2. In what part of an atom can protons be found?
a. Inside the electrons

b. Inside the neutrons

C. Inside the atomic nucleus

d. Inside the electron shells

Answers

Answer 1

Answer:

c

Explanation:

it's found inside the atomic nucleus

Answer 2
In the atomic nucleus, protons (along with neutrons) can be found. Therefore answer is C.

Related Questions

Using the standard reduction potentials Ni2+(aq) + 2 e‑Ni(s) ‑0.25 volt Fe3+(aq) + e‑Fe2+(aq) +0.77 volt Calculate the value of E°cell for the cell with the following reaction. Ni2+(aq) + 2 Fe2+(aq) →Ni(s) + 2 Fe3+(aq)

Answers

Answer:

The correct answer is - 1.02 V

Explanation:

From the reduction-oxidation reaction:

Ni²⁺(aq) + 2 Fe²⁺(aq) → Ni(s) + 2 Fe³⁺(aq)

Ni²⁺ is reduced to Ni(s) while Fe²⁺ is oxidized to Fe³⁺. Thus, the half reactions are:

Reduction (cathode) : Ni²⁺(aq) + 2 e‑ → Ni(s)                    Eº= ‑0.25 V

Oxidation (anode) :  2 x (Fe²⁺ → Fe³⁺ + e-)(aq)                Eº= -0.77 V

                                -------------------------------------

                     Ni²⁺(aq) + 2 Fe²⁺(aq) → Ni(s) + 2 Fe³⁺(aq)

In order to calculate the Eºcell, we have to add the reduction potential of the reaction in cathode (reduction) to the oxidation potential of the anode (oxidation):

Eºcell= Eºr + Eºo= (-0.25 V) + (-0.77 V) = - 1.02 V

From the following balanced equation, CH4(g)+2O2(g)⟶CO2(g)+2H2O(g) how many grams of H2O can be formed when 1.25g CH4 are combined with 1.25×10^23 molecules O2? Use 6.022×10^23 mol−1 for Avogadro's number.

Answers

Answer:

2.81 g of H2O.

Explanation:

We'll begin by calculating mass of O2 that contains 1.25×10²³ molecules O2.

This can be obtained as follow:

From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.022×10²³ molecules. This implies that 1 mole of O2 also contains 6.022×10²³ molecules.

1 mole of O2 = 16x2 = 32 g.

Thus 6.022×10²³ molecules is present in 32 g of O2,

Therefore, 1.25×10²³ molecules will be present in =

(1.25×10²³ × 32) / 6.022×10²³ = 6.64 g of O2.

Therefore, 1.25×10²³ molecules present in 6.64 g of O2.

Next, the balanced equation for the reaction. This is given below:

CH4(g) + 2O2(g) —> CO2(g) + 2H2O(g)

Next, we shall determine the masses of CH4 and O2 that reacted and the mass of H2O produced from the balanced equation.

This can be obtained as follow:

Molar mass of CH4 = 12 + (4x1) = 16 g/mol.

Mass of CH4 from the balanced equation = 1 x 16 = 16 g

Molar mass of O2 = 16x2 = 32 g/mol.

Mass of O2 from the balanced equation = 2 x 32 = 64 g

Molar mass of H2O = (2x1) + 16 = 18 g/mol.

Mass of H2O from the balanced equation = 2 x 18 = 36 g

From the balanced equation above,

16 g of CH4 reacted with 64 g of O2 to produce 36 g if H2O.

Next, we shall determine the limiting reactant.

This can be obtained as follow:

From the balanced equation above,

16 g of CH4 reacted with 64 g of O2.

Therefore, 1.25 g of CH4 will react with = (1.25 x 64)/16 = 5 g of O2.

From the above calculations, we can see that only 5 g out of 6.64 g of O2 is needed to react completely with 1.25 g of CH4.

Therefore, CH4 is the limiting reactant.

Finally, we shall determine the mass of H2O produced from the reaction.

In this case, the limiting reactant will be used because it will give the maximum yield of H2O.

The limiting reactant is CH4 and the mass of H2O produced from the reaction can be obtained as follow:

From the balanced equation above,

16 g of CH4 reacted to produce produce 36 g if H2O.

Therefore, 1.25 g of CH4 will react to produce = (1.25 x 36)/16 = 2.81 g of H2O.

Therefore, 2.81 g of H2O were obtained from the reaction.

The mass in grams of H₂O which can be formed when 1.25g CH₄ are combined with 1.25×10²³ molecules O₂ is 2.8 grams.

What is stoichiometry?

Stoichiometry of any reaction tells about the amount of species present before and after the completion of the reaction.

Given chemical reaction is:

CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(g)

Moles of CH₄ will b calculate as:

n = W/M, where

W = given mass = 1.25g

M = molar mass = 16g/mol

n = 1.25/16 = 0.078 moles

Molecues of CH₄ in 0.078 moles = 0.078×6.022×10²³ = 0.46×10²³

Given molecules of O₂ = 1.25×10²³

Required molecules of CH₄ is less as compared to the molecules of O₂, so here CH₄ is the limiting reagent and formation of water is depends on it only.

