Answer:
7:42
Explanation: Since, the ratio was 4:24, it equals to 1:6, and the only one with a factor of 6 for the second number is C
Find g. Write your answer as a whole number or a decimal. Do not round.
The value of length of side g using the similar triangles is found as 20 ft.
Explain about the similar triangles?Triangles that are similar to one another in terms of shape, angle measurements, and proportion are said to be similar.If the single difference between two triangles is their size and perhaps the requirement to rotate or flip one of them, then they are similar.In the given figures:
DC || EA
So,
∠D = ∠A
∠C = ∠E
By Angle -Angle similarity both triangles are similar.
Thus,
Taking the ratios of their side, it will be also equal.
EA / DC = EB / BC
5 / 10 = g / 10
g = 10*10 / 5
g = 100 / 5
g = 20
Thus, the value of length of side g using the similar triangles is found as 20 ft.
Know more about the similar triangles
https://brainly.com/question/14285697
#SPJ1
Macy of New York sold LeeCo. of Chicago office equipment with a $6,300 list price. Sale terms were 3/10, n/30 FOB New York. Macy agreed to prepay the $40 freight. LeeCo. pays the invoice within the discount period. What does LeeCo. pay Macy?
The amount that LeeCo pays Macy for the office equipment at the $6,300 list price, sales terms of 3/10, n/30 FOB with payment made within the discount window, is $6,111.
What is a cash discount?A cash discount refers to a reduction in the price of an item due to payment within the discount period.
A cash discount incentivizes the customer to make prompt payments.
The list price of the equipment = $6,300
Sales terms: 3/10, n/30 FOB
Prepaid freight = $40
Cash discount = $189 ($6,300 x 3%)
Payment after the discount = $6,111 ($6,300 - $189)
Learn more about cash discounts at https://brainly.com/question/14883253.
#SPJ1
Find the unknown side lengths in similar triangles PQR and ABC.
I need an explanation on how to get the answer
Answer:
a=18 b=24
Step-by-step explanation:
We know that BC=25 and QR=30, the key term is that they are similar triangles. Therefore, BC: QR=25:30=5:6. Then BA:A=5:6=15:X
x=a=18
20:b=5:6
b=24
properties of the rectangle, rhombus, and square - practice determine if the following statements answers
1. The diagonals are equal. Rectangle
2. All sides are equal, and one angle is 60°. Rhombus
3. All sides are equal, and one angle is 90°. Square
4. It has all the properties of parallelogram, rectangle, and rhombus. Square
5. It is an equilateral parallelogram. Rhombus
A rectangle is a four-sided figure with two sets of parallel sides, with each side being a different length. The opposite sides of a rectangle are always equal in length, so the angles of a rectangle are all 90 degrees. A rectangle can also be referred to as a quadrilateral.
A rhombus is a four-sided figure with all sides the same length. The angles of a rhombus are not all 90 degrees, but the opposite sides of a rhombus are equal in length. A rhombus can also be referred to as a diamond.
A square is a four-sided figure with all sides being the same length and all angles being 90 degrees. A square can also be referred to as a regular quadrilateral.
To learn more about quadrilateral link is here
brainly.com/question/29934440
#SPJ4
The complete question is:
Identify whether the following statements describe a rectangle, rhombus or square.
1. The diagonals are equal. ____________
2. All sides are equal, and one angle is 60°. ____________
3. All sides are equal, and one angle is 90°. ____________
4. It has all the properties of parallelogram, rectangle, and rhombus. ____________
5. It is an equilateral parallelogram. ____________
A boat is heading towards a lighthouse, whose beacon-light is 139 feet above the water. The boat’s crew measures the angle of elevation to the beacon, 5 degrees.
What is the ship’s horizontal distance from the lighthouse (and the shore)? Round your answer to the nearest hundredth of a foot if necessary.
The bοat's hοrizοntal distance frοm the lighthοuse (and the shοre) is apprοximately 1592.53 feet.
What is trigοnοmetryTrigοnοmetry is οne οf the mοst impοrtant branches in mathematics that finds huge applicatiοn in diverse fields. The branch called “Trigοnοmetry” basically deals with the study οf the relatiοnship between the sides and angles οf the right-angle triangle.
Hence, it helps tο find the missing οr unknοwn angles οr sides οf a right triangle using the trigοnοmetric fοrmulas, functiοns οr trigοnοmetric identities. In trigοnοmetry, the angles can be either measured in degrees οr radians. Sοme οf the mοst cοmmοnly used trigοnοmetric angles fοr calculatiοns are 0°, 30°, 45°, 60° and 90°.
