the HCF of the following numbers that are formed when the remainder are subtracted from them.
Clearly, the required number is the HCF of the numbers 398−7=391,436−11=425, and, 542−15=527
We will find the HCF of 391, 425 and 527 by prime factorization method.
391=17×23425=52×17527=17×31
Hence, HCF of 391, 4250 and 527 is 17 because the greatest common factor from all the numbers is 17 only.
So we can say that the largest number that will divide 398, 436 and 542 leaving remainders 7, 11 and 15 respectively is 17.
Note: - whenever we face such a type of question the key concept for solving this question is whenever in the question it is asking about the largest number it divides. You should always think about the highest common factor i.e. HCF. we have to subtract remainder because you have to find a factor that means it should be perfectly divisible so to make divisible we subtract remainder. because remainder is the extra number so on subtracting remainder it becomes divisible.
6/6/ Is a proper fraction or improper fraction
Answer:
proper fraction
Step-by-step explanation:
a proper fraction has smaller numerator than its denominatot.
Answer: Proper Fraction
Step-by-step explanation:
The denominator is equal or bigger than the numerator.
Must click thanks and mark brainliest
If two angles are complementary, find the measure of each of angle.
Answer:
B: 30 and 60
Step-by-step explanation:
First, let's set up an equation. Since the two angles are complementary, we can write the equation like this:
2p + p = 90
Now, let's solve it!
2p + p = 90
Combine like terms:
3p = 90
Divide each side by 3 to isolate p:
3p/3 = 90/3
p = 30
Now that we know how many degrees one of our angles is, we can subtract that from 90 to get both of the complementary angles.
90 - 30 = 60
Therefore, the two angles that are complementary in this case are 30 and 60 degrees.
If 2m−6=8m
2
m
-
6
=
8
m
then 3m=
3
m
=
A. 3
B. -1
C. -3
D. -6
E. I don't know.
Answer:
3m = -3
Step-by-step explanation:
2m−6=8m
Subtract 2m from each side
2m−6-2m=8m-2m
-6 = 6m
Divide by 6
-6/6 = 6m/6
-1 = m
3m = 3(-1) = -3
2m - 6 = 8m
2m - 8m = 6
-6m = 6
m = -6/6
m = -1
Hence, the answer is -1Give the digits in the tens place and the tenths place.
97.42
Answer:
9: tens place
4: tenths place
Step-by-step explanation:
You are planning to attend college next year. The total cost of tuition and textbooks is $10,000. If you go to school, your room and board will cost you $5,000. If you did not go to school, however, you would live at home, and your total room and board would only be $1,000. Additionally, if you did not go to college, you would work a job making $20,000 for the year.
1. In terms of room and board alone, what would be opportunity cost of attending college. Be sure to explain your answer
2. What are the explicit costs of attending school? How much should be included for room and board?
3. What would be the implicit cost of attending college next year?
4. What would be the total opportunity cost of attending college next year?
Opportunity Cost of attending college, in terms of room and board is $4000 . Explicit Cost, Implicit Cost of attending college is $14000, $20000. Total Opportunity Cost of attending college is $34000
1. Opportunity Cost is the cost of next best alternate foregone, as in value of sacrifice made, while choosing an alternative.
Money foregone to attend college, in room & board = room & board cost with college - room & board cost without college = 5000 - 1000 = 40002. Explicit Cost is the actual out of pocket cash expenses outflow, done for choosing an option. Eg : Cash expenditures
In this case, cash expenses for attending college = 140003. Implicit Cost is the implied estimated cost of self supplied factors of production, like value of self labour & self owned land etc.
In this case : Value of self labour, sacrificed for attending college, ie the salary which could have earned by doing job meanwhile = 200004. Total opportunity cost of attending college = Explicit Cost + Implicit Cost = 14000 + 20000 = 34000
To learn more, refer https://brainly.com/question/12121515?referrer=searchResults
5. Determine the formula for the following arithmetic sequence: 4, 7, 10, 13, ...
Answer:
[tex]a_{n}[/tex] = n + 3Step-by-step explanation:
Each number increases by 3. Therefore, n+3.
If M ABD = 65 and DBC=60 then m ABC=
Answer:
∠ ABC = 125°
Step-by-step explanation:
∠ ABC = ∠ ABD + ∠DBC that is
∠ ABC = 65° + 60° = 125°
Consider rolling a fair die twice and tossing a fair coin nineteen times. Assume that all the tosses and rolls are independent.
The chance that the total number of heads in all the coin tosses equals 9 is(Q)_____ , and the chance that the total number of spots showing in all the die rolls equals 9 is(Q)__________ The number of heads in all the tosses of the coin plus the total number of times the die lands with an even number of spots showing on top (Q)______(Choose A~E)
a. has a Binomial distribution with n=31 and p=50%
b. does not have a Binomial distribution
c. has a Binomial distribution with n=21 and p=50%
d. has a Binomial distribution with n=21 and p=1/6
e. has a Binomial distribution with n=31 and p=1/6
Answer:
Hence the correct option is option c has a Binomial distribution with n=21 and p=50%.
Step-by-step explanation:
1)
A coin is tossed 19 times,
P(Head)=0.5
P(Tail)=0.5
We have to find the probability of a total number of heads in all the coin tosses equals 9.
This can be solved using the binomial distribution. For binomial distribution,
P(X=x)=C(n,x)px(1-p)n-x
where n is the number of trials, x is the number of successes, p is the probability of success, C(n,x) is a number of ways of choosing x from n.
P(X=9)=C(19,9)(0.5)9(0.5)10
P(X=9)=0.1762
2)
A fair die is rolled twice.
Total number of outcomes=36
Possibilities of getting sum as 9
S9={(3,6),(4,5)(5,4),(6,3)}
The total number of spots showing in all the die rolls equals 9 =4/36=0.1111
3)
The event of getting a good number of spots on a die roll is actually no different from the event of heads on a coin toss since the probability of a good number of spots is 3/6 = 1/2, which is additionally the probability of heads. the entire number of heads altogether the tosses of the coin plus the entire number of times the die lands with a good number of spots has an equivalent distribution because the total number of heads in 19+2= 21 tosses of the coin. The distribution is binomial with n=21 and p=50%.
what is the distance between the points (0, 10) and (–9, 1).
Answer:
9√2 units
Explanation:
Coordinates of point 1 = (0,10)
Coordinates of point 2 = (-9,1)
distance
=√[(x2-x1)²+(y2-y1)]²
= √[(-9-0)²+(1-10)]²
=> √[(-9)²+(-9)]²
=> √(81+81)
=> √162
=> 9√2
So, the distance between these points is 9√2 units.
HELP ME PLEASE ANYONE FOR 20 POINTS
Answer:
The correct answer is no.B