From the stoichiometry of the reaction it is clear that:

1 mole of CH₄ = will produce 2 moles of H₂O

0.078 moles of CH₄ = will produce 2×0.078=0.156 moles of H₂O

Mass of H₂O will be calculated by using its moles as:

W = (0.156)(18) = 2.8g

Hence required mass of H₂O is 2.8g.

To know more about limiting reagent, visit the below link:

https://brainly.com/question/1163339

A 1.0 L buffer solution is 0.250 M HC2H3O2 and 0.050 M LiC2H3O2. Which of the following actions will destroy the buffer?

A. adding 0.050 moles of NaOH
B. adding 0.050 moles of LiC2H3O2
C. adding 0.050 moles of HC2H3O2
D. adding 0.050 moles of HCl
E. None of the above will destroy the buffer.

Answers

Answer:

D

Explanation:

Addition of 0.05 M HCl, will react with all of the C2H3O2- from LiAc which will give 0.05 M more HAc. So there will be no Acetate ion left to make the solution buffer. Hence, the correct option for the this question is d, which is adding 0.050 moles of HCl.

The action that destroys the buffer is option c. adding 0.050 moles of HCl.

What is acid buffer?

It is a solution of a weak acid and salt.

Here, The buffer will destroy at the time when either HC2H3O2 or NaC2H3O2 should not be present in the solution.

The addition of equal moles of HCl finishly reacts with equal moles of NaC2H3O2. Due to this,  there will be only acid in the solution.

Since

moles of HC2H3O2 = 1*0.250 = 0.250

moles of NaC2H3O2 = 1*0.050 = 0.050.

moles of HCl is added = 0.050

Now

The reaction between HCl and NaC2H3O2

[tex]HCl + NaC_2H_3O_2 \rightarrow HC_2H_3O_2 + NaCl[/tex]

Now

BCA table is

            NaC2H3O2  HCl       HC2H3O2

Before 0.050 0.050 0.250

Change -0.050 -0.050 +0.050

After 0 0 0.300

Now, the solution contains the acid (HC2H3O2 ) only.

Therefore addition of 0.050 moles of HCl will destroy the buffer.

Learn more about moles here: https://brainly.com/question/24817060

Determine whether the following statement about equilibrium is true or false.
(a) When a reaction system reaches a state of equilibrium, the concentration of the products is equal to the concentration of the reactants.
(b) When a system is at equilibrium, Keq = 1.
(c) At equilibrium, the rates of the forward reaction and the reverse reaction are equal.
(d) Adding a catalyst to a reaction system will shift the position of equilibrium to the right so there are more products at equilibrium than if there was no catalyst present.

Answers

Answer:

(a) when a reaction system reaches a state of equilibrium, the concentration of the products is equal to the concentration of the reactants

Determining whether the statements about equilibrium is True or False

A) The concentration of the products is equal to the concentration of the reactants at equilibrium : TRUE

B) When a system is at equilibrium, Keq = 1 : TRUE

C) The rates of the forward reaction and the reverse reaction are equal at equilibrium :  TRUE

D) Adding a catalyst to a reaction system will shift the position of equilibrium to the right : FALSE

Reaction at equilibrium

In a chemical reaction at equilibrium the value of Keq will be equal to 1 because the concentration of the products is equal to the concentration of the reactants in the chemica reaction. Also at equilibrium the rate of forward reaction is same as the rate of reverse reaction.

A catalyst can only affect the rate of reaction and not the amount of product ( yield of reaction).

Hence we can conclude that the answers to your questions are as listed above.

Learn more about Equilibrium : https://brainly.com/question/517289

#SPJ2

Calculate the molality of a solution containing 141.5 g of glycine (NH2CH2COOH) dissolved in 4.456 kg of H2O

Answers

Answer:

0.423 m.

Explanation:

The following data were obtained from the question:

Mass of glycine (NH2CH2COOH) = 141.5 g

Mass of water = 4.456 kg

Molality =.?

Next, we shall determine the number of mole in 141.5 g of glycine (NH2CH2COOH.

This is illustrated below:

Mass of glycine (NH2CH2COOH) = 141.5 g

Molar mass of glycine (NH2CH2COOH) = 14 + (2x1) + 12 + (2x1) + 12 + 16 + 16 + 1 = 75 g/mol

Mole of glycine (NH2CH2COOH) =.?

Mole = mass /Molar mass

Mole of glycine (NH2CH2COOH) = 141.5/75

Mole of glycine (NH2CH2COOH) = 1.887 moles

Finally, we shall determine the molality of the solution as follow:

Molality is simply defined as the mole of solute per kilogram of water. Mathematically it is expressed as:

Molality = mole / mass (kg) of water

With the above formula, we can obtain the molality of the solution as follow:

Mole of glycine (NH2CH2COOH) = 1.887 moles

Mass of water = 4.456 kg

Molality =.?