We can use trigοnοmetry tο sοlve fοr the hοrizοntal distance. Let x be the hοrizοntal distance frοm the bοat tο the lighthοuse.
Then, tan(5°) = οppοsite/adjacent = 139/x
Sοlving fοr x, we get:
x = 139/tan(5°) ≈ 1592.53 feet
Therefοre, the bοat's hοrizοntal distance frοm the lighthοuse (and the shοre) is apprοximately 1592.53 feet.
To know more about problems related to trigonometry, click here:
https://brainly.com/question/20519838
#SPJ1
Sarah is a psychologist at an practise. she earns a basic salary of R3000 per month as well as 20% commission on income up to R 5000. She receives an additional 10% bonus on top of the normal commission rate on earning above R 5000. If Sarah did work to the value of R 12000 ,how much did she earn in total???
Answer:
Sarah earns R6 100 in total for her work to the value of R12 000.
Step-by-step explanation:
To calculate Sarah's earnings, we need to break down her income into two parts: the commission she earns on income up to R5 000, and the bonus commission she earns on income above R5 000.
Commission on income up to R5 000:
Sarah's basic salary is R3 000 per month, and she earns 20% commission on income up to R5 000. So for the first R5 000 of income, Sarah's commission is:
[tex]\text{Commission on income up to} \ R5, 000 = 20\% \ \text{of} \ R5, 000 = R1 ,000[/tex]
Bonus commission on income above R5 000:
Sarah also receives a 10% bonus on top of the normal commission rate on earning above R5 000. So for the amount earned above R5 000, her commission is:
[tex]\text{Commission on income above} \ R5, 000 = (20\% + 10\%) of (R12, 000 - R5, 000) = 30\% \ \text{of} \ R7, 000 = R2 ,100[/tex]
Total earnings:
Sarah's total earnings are the sum of her basic salary and the commission she earns:
Total earnings = Basic salary + Commission on income up to R5 000 + Commission on income above R5 000
[tex]\text{Total earnings} = R3, 000 + R1 ,000 + R2 ,100[/tex]
[tex]\text{Total earnings} = 6,100[/tex]
Therefore, Sarah earns R6 100 in total for her work to the value of R12 000.
What are the different types of early numeration system which have been developed to represent numbers throughout history of mathematics?
Explanation: The evolution of numbers developed differently with disparate versions, which include the Egyptian, Babylonians, Hindu-Arabic, Mayans, Romans, and the modern American number systems.
Please help determine if it's linear and if so, the rate of change.
Students at a virtual school are allowed to sign up for one math class each year. The numbers of students signing up for various math classes for the next school year are given in the following table:
Grade Geometry Algebra I Pre-Calculus AP Statistics Total
A student calculated the joint relative trequency of 10th grade students in geometry as being 71.4%. What did the student actually calculate and what is the correct answer?
A) The student calculated the conditional relative frequency for students who are in 10th grade, given that they are enrolled in Geometry. The correct value of the joint relative frequency of 10th grade students in geometry is 20.7%.
B) The student calculated the conditional relative frequenc for students who are in 10th grade, given that they are enrolled in Geometry. The correct value of the joint relative frequency of 10th grade students in geometry is 29%.
C) The student calculated the marginal relative frequency for 10th grade students in geometry. The correct value of the joint relative trequency of 10th grade students in geometry is 20.7%.
D) The student calculated the marginal relative frequency for 10th grade students in geometry. The correct value of the joint relative frequency of 10th grade students in geometry is 29%
Option C) The student calculated the marginal relative frequency for 10th grade students in geometry. The correct value of the joint relative frequency of 10th grade students in geometry is 20.7%.
How to calculate a relative frequency?Relative frequency is a measure of the proportion or percentage of times an event occurs in a given sample. It is calculated by dividing the frequency of an event by the total number of events in the sample. The formula for relative frequency is given as follows:
Relative frequency = Frequency of an event / Total number of events in the sample
For the joint relative frequency of 10th grade students in geometry, the parameters are given as follows:
Frequency of 10th grade students in geometry: 20.7%.Total number of events in the sample: 100% of students.Hence the joint relative frequency is obtained as follows:
20.7/100 x 100%= 20.7%.
Hence option C is correct.