Molality = mole /mass (kg) of water

Molality =1.887/4.456

Molality = 0.423 m

Therefore, the molality of the solution is 0.423 m

A chemist fills a reaction vessel with 0.978 g aluminum hydroxide AlOH3 solid, 0.607 M aluminum Al+3 aqueous solution, and 0.396 M hydroxide OH− aqueous solution at a temperature of 25.0°C.
Under these conditions, calculate the reaction free energy ΔG for the following chemical reaction:
Al(OH)3(s) = A1+ (aq) +30H (aq)
Use the thermodynamic information in the ALEKS Data tab. Round your answer to the nearest kilojoule.
KJ

Answers

Answer: [tex]\Delta G^{0}[/tex] = 168.12 kJ

Explanation: Gibbs Free Energy, at any time, is defined as the enthalpy of the system minus product of temperature and entropy of the reaction, i.e.:

[tex]\Delta G^{0} = \Delta H^{0} - T.\Delta S^{0}[/tex]

Enthalpy is defined as internal heat existent in the system. It is calculated as:

[tex]\Delta H^{0} = \Sigma H^{0}_{product} - \Sigma H^{0}_{reagent}[/tex]

Using Enthalpy Formation Table:

[tex]\Delta H^{0} = [3*(-299.9)+(-524.7)] - (-1277)[/tex]

[tex]\Delta H^{0} = 62,6 kJ[/tex]

Entropy is the degree of disorder in the system. It is found by:

[tex]\Delta S^{0} = \Sigma S^{0}_{products} - \Sigma S^{0}_{reagents}[/tex]

Calculating:

[tex]\Delta S^{0} = (-321.7) + 3(-10.8) - 0[/tex]

[tex]\Delta S^{0} = -354.1J[/tex]

And so, Gibbs Free energy will be:

[tex]\Delta G^{0} = \Delta H^{0} - T.\Delta S^{0}[/tex]

[tex]\Delta G^{0} = 62600 - [298.(-354.1)][/tex]

[tex]\Delta G^{0} = 168121.8 J[/tex]

Rounding to the nearest kJ:

[tex]\Delta G^{0}[/tex] = 168.12 kJ

Of the following two gases, which would you predict to diffuse more rapidly? PLZZ HELPP PLZ PLZ PLZ

Answers

Answer:

CO2 will diffuse more rapidly.

Explanation:

From Graham's law of diffusion, we understood that the rate of diffusion of a gas is inversely proportional to the square root of its density as shown below:

Rate (R) & 1/√Density (d)

R & 1/√d

But, the density of a gas is directly proportional to the relative molecular mass (M) of the gas.

Thus, we can say that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass of the gas. This can be represented mathematically as:

Rate (R) & 1/√Molar mass (M)

R & 1/√M

From the above illustration, we can say that the lighter the gas, the faster the rate of diffusion and the heavier the gas, the slower the rate of diffusion.

Now, to answer the question given above,let us determine the molar mass of Cl2 and CO2.

This is illustrated below:

Molar mass of Cl2 = 2 x 35.5 = 71 g/mol

Molar mass of CO2 = 12 + (2x16) = 12 + 32 = 44 g/mol

Summary

Gas >>>>>> Molar mass

Cl2 >>>>>> 71 g/mol

CO2 >>>>> 44 g/mol

From the illustration above, we can see that CO2 is lighter than Cl2.

Therefore, CO2 will diffuse more rapidly.

Answer: CO2

Explanation:

What type of bond would form between two atoms of phosphorus? A. Single covalent bond B. Single ionic bond C. Triple covalent bond D. Double covalent bond

Answers

Answer:

A double bond is formed when two pairs of electrons are shared between the two participating atoms. It is represented by two dashes (=). It is represented by two dashes (=). Double covalent bonds are much stronger than a single bond, but they are less stable

Explanation:

Provide the name(s) for the tertiary alcohol(s) with the chemical formula C6H14O that have a 4-carbon chain. Although stereochemistry may be implied in the question, DO NOT consider stereochemistry in your name. Alcohol #1______ Alcohol #2: ______Alcohol #3______

Answers

Answer:

Explanation:

A tertiary alcohol is a compound (an alcohol) in which the carbon atom that has the hydroxyl group (-OH) is also bonded (saturated) to three different carbon atoms.

Based on the question, the only tertiary alcohol that can result from C₆H₁₄O that have a 4-carbon chain is

2-hydroxy-2,3-dimethylbutane

     H  OH   H    H

      |     |       |      |

H - C - C -   C  - C - H

      |     |       |      |

     H  CH₃  CH₃ H

From the above, we can see that the carbon atom having the hydroxyl group is also bonded to three other carbon atoms. And since we aren't considering stereochemistry, this is the only tertiary alcohol we can have with a 4-carbon chain

A sample of argon gas (molar mass 40 g) is at four times the absolute temperature of a sample of hydrogen gas (molar mass 2 g). Find the ratio of the rms speed of the argon molecules to that of the hydrogen. Assume hydrogen molecule has only translational degree of freedom.

Answers

Answer:

Ratio of Vrms of argon to Vrms of hydrogen = 0.316 : 1

Explanation:

The root-mean-square speed measures the average speed of particles in a gas, and is given by the following formula:  

Vrms = [tex]\sqrt{3RT/M}[/tex]

where R is molar gas constant = 8.3145 J/K.mol, T is temperature in kelvin, M is molar mass of gas in Kg/mol

For argon, M = 40/1000 Kg/mol = 0.04 Kg/mol, T = 4T , R = R

Vrms = √(3 * R *4T)/0.04 = √300RT

For hydrogen; M = 1/1000 Kg/mol = 0.001 Kg/mol, T = T, R = R

Vrms = √(3 * R *T)/0.001 = √3000RT

Ratio of Vrms of argon to that of hydrogen = √300RT / √3000RT = 0.316

Ratio of Vrms of argon to that of hydrogen = 0.316 : 1

243
Am
95
1. The atomic symbol of americium-243 is shown. Which of the following is correct?
• A. The atomic mass is 243 amu, and the atomic number is 95.
B. The atomic mass is 338 amu, and the atomic number is 95.
• C. The atomic mass is 95 amu, and the atomic number is 243.
D. The atomic mass is 243 amu, and the atomic number is 338.​

Answers

Answer:

A. The atomic mass is 243 amu, and the atomic number is 95.

At a constant temperature, a sample of a gas in a balloon that originally had a volume of 5.00 L and pressure of 626 torr has its volume changed to 6.72 L. Calculate the new pressure in torr.

Answers

Answer:

466 torr

Explanation:

Step 1: Given data

Initial pressure (P₁): 626 torrInitial volume (V₁): 5.00 LFinal pressure (P₂): ?Final volume (V₂): 6.72 LConstant temperature

Step 2: Calculate the final pressure

Since we have a gas changing at a constant temperature, we can calculate the final pressure using Boyle's law.

P₁ × V₁ = P₂ × V₂

P₂ = P₁ × V₁ / V₂

P₂ = 626 torr × 5.00 L / 6.72 L

P₂ = 466 torr

Indicate the peptides that would result from cleavage by the indicated reagent: a. Gly-Lys-Leu-Ala-Cys-Arg-Ala-Phe by trypsin b. Glu-Ala-Phe-Gly-Ala-Tyr by chymotrypsin

Answers

Answer:

a. Gly-Lys + Leu-Ala-Cys-Arg + Ala-Phe

b. Glu-Ala-Phe + Gly-Ala-Tyr

Explanation:

In this case, we have to remember which peptidic bonds can break each protease:

-) Trypsin

It breaks selectively the peptidic bond in the carbonyl group of lysine or arginine.

-) Chymotrypsin

It breaks selectively the peptidic bond in the carbonyl group of phenylalanine, tryptophan, or tyrosine.

With this in mind in "peptide a", the peptidic bonds that would be broken are the ones in the "Lis" and "Arg" (See figure 1).

In "peptide b", the peptidic bond that would be broken is the one in the "Phe" (See figure 2). The second amino acid that can be broken is tyrosine, but this amino acid is placed in the C terminal spot, therefore will not be involved in the hydrolysis.

2. Which one is the odd one
out and why?
o Water
• Hydrogen
Chlorine
o Aluminum

Answers

Answer:

Reaction of Chlorine with Hydrogen Chlorine and Hydrogen mixed together explodes when exposed to sunlight, which produces Hydrogen Chloride. In the dark away from sunlight, no reaction occurs, so light energy is required for a reaction. Cl2 + H2 = 2 HCl Reaction of Chlorine with Non-Metals Chlorine directly combines with most non-metals.

Explanation:

I hope this helps bro

Consider the reaction: C(s) + O2(g)CO2(g) Write the equilibrium constant for this reaction in terms of the equilibrium constants, Ka and Kb, for reactions a and b below: a.) C(s) + 1/2 O2(g) CO(g) Ka b.) CO(g) + 1/2 O2(g) CO2(g) Kb

Answers

Answer:

A. Ka = [CO2] / [C] [O2]^1/2

B. Kb = [CO2] / [CO] [O2]^1/2

Explanation:

Equilibrium constant is simply defined as the ratio of the concentration of the products raised to their coefficient to the concentration of the reactants raised to their coefficient.

Now, we shall obtain the expression for the equilibrium constant for the reaction as follow:

A. Determination of the expression for equilibrium constant Ka.

This is illustrated below:

C(s) + 1/2 O2(g) <==> CO(g)

Ka = [CO2] / [C] [O2]^1/2

B. Determination of the expression for equilibrium constant Kb.

This is illustrated below:

CO(g) + 1/2 O2(g) <==> CO2(g)

Kb = [CO2] / [CO] [O2]^1/2

Arrange the compounds in order of decreasing magnitude of lattice energy:


a. LiBr

b. KI

c. CaO.


Rank from largest to smallest.

Answers

Answer:

The correct answer is CaO > LiBr > KI.

Explanation:

Lattice energy is directly proportional to the charge and is inversely proportional to the size. The compound LiBr comprises Li+ and Br- ions, KI comprises K+ and I- ions, and CaO comprise Ca²⁺ and O²⁻ ions.  

With the increase in the charge, there will be an increase in lattice energy. In the given case, the lattice energy of CaO will be the highest due to the presence of +2 and -2 ions. K⁺ ions are larger than Li⁺ ion, and I⁻ ions are larger than Br⁻ ion.  