More can be learned about relative frequency at https://brainly.com/question/1809498
#SPJ1
In a school district, 57% favor a charted school for grades K to 5. A random sample of 300 are surveyed and proportion of those who favor charter school is found. Let it be X. What is the probability that less than 50% will favor the charter school? Assume central limit theorem conditions apply.
The probability of drawing three kings in a row from a standard deck of cards when the drawn card is not returned to the deck each time is..................
The probability of drawing three kings in a row from a standard deck of cards when the drawn card is not returned to the deck each time is 0.000055
The multiplication rule of probability can be used to determine the likelihood of drawing three kings consecutively from a standard deck of cards when the drawn card is not put back into the deck each time.
Since there are four kings in a deck of 52 cards, the likelihood of drawing a king from a standard 52-card deck is 4/52 or 1/13.
There are still 51 cards in the deck after the first king is drawn, and three of them are kings. Therefore, there is a 3/51 chance of drawing another king.
There are 50 cards left in the deck after drawing the second king, and two of them are kings. The likelihood of drawing a third king is therefore 2/50 or 1/25.
Therefore, the probability of drawing three kings in a row from a standard deck of cards when the drawn card is not returned to the deck each time is:
(1/13) x (3/51) x (1/25) = 3/54,600 or approximately 0.000055.
Hence, 0.000055 is the probability of drawing three kings in a row from a standard deck of cards when the drawn card is not returned to the deck each time.
Learn more about probability at:
https://brainly.com/question/13604758
#SPJ4
The points (-2, -2) and (5,5) are the endpoints of the diameter of a circle. Find the length of the radius of the circle.
Answer:
Step-by-step explanation:
[tex]diameter=\sqrt{(5+2)^2+(5+2)^2} \\=\sqrt{49+49} \\=\sqrt{98} \\=7\sqrt{2} \\radius=\frac{7\sqrt{2} }{2} \\\approx 4.95[/tex]
to conduct a hypothesis test comparing variances of independent samples from two populations, the test statistic will have
To conduct a hypothesis test comparing variances of independent samples from two populations, the test statistic will have an F-distribution.
The F-distribution is a probability distribution that describes the ratio of two independent chi-squared distributions divided by their degrees of freedom. In this case, the numerator and denominator degrees of freedom are based on the sample sizes and variances of the two populations being compared.
The null hypothesis for the F-test is that the variances of the two populations are equal, and the alternative hypothesis is that they are not equal. The F-test allows us to determine if the difference in variances is statistically significant, and if we reject the null hypothesis, we can conclude that the variances are significantly different.
To know more about test statistic:
https://brainly.com/question/28957899
#SPJ4
the area of the parallelogram is 40 in2. one base of the parallelogram is 5 in long. the other base is 10 in long find its 2 heights
Step-by-step explanation:
Area of parallelogram = base × height or say b×h
Given: h=8 inches
Area=120 sq.inches
⇒120=8×b
⇒120/8=b
⇒120/8=b = 15
Answer = 15 inches b
HOW TO SOLVE FOR SHADED PART? 20 points
Three randomly selected children are surveyed. The ages of the children are 2, 4, and 12. Assume that samples of size n=2 are randomly selected
with replacement from the population of 2, 4, and 12. Listed below are the nine different samples. Complete parts (a) through (d).
2,2 2,4 2,12 4,2 4,4 4,12 12,2 12,4 12,12
a. Find the value of the population variance o²
Σ(x-1)
N
The formula for the population variance is o²=
where u is the population mean and N is the population size.
While either technology or the formula can be used to find the population variance, in this exercise, use technology. Determine the population
variance.
4
(Round to three decimal places as needed.)
Three youngsters are interviewed at random. Population variation is around [tex]18.67[/tex].
What is population standard deviation vs mean difference?The standard deviation refers to the square base of variance, which is the average of the squares departures from the mean. Both metrics capture distributional variability, although they use different measurement units: The units used to indicate standard deviation are the same as the values' original ones.
We compute population variance for what reason?In statistics, population standard deviation is a crucial indicator of dispersion. further reading. Statisticians compute variance to determine how order to overcome the drawbacks in a data gathering interact to one another. By calculating the population variance, one may also compute the dispersion in relation to the population means.
we need to first find the population mean [tex]u[/tex]
[tex]u = (2 + 4 + 12)/3 = 6[/tex]
To calculate the population variance
[tex]= [(-4)^{2} + (-2)^{2} + 6^{2} ]/3[/tex]
[tex]= (16 + 4 + 36)/3[/tex]
[tex]= 56/3[/tex]
[tex]= 18.67[/tex] (rounded to two decimal places)
Therefore, the population variance is approximately [tex]18.67[/tex].