The distance between Li⁺ and Br⁻ ions in LiBr is less in comparison to the distance between K⁺ and I⁻ ions in KI. As a consequence, the lattice energy of LiBr is greater than KI. Therefore, CaO exhibits the largest lattice energy, while KI the smallest.  

Arranging the chemical compounds in order of decreasing magnitude of lattice energy, we have:

c. CaO.

a. LiBr

b. KI

Lattice energy can be defined as a measure of the energy required to dissociate one (1) mole of an ionic compound into its constituent anions and cations, in the gaseous state.

Hence, it is typically used to measure the bond strength of ionic compounds.

Generally, lattice energy is inversely proportional to the size of the ions and directly proportional to their electric charges.

Lithium bromide (LiBr) comprises the following ions:

[tex]Li^+[/tex] and [tex]Br^-[/tex]

Potassium iodide (KI) comprises the following ions:

[tex]K^+[/tex] and [tex]I^-[/tex]

Calcium oxide (CaO) comprises the following ions:

[tex]Ca^{2+}[/tex] and [tex]O^{2-}[/tex]

From the above, we can deduce that there is an increase in the charge possessed by the ionic chemical compounds and as such this would result in an increase in the lattice energy.

In order of decreasing magnitude of lattice energy, the chemical compounds are arranged as:

I. CaO.

II. KI.

III. LiBr.

Read more: https://brainly.com/question/24605723

When the nuclide bismuth-210 undergoes alpha decay:
The name of the product nuclide is_____.
The symbol for the product nuclide is_____
Fill in the nuclide symbol for the missing particle in the following nuclear equation.
_____ rightarrow 4He+ 234Th
2 90
Write a balanced nuclear equation for the following:
The nuclide radium-226 undergoes alpha emission.

Answers

Explanation:

An atom undergoes alpha decay by losing a helium atom.

So when bismuth undergoes alpha decay, we have;

²¹⁰₈₃Bi --> ⁴₂He + X

Mass number;

210 = 4 + x

x = 206

Atomic number;

83 = 2 + x

x = 81

The element is Thallium. The symbol is Ti.

For the second part;

X --> ⁴₂He + ²³⁴₉₀Th

Mass number;

x = 4 + 234 = 238

Atomic Number;

x = 2 + 90 = 92

The balanced nuclear equation is;

²³⁸₉₂U --> ⁴₂He + ²³⁴₉₀Th

What is the pH of a solution made by mixing 15.00 mL of 0.10 M acetic acid with 15.00 mL of 0.10 M KOH? Assume that the volumes of the solutions are additive. K a = 1.8 ×× 10-5 for CH3CO2H.

Answers

Answer:

pH = 8.72

Explanation:

This is like a titration of a weak acid and a strong base, in this case, we are at the equivalence point plus we have the same mmoles of acid and base. We have completely neutralized the acid.

CH₃COOH      +     OH⁻        ⇄    CH₃COO⁻   +   H₂O

0.1M . 15 mL      0.1M . 15 mL

We only have (0.1M . 15 mL) mmoles of acetate ion. → 1.5 mmoles

As this compound acts like a base, we propose this equilibrium:

CH₃COO⁻   +  H₂O  ⇄  CH₃COOH      +     OH⁻   Kb

We need to work with Kb and we know, that Kw = Ka. Kb so, Kb = Kw/Ka

Kb = 1×10⁻¹⁴ /1×10 ⁻⁵ = 5.55×10⁻¹⁰

Concentration of CH₃COO⁻ → 1.5 mmol / 30mL (volumes of the solutions are additive) = 0.05M

So: [CH₃COOH] . [OH⁻] / [CH₃COO⁻] = Kb

x²/ 0.05-x = 5.55×10⁻¹⁰

We can avoid the quadractic equation because Kb is so small

[OH⁻] = √(5.55×10⁻¹⁰ . 0.05) = 5.27×10⁻⁶

pOH = - log [OH⁻]  → 5.28

pH = 14 - pOH = 8.72

The pH of a solution made by mixing 15.00 mL of 0.10 M acetic acid should be 8.72.

Calculation of the pH of the solution:

Since the following equation should be used.

CH₃COOH      +     OH⁻        ⇄    CH₃COO⁻   +   H₂O

0.1M . 15 mL      0.1M . 15 mL

Now

(0.1M . 15 mL) mmoles of acetate ion. → 1.5 mmoles

So,

CH₃COO⁻   +  H₂O  ⇄  CH₃COOH      +     OH⁻   Kb

Now

Kw = Ka. Kb

Kb = Kw/Ka

And,

Kb = 1×10⁻¹⁴ /1×10 ⁻⁵

= 5.55×10⁻¹⁰

Now

[CH₃COOH] . [OH⁻] / [CH₃COO⁻] = Kb

x²/ 0.05-x = 5.55×10⁻¹⁰

Now

[OH⁻] = √(5.55×10⁻¹⁰ . 0.05) = 5.27×10⁻⁶

pOH = - log [OH⁻]  → 5.28

pH = 14 - pOH

= 8.72

Hence, The pH of a solution made by mixing 15.00 mL of 0.10 M acetic acid should be 8.72.