To know more about population variance visit:
https://brainly.com/question/28003154
#SPJ1
find the conditional probability that x is greater than 2 6 given that x is less than or equal to 1 2 .
According to bayes therom the conditional probability thst x is greater than 26 is zero.
Bayes' theorem may be used to compute the conditional probability that x is greater than 26 if x is less than or equal to 12.
P(x > 26 | x 12) = P(x > 26 plus x 12) / P(x > 26 plus x 12) (x 12).
Because x cannot be more than 26 and less than or equal to 12, the numerator of the preceding formula is zero. As a consequence, the conditional probability is equal to zero:
P(x > 26 | x ≤ 12) = 0
This means that knowing x is less than or equal to 12 does not inform us if x is more than or less than 26.
Learn more about conditional probability at
https://brainly.com/question/28169554
.#SPJ4
Question 23 (2 points)
A standard deck of cards contains 4 suits of the same 13 cards. The contents of a
standard deck are shown below:
Standard deck of 52 cards
4 suits (CLUBS, SPADES, HEARTS, DIAMONDS)
13 CLUBS
13 SPADES
13 HEARTS
13 DIAMONDS
If two cards are drawn at random from the deck of cards, what is the probability both
are kings?
4/52
3/51
12/2652
16/2704
Answer:
12/2652
Step-by-step explanation:
First, the probability of drawing a king for the first time is 4/52. The chance of drawing another is 3/51. Multiplying, we get the 3rd answer choice, 12/2652
Why is the following not a probability? model?
LOADING...
Click the icon to view the data table.
Determine why it is not a probability model. Choose the correct answer below.
A.
This is not a probability model because at least one probability is greater than 0.
B.
This is not a probability model because at least one probability is greater than 1.
C.
This is not a probability model because the sum of the probabilities is not 1.
D.
This is not a probability model because at least one probability is less than 0
The correct answer is C. This is not a probability model because the sum of the probabilities is not 1.Therefore, the sum of the probabilities must be equal to 1 for a set of probabilities to be considered a probability model.
What is probability?Probability is a measure of the probability of an event, expressed as a number between 0 and 1.
For example, the probability of rolling a 6 on a fair six-sided die is 1/6 or approximately 0.17.
In order for a set of probabilities to represent a probability model, the sum of all the probabilities must be equal to 1. This ensures that there is a 100% chance that one of the possible outcomes will occur.
If the sum of the probabilities is less than 1, then there is a possibility that none of the outcomes will occur.
If the sum of the probabilities is greater than 1, then there is a possibility that more than one outcome will occur, which is not possible in a probability model.
To know mopre about outcomes visit:
https://brainly.com/question/19916581
#SPJ1
What is the constant of proportionality between the corresponding areas from Rectangle A to Rectangle B?
Rectangle A: area = 5 in²
Rectangle B: area = 125 in²
Responses
5
10
15
25
Answer:
its 5
Step-by-step explanation:
I did this question
Is the following sequence arithmetic or geometric? Find the common difference or ratio, depending on which one it is: 32, 8, 2, ....
Answer:
Step-by-step explanation:
The given sequence is geometric.
To find the common ratio (r) of the sequence, we need to divide any term by its preceding term. Let's divide the second term (8) by the first term (32):
r = 8/32 = 1/4
Now, we can use the formula for a geometric sequence to find any term:
an = a1 * r^(n-1)
where:
an = nth term of the sequence
a1 = first term of the sequence
r = common ratio
n = position of the term we want to find
Let's use this formula to find the third term:
a3 = 32 * (1/4)^(3-1) = 2
So, the common ratio of the sequence is 1/4, and each term is obtained by multiplying the preceding term by 1/4. The sequence is decreasing rapidly because the ratio is less than 1.
What is the balance after 2 years on a CD with an initial investment of $1,800.00 and a 2.3% interest rate? A. $1,804.60 C. $1,882.80 B. $1,883.75 D. $4,140.00
Step-by-step explanation:
The formula for calculating the balance on a CD (Certificate of Deposit) after a certain amount of time is:
A = P(1 + r/n)^(nt)
Where: A = the ending balance P = the principal (initial investment) r = the annual interest rate (as a decimal) n = the number of times interest is compounded per year t = the time in years
In this case, the initial investment is $1,800.00, the annual interest rate is 2.3% (or 0.023 as a decimal), and the investment period is 2 years. Assuming that the interest is compounded annually, we can substitute these values into the formula:
A = 1800(1 + 0.023/1)^(1*2) A = 1800(1.046729) A = 1883.12
Rounding to the nearest cent, the ending balance after 2 years on the CD is $1,883.75 (option B). Therefore, option B is the correct answer.
y 2x 3x y The diagram shows a trapezium. All the lengths are in centimetres. The perimeter of the trapezium is P cm. Find a formula, in terms of x and y, for P. Give your answer in its simplest form.
To find:-
The perimeter of the trapezium.Answer :-
Perimeter: Perimeter is simply the sum of all the side lengths of a figure. Here it is a trapezium so the perimeter would be the sum of all the four sides.
According to the given question , the expressions of the side lengths are , 2x , y , 3x and y .
So the perimeter would be the sum of these four expressions as ,
P = 2x + y + 3x + y
Group like terms ,
P = 2x + 3x + y + y
Add like terms ,
P = 5x + 2y
Also the unit here is centimetres, so the perimeter would be (5x + 2y)cm .
Therefore, the required formula for perimeter is ,
P = (5x + 2y) cm
and we are done!
Answer:
[tex]P=(5x+2y)\; \sf cm[/tex]
Step-by-step explanation:
The perimeter of a two-dimensional shape is the distance all the way around the outside. Therefore, the perimeter of a trapezium is the sum of its side lengths.
From inspection of the given diagram, the side lengths of the trapezium are:
2x cmy cm3x cmy cmTherefore, the formula for its perimeter, P, in terms of x and y is:
[tex]\implies P=2x+y+3x+y[/tex]
Simplify by collecting like terms:
[tex]\begin{aligned}\implies P&=2x+y+3x+y\\&=2x+3x+y+y\\&=5x+2y\\\end{aligned}[/tex]
Therefore, the formula, in terms of x and y, for P in its simplest form is:
[tex]P=(5x+2y)\; \sf cm[/tex]
CAN SOMEONE HELP WITH THIS QUESTION?✨
Step-by-step explanation:
it was not clear if an average change rate would be sufficient, or if you needed an immediate change rate (as I also don't know if you covered derivatives already or not).
so, it would be helpful, if you could put a message to an answer that was not giving you what you need.
so, here now an answer for an immediate change rate (hopefully that is what you need) :
we have a right-angled triangle.
the direct line of sight (the direct distance between police and red car) is the Hypotenuse (the baseline opposite of the 90° angle).
the 50 ft and 180 ft are the legs.
Pythagoras gives us the length of the Hypotenuse :
Hypotenuse² = 50² + 180² = 2500 + 32400 = 34,900
Hypotenuse = sqrt(34900) = 186.8154169... ft
in general terms let's say x is the distance of the cop to the road, y is the distance on the road to the crossing point with the distance cop to road, and z is the line of sight distance between the red car and the cop (the Hypotenuse).
x² + y² = z²
now, the first derivative of distance is the change of distance = speed.
then dy/dt (= y') is how fast the car is traveling down the road. dx/dt (= x') is how fast the cop is traveling toward the road. and dz/dt (= z') is how fast the distance between the cop and the car is changing.
now, we take the derivative of our equation
x² + y² = z² with respect to time, variable by variable :
d(x² + y² = z²)/dt =
dx²/dx × dx/dt + dy²/dy × dy/dt = dz²/dz × dz/dt
that gives us the equation
2x(dx/dt) + 2y(dy/dt) = 2z(dz/dt)
x(dx/dt) + y(dy/dt) = z(dz/dt)
from the problem we know x (50 ft), y (180 ft), dz/dt (85 ft/s). we calculated z (the Hypotenuse = sqrt(34900), and since the cop is not moving, we know dx/dt = 0.
and we get
50ft×0ft/s + 180ft×(y') = sqrt(34900)ft×(85)ft/s
we solve for y' (the speed of the car on the road)
y' = sqrt(34900)×85/180 = 88.21839132... ft/s
≈ 88.22 ft/s
and now here the difference for an average change rate over the unrevealed of 1 second :
the radar measured the change of the distance (Hypotenuse) from 1 second ago to now.
so, 1 second ago, the distance was
186.8154169... + 85 = 271.8154169... ft
the 50 ft leg stays the same, but the 180 ft leg was (again via Pythagoras)
271.8154169...² = 50² + leg²
leg² = 271.8154169...² - 50² = 71,383.62088...
leg = 267.1771339... ft
so, the red car traveled
267.1771339... - 180 = 87.1771339... ft/s
as you can see, it is close, but there has to be a difference, as the average change rate is only an approximation to the immediate change rate.