Learn more about an acid here: https://brainly.com/question/4519963

. You have two solutions, both with a concentration of 0.1M. Solution A contains a weak acid with a pKa of 5. ThepH of solution A is 3. Solution B contains a weak acid with a pKa of 9. The pH of solution B is:

Answers

Answer:

pH of solution B is 5

Explanation:

A weak acid, HA, is in equilibrium with water as follows:

HA(aq) + H₂O(l) ⇄ A⁻(aq) + H₃O⁺(aq)

Where Ka (10^-pKa = 1x10⁻⁹) is:

Ka = 1x10⁻⁹ = [A⁻] [H₃O⁺] / [HA]

Where concentrations of this species are equilibrium concentrations

As initial concentration of HA is 0.1M, the equilibrium concentrations of the species are:

[HA] = 0.1M - X

[A⁻] = X

[H₃O⁺] = X

Where X is the amount of HA that reacts until reach the equilibrium, X is reaction coordinate.

Replacing in Ka expression:

1x10⁻⁹ = [A⁻] [H₃O⁺] / [HA]

1x10⁻⁹ = [X] [X] / [0.1 - X]

1x10⁻¹⁰ - 1x10⁻⁹X = X²

1x10⁻¹⁰ - 1x10⁻⁹X - X² = 0

Solving for X:

X = -0.00001 → False solution, there is no negative concentrations.

X = 1x10⁻⁵ → Right solution.

As [H₃O⁺] = X

[H₃O⁺] = 1x10⁻⁵M

And pH = -log[H₃O⁺]

pH = 5

pH of solution B is 5

Calculate the concentration of H3O+ in a solution that contains 5.5 × 10-5 M OH- at 25°C. Identify the solution as acidic, basic, or neutral.

Answers

Explanation:

To calculate [H3O+] in the solution we must first find the pH from the [ OH-]

That's

pH + pOH = 14

pH = 14 - pOH

To calculate the pOH we use the formula

pOH = - log [OH-]

And [OH-] = 5.5 × 10^-5 M

So we have

pOH = - log 5.5 × 10^ - 5

pOH = 4.26

Since we've found the pOH we can now find the pH

That's

pH = 14 - 4.26

pH = 9.74

Now we can find the concentration of H3O+ in the solution using the formula

pH = - log H3O+

9.74 = - log H3O+

Find the antilog of both sides

H3O+ = 1.8 × 10^ - 10 M

The solution is basic since it's pH lies in the basic region.

Hope this helps you

The substance formed on addition of water to an aldehyde or ketone is called a hydrate or a/an:_______
A) vicinal diol
B) geminal diol
C) acetal
D) ketal

Answers

Answer:

B) geminal diol

Explanation:

Hello,

In this case, considering the attached picture, you can see that the substance resulting from the hydrolysis of an aldehyde or a ketone is a geminal diol since the two hydroxyl groups are in the same carbon. Such hydrolysis could be carried out in either acidic or basic conditions depending upon the equilibrium constant.

Regards.

Find the density if the volume is 15 mL and the mass is 8.6 g. (5 pts)
Find the volume if the density is 2.6 g/mL and the mass is 9.7 g.(5 pts)
Find the mass if the density is 1.6 g/cm3 and the volume is 4.1 cm3 (5 pts)
Find the density if the initial volume of water is 12.8 mL, the final volume is 24.6 mL and the mass of the object is 4.3 g. Make a drawing to show the water displacement using a graduated cylinder. (gdoc, gdraw)

Answers

Answer:

[tex]\large \boxed{\text{0.57 g/mL; 3.7 mL; 6.6 g; 0.366 g/mL}}[/tex]

Explanation:

1. Density from mass and volume

[tex]\text{Density} = \dfrac{\text{mass}}{\text{volume}}\\\\\rho = \dfrac{m}{V}\\\\\rho = \dfrac{\text{8.6 g}}{\text{15 mL}} = \text{0.57 g/mL}\\\text{The density is $\large \boxed{\textbf{0.57 g/mL}}$}[/tex]

2. Volume from density and mass

[tex]V = \text{9.7 g}\times\dfrac{\text{1 mL}}{\text{2.6 g}} = \text{3.7 mL}\\\\\text{The volume is $\large \boxed{\textbf{3.7 mL}}$}[/tex]

3. Mass from density and volume

[tex]\text{Mass} = \text{4.1 cm}^{3} \times \dfrac{\text{1.6 g}}{\text{1 cm}^{3}} = \textbf{6.6 g}\\\\\text{The mass is $\large \boxed{\textbf{6.6 g}}$}[/tex]

4. Density by displacement

Volume of water + object = 24.6 mL

Volume of water                = 12.8 mL

Volume of object               = 11.8 mL

[tex]\rho = \dfrac{\text{4.3 g}}{\text{11.8 mL}} = \text{0.36 g/mL}\\\text{The density is $\large \boxed{\textbf{0.36 g/mL}}$}[/tex]

Your drawing showing water displacement using a graduated cylinder should resemble the figure below.

 

g Does a reaction occur when aqueous solutions of barium hydroxide and aluminum sulfate are combined

Answers

Answer:

3BaO + Al₂(SO₄)₃  →  Al₂O₃+ 3BaSO₄

Explanation:

Yes! A reactiin occurs between barium hydroxide and auminium sulphate.

barium sulfate (BaSO4) and aluminum hydroxide (Al(OH)3) are the products obtained in this reaction.