Consider the following energy diagram and determine which of the following statements is true A) At equilibrium, we expect [Reactants} < [Products) EN E R B) At equilibrium, we expect [Reactants) > [Products) P C) At equilibrium, we expect k < 1. D) At equilibrium, we expect K = 1 Rxn-
At equilibrium we expect [Reactants} < [Products) from the the profile that has been shown.
What is the energy profile diagram?An energy profile diagram, also known as an energy diagram or reaction coordinate diagram, is a graphical representation of the energy changes that occur during a chemical reaction or a physical process. It shows the energy levels of the reactants, products, and any intermediate species that may form during the reaction.
The horizontal axis of an energy profile diagram represents the reaction coordinate, which is a measure of the progress of the reaction from the reactants to the products. The vertical axis represents the energy of the system.
Learn more about energy profile:https://brainly.com/question/13189077
#SPJ1
what is the largest integer $n$ such that $3^n$ is a factor of $1 \times 3 \times 5 \times \dots \times 97 \times 99$?
the largest integer [tex]n $ such that $3^n$ is a factor of $1 \times 3 \times 5 \times \dots \times 97 \times 99$ is $\boxed{62}$.[/tex]
To find the largest integer[tex]n $ such that $3^n$ is a factor of $1 \times 3 \times 5 \times \dots \times 97 \times 99$[/tex], we need to count how many factors of 3 are in the product of the odd integers from 1 to 99.
One way to do this is to factor each odd integer into its prime factors and count how many factors of 3 are present. However, this would be quite tedious and time-consuming.
A quicker approach is to use the fact that every third odd integer is a multiple of 3. Thus, we can count how many multiples of 3 are present in the product of the odd integers from 1 to 99.
Let [tex]$m$[/tex] be the number of multiples of 3 in the range from 1 to 99. Then we have:
[tex]m = \left\lfloor \frac{99}{3} \right\rfloor = 33[/tex]
This is because there are 33 multiples of 3 in the range from 1 to 99 (namely, 3, 6, 9, ..., 96, 99).
Each multiple of 3 contributes at least one factor of 3 to the product of the odd integers. However, some multiples of 3 contribute two or more factors of 3, depending on how many factors of 3 they contain.
To count how many multiples of 3 contribute two or more factors of 3, we need to count how many multiples of 9, 27, and 81 are present in the range from 1 to 99.
There are [tex]$\left\lfloor \frac{99}{9} \right\rfloor = 11$[/tex]multiples of 9, namely 9, 18, 27, ..., 81, 90, 99. Each multiple of 9 contributes at least two factors of 3 to the product of the odd integers.
There are [tex]$\left\lfloor \frac{99}{27} \right\rfloor = 3$[/tex] multiples of 27, namely 27, 54, 81. Each multiple of 27 contributes at least three factors of 3 to the product of the odd integers.
There is only one multiple of 81 in the range from 1 to 99, namely 81, which contributes at least four factors of 3 to the product of the odd integers.
Thus, the total number of factors of 3 in the product of the odd integers from 1 to 99 is:
[tex]n = m + 2\times\text{number of multiples of 9} + 3\times\text{number of multiples of 27} + 4\times\text{number of multiples of 81}[/tex]
[tex]n = 33 + 2\times 11 + 3\times 3 + 4\times 1 = 62[/tex]
Therefore, [tex]the $ largest integer $n$ such that $3^n$ is a factor of $1 \times 3 \times 5 \times \dots \times 97 \times 99$ is $\boxed{62}$.[/tex]
To know more about largest integer click here:
brainly.com/question/28513507
#SPJ4
For which of the following conditions is it not appropriate to assume that the sampling distribution of the sample mean is approximately normal? А. A random sample of 8 taken from a normally distributed population B. A random sample of 50 taken from a normally distributed population C. A random sample of 10 taken from a population dintribution that is skewed to the right D. A random sample of 75 taken from a population distribution that is skewed to the left E. A random sample of 100 taken from a population that is uniform
The conditions in which is it not appropriate to assume that the sampling distribution of the sample mean is approximately normal : (C) A random sample of 10 taken from a population distribution that is skewed to the right.
In statistics, the normal or Gaussian distribution is a continuous probability distribution for real-valued random variables.
The normal distribution is important in statistics and is often used in the natural and social sciences to represent real-valued random variables whose distribution is unknown. Their importance is partly due to the central limit theorem. It states that in some cases the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable - whose distribution converges to a normal distribution as the size of the l sample increases.
Now,
If we look at the options given below, we see that the random samples in options A and B are normally distributed, so their sample means will be approximately normally distributed.
Similarly, option E indicates that the population is uniform, so the sample mean will also be approximately normal.
Learn more about Distribution:
https://brainly.com/question/31197941
#SPJ4
In Biology class, Marissa is viewing cells with a microscope. Cell W
-7
measures 1.8 x 10 microns in diameter and Cell S measures
-5
7.2 x 10 microns in diameter. How many times larger is the bigger
cell than the smaller cell?
The number of times larger Cell S is compared to Cell W is 4 x 10²,
How many times larger is the bigger cell?
Scientific notation is used to compress large numbers into smaller numbers. In order to write a number in scientific notation, the number is written as a decimal number, between 1 and 10 and multiplied by a power of 10.
When the power of the scientific notation is negative, it means that the number is less than 1. 0.01 would be written as 1 x [tex]10^{-2}[/tex]. Cell S is larger than Cell W.
(7.2 x [tex]10^{-5}[/tex]) ÷ (1.8 x [tex]10^{-7}[/tex])
(7.2 / 1.8) x [tex]10^{-5--7}[/tex]
4 x 10²
To learn more about scientific notation, please check: https://brainly.com/question/25334755
#SPJ1
Use the drop-down menus and enter values to complete the statements below.
An equation is a statement that two expressions are equal. The expressions on both sides of the equation can be made up of variables, constants, and mathematical operations.
What is the expression of an equation?For example, the equation:
[tex]2x + 5 = 11[/tex]
Has two expressions on either side of the equals sign. The expression on the left side is 2x + 5, which consists of the variable x, the constant 2, and the constant 5, combined using the mathematical operation of addition.
The expression on the right side is 11, which is a constant. The equation states that the two expressions are equal, which means that the value of x can be determined to be 3 by solving the equation.
Part A:
The value for x that is a solution to [tex]2x - 5 = 3 is x = 4.[/tex]
The value for x that is a solution to [tex]2x - 5 > 3[/tex] is [tex]x > 4[/tex] .
Part B:
The solution to [tex]-2x - 5 = 3[/tex] is [tex]x = -4[/tex] .
The solution to [tex]-2x - 5 > 3[/tex] is [tex]x < -4[/tex] .
A value for x that is a solution to [tex]-2x - 5 = 3[/tex] is [tex]x = -4[/tex] .
A value for x that is a solution to [tex]-2x - 5 > 3[/tex] is [tex]x = -5[/tex] .
Therefore, The value for x that is a solution to [tex]2x - 5 > 3[/tex] is [tex]x > 4[/tex] . and A value for x that is a solution to [tex]-2x - 5 > 3[/tex] is [tex]x = -5[/tex] .
Learn more about equation here:
https://brainly.com/question/2559684
#SPJ1
Find the potential inside and outside a sphere shell that carries a uniform surface charge $\sigma_0$, using results of Ex. 3.9
Inside the sphere, the potential is given by [tex]$V(r)=\frac{Q}{4\pi\epsilon_0r}$[/tex], where Q is the total charge enclosed within the sphere. Since the sphere shell has no charge inside, Q=0, and thus V(r)=0 inside the sphere.
Outside the sphere, the potential is given by
[tex]$V(r)=\frac{Q}{4\pi\epsilon_0r} + \frac{Q'}{4\pi\epsilon_0r'}$[/tex]
where Q is the total charge of the sphere shell, Q'= σ4πR²is the charge on an imaginary sphere of radius r'>R enclosing the sphere shell, and r is the distance from the center of the sphere. Using the result from Ex. 3.9, the potential outside the sphere becomes
[tex]$V(r)=\frac{Q}{4\pi\epsilon_0r} + \frac{\sigma_0 R^2}{2\epsilon_0 r}$[/tex]
To know more on potential in sphere
https://brainly.com/question/14703025
#SPJ4