The reaction is given by the equation below;

3BaO + Al₂(SO₄)₃  →  Al₂O₃+ 3BaSO₄

The insoluble salts below are put into 0.10 M hydrochloric acid solution. Do you expect their solubility to be more, less, or about the same as in a pure water solution?
1. Zinc sulfide
2. Silver chloride
3. Lead iodide
4. Silver hydroxide

Answers

Answer:

1. Zinc sulfide : about the same solubility, no common ion is found.

2. Silver chloride : less solubility due to the presence of chloride ions provided by the 0.10 M hydrochloric acid.

3. Lead iodide  : about the same solubility, no common ion is found.

4. Silver hydroxide : about the same solubility, no common ion is found.

Explanation:

Hello,

In this case, we first must remember that adding a common ion (which is related with the dissolving solid) decreases the solubility of the insoluble solid due to the fact Le Chatelier's principle states the reaction will shift leftwards (reactants) to reestablish equilibrium, therefore, we have:

1. Zinc sulfide : about the same solubility, no common ion is found.

2. Silver chloride : less solubility due to the presence of chloride ions provided by the 0.10 M hydrochloric acid.

3. Lead iodide  : about the same solubility, no common ion is found.

4. Silver hydroxide : about the same solubility, no common ion is found.

Best regards.

An ice cube at 0.00C with a mass of 8.32g is placed Into 55g of water, initially at 25C. If no heat is lost to the surroundings, what is the final temperature of the entire water sample after all the ice is melted (answer must be in 3 sig figs)

Answers

Answer:

The final temperature of the entire water sample after all the ice is melted, is 12,9°C. We should realize that if there is no loss of heat in our system, the sum of lost or gained heat is 0.  It is logical to say that the temperature has decreased because the ice gave the water "heat" and cooled it

Thats all i know

While balancing a chemical equation, we change the _____ to balance the number of atoms on each side of the equation.

Answers

Answer:

While balancing a chemical equation, we change the coefficient  to balance the number of atoms on each side of the equation

Explanation:

While balancing a chemical equation, we change the coefficient to balance the number of atoms on each side of the equation.

What is chemical equation?

To summarize in chemistry terms, a chemical equation depicts the initial chemicals, or reactants, on the left-hand side and the final compounds, or products, just on right-hand side, divided by an arrow. In the chemical equation, the number of atoms in each element as well as the total charge are the same on opposite of the equation's sides.

Chemical equations are used in chemistry to depict chemical processes by writing the reactants and products in terms of their corresponding chemical formulas. While balancing a chemical equation, we change the coefficient to balance the number of atoms on each side of the equation.

Therefore, while balancing a chemical equation, we change the coefficient to balance the number of atoms on each side of the equation.

To know more about chemical equation, here:

https://brainly.com/question/29028257

#SPJ6

To calculate changes in concentration for a system not at equilibrium, the first step is to determine the direction the reaction will proceed. To do so, we calculate Q and compare it to the equilibrium concentration, K. We can then determine that a reaction will shift to the right if:__________

Answers

Answer:

We can then determine that a reaction will shift to the right if Q<K

Explanation:

Comparing Q with K allows to find out the status and evolution of the system:

If the reaction quotient is equal to the equilibrium constant, Qc = Kc, the system has reached chemical equilibrium. If the reaction quotient is greater than the equilibrium constant, Qc> Kc, the system is not in equilibrium and will evolve spontaneously, decreasing the value of Qc until it equals the equilibrium constant. In this way, the concentrations of the products will decrease and the concentrations of the reagents will increase. In other words, the reverse reaction is favored to achieve equilibrium. Then the system will evolve to the left (ie products will be consumed and more reagents will be formed).If the reaction quotient is less than the equilibrium constant, Qc <Kc, the system is not in equilibrium and will evolve spontaneously increasing the value of Qc until it equals the equilibrium constant. This implies that the concentrations of the products will increase and those of the reagents will decrease. In other words, to achieve balance, direct reaction is favored. Then the reaction will shift to the right, that is, reagents will be consumed and more products will be formed.

In this case, we can then determine that a reaction will shift to the right if Q<K

What are the correct half reactions for the following reaction: Cu2+ + Mg -> Cu + Mg2+

Answers

Answer:

Cu2 + 2Mg-> 2Cu+ Mg2

Explanation:

Balance the equation and make sure both the reactant and the products are the same

Hope it will be helpful

[tex]Cu^{+2} + 2Mg[/tex]  -> [tex]2Cu + Mg^+2[/tex]  is the correct half-reactions.

What is a balanced equation?

A balanced equation is an equation for a chemical reaction in which the number of atoms for each element in the reaction and the total oxidation numbers is the same for both the reactants and the products.

[tex]Cu^{+2} + 2Mg[/tex]  -> [tex]2Cu + Mg^+2[/tex] is the correct half-reactions.

Magnesium is oxidized because its oxidation state increased from 0 to +2 while Cu is reduced because its oxidation state decreased from +2 to 0.

Learn more about balanced equations here:

brainly.com/question/15052184

#SPJ5


Zeros laced at the end of the significant number are...

Answers

Answer:

Zeros located at the end of significant figures are significant.

Explanation:

Hope it will help :)

A solution is known to contain only one type of cation. Addition of Cl1- ion to the solution had no apparent effect, but addition of (SO4)2- ion resulted in a precipitate. Which cation is present

Answers

Answer:

We can have: Calcium, strontium, or barium

Explanation:

In this case, we have to remember the solubility rules for sulfate [tex]SO_4~^-^2[/tex] and the chloride [tex]Cl^-[/tex]:

Sulfate

All sulfate salts are SOLUBLE-EXCEPT those also containing: Calcium, silver, mercury (I), strontium, barium or lead.([tex]Ca^+^2~,Ag^+~,Hg_2^+^2~,Sr^+2~,Ba^+^2~,Pb^+^2[/tex]), which are NOT soluble.

Chloride

All chloride salts as SOLUBLE-EXCEPT those also containing: lead, silver, or mercury (I). ([tex]Pb^+^2~,Ag^+~,Hg_2~^+^2[/tex]), which are NOT soluble.

If we the salt formed a precipitated with the sulfate anion, we will have as possibilities "Calcium, silver, mercury (I), strontium, barium or lead". If We dont have any precipitated with the Chloride anion we can discard "Silver, mercury (I),  lead" and our possibilities are:

"Calcium, strontium, or barium".

I hope it helps!

Other Questions
Which of the following is true? Tangent is positive in Quadrant I. Sine is negative in Quadrant II. Cosine is positive in Quadrant III. Sine is positive in Quadrant IV. Solve x/5 - 1/2 = x/6 (make sure to type the number only) Can someone help me solve parts (a) and (c) please? Thank you! What are the coordinates of the vertices of the polygon in the graph that are in Quadrant II? A) (4,2) B) (4,3), (0,5), (0,1) C) (5,2), (3,2), (3,4) D) (1,0), (5,2), (3,2), (3,4), (0,5), (0,1) Why is the water colder on the southwest coast of the United States, yet the northeast coast has warmer water? If x3 + ax2 bx + 10 is divisible by x2 3x + 2,find the values of1) a-b2) 2a-b While shopping for groceries,Abby realized she had misplaced her shopping list.By mentally visualizing the aisles she had walked and the items she had looked at,she was able to recall the exact shelf space where she had placed the list.Her mental visualization most clearly involved:________.A) iconic memory.B) working memory.C) implicit memory.D) automatic processing. An air-conditioner which uses R-134a operates on the ideal vapor compression refrigeration cycle with a given compressor efficiency.--Given Values--Evaporator Temperature: T1 (C) = 9Condenser Temperature: T3 (C) = 39Mass flow rate of refrigerant: mdot (kg/s) = 0.027Compressor Efficiency: nc (%) = 90a) Determine the specific enthalpy (kJ/kg) at the compressor inlet. Your Answer =b) Determine the specific entropy (kJ/kg-K) at the compressor inlet Your Answer =c) Determine the specific enthalpy (kJ/kg) at the compressor exit Your Answer =d) Determine the specific enthalpy (kJ/kg) at the condenser exit. Your Answer =e) Determine the specific enthalpy (kJ/kg) at the evaporator inlet. Your Answer =f) Determine the coefficient of performance for the system. Your Answer =g) Determine the cooling capacity (kW) of the system. Your Answer =h) Determine the power input (kW)to the compressor. Your Answer = A risk-free, zero-coupon bond has 15 years to maturity. Which of the following is closest to the price per $1,000 of face value at which the bond will trade if the current YTM is 6.1%? a $411.40 b. $553.15 c $663.78 d. $885.05 e. $774.42 An atom of 120In has a mass of 119.907890 amu. Calculate the mass defect (deficit) in amu/atom. Use the masses: mass of 1H atom Simply this question and get marked branlist A 30-cm long string, with one end clamped and the other free to move transversely, is vibrating in its second harmonic. The wavelength of the constituent traveling waves is: Fill in the blank in the following sentence with the appropriate verb in thefuture tenseDespus de la pelcula, mis padresa buscarme al cine.O A. vendianO B. vendraO c. vendrnO D. vendrian What is the solution to this system of linear equations?y-x = 6y + x = -10(-2,-8)(-8.-2)(6.-10)(-10.6) Help please all questions. What's the mass in grams of 0.442 moles of calcium bromide, CaBr2? The atomicweight of Ca is 40.1 and the atomic weight of Br is 79.9.A) 452.3 gB) 53.04 gC) 44.2 gD) 88.4 g Carlos is using the software development life cycle to create a new app. He has finished coding and is ready to see the output it produces. Which stage of the software development life cycle is Carlos ready for next? Coding Design Maintenance Testing How to graph the line y=4/3x Identify and describe 3 (from the list below) of the historical, cultural, and political events and their implications for Jews resulting from monotheism, which may have contributed to The Holocaust **Definition of and the extent of the Jewish diaspora** Romes rise, rule, and fall **Beginnings of Christianity and of Islam William Bradford was one of the elected governors for which group of colonies?