Answer:
mean would decrease
Step-by-step explanation:
HELP ASAP
[tex]Given that $33^{-1} \equiv 77 \pmod{508}$, find $11^{-1} \pmod{508}$ as a residue modulo 508. (Give an answer between 0 and 507, inclusive.)[/tex]
===================================================
Work Shown:
[tex]33^{-1} \equiv 77 \text{ (mod 508)}\\\\(3*11)^{-1} \equiv 77 \text{ (mod 508)}\\\\3^{-1}*11^{-1} \equiv 77 \text{ (mod 508)}\\\\3*3^{-1}*11^{-1} \equiv 3*77 \text{ (mod 508)}\\\\11^{-1} \equiv 231 \text{ (mod 508)}\\\\[/tex]
Notice how 33*77 = 2541 and 11*231 = 2541
[tex]2541 \equiv 1 \text{ (mod 508)}[/tex] since 2541/508 has a remainder of 1.
So effectively [tex]33*77 \equiv 1 \text{ (mod 508)}[/tex] and [tex]11*231 \equiv 1 \text{ (mod 508)}[/tex]
Weather balloons burst at an altitude of 27.5 km. What is the altitude in meters?
Answer:
27500
Step-by-step explanation:
meters are 100 times more than kilometers hope this helps:)
Which statement correctly compares
1–201 and
1512
ol-201 = 151
ol-201 < 51
l-201 > 151
Answer:
Option B.
Step-by-step explanation:
Consider the correct question is "Which statement correctly compares
1. -201 and 151
-201 = 151
-201 < 51
-201 > 151"
The given numbers are -201 and 151. We need to compare these numbers.
We know that all negative numbers are less than positive numbers.
So,
-201 < 151
If both numbers are negative, then the larger negative number is the smaller number.
Therefore, the correct option is B.
Given quadrilateral MATH is similar to quadrilateral ROKS calculate the value of MH Picture is below
=====================================================
Explanation:
The double tickmarks for quadrilateral MATH show that MA = TH. Since TH is 5 units long, this makes MA the same length as well.
For quadrilateral ROKS, we have RO = 15. For "MATH" and "ROKS" we have "MA" and "RO" as the first two letters of each four-letter sequence; meaning that MA and RO correspond together.
The ratio of the corresponding segments is RO/MA = 15/5 = 3.
The larger quadrilateral has each side length 3 times longer than the smaller quadrilateral's corresponding side lengths.
--------------
In short,
larger side = 3*(smaller side)
--------------
Using this scale factor of 3, we can find MH
larger side = 3*(smaller side)
RS = 3*(MH)
21 = 3*MH
3*MH = 21
MH = 21/3
MH = 7
Solve for h. 3/7=h/14-2/7
Answer:
h = 10
Step-by-step explanation:
Given
[tex]\frac{3}{7}[/tex] = [tex]\frac{h}{14}[/tex] - [tex]\frac{2}{7}[/tex]
Multiply through by 14 to clear the fractions
6 = h - 4 ( add 4 to both sides )
10 = h
Answer:
10
Step-by-step explanation:
We start out with 3/7 = h/14 - 2/7
add 2/7 to both sides:
(5/7) = h/14
Multiply both sides by 14 to get rid of the fraction:
h = 10
55.5% repeating as a decimal
Answer:
55.5 ÷ 100 = 0.555
Step-by-step explanation:
When you ask, "What is 55.5 as a decimal?", we assume you want to know what 55.5 percent is as a decimal. In other words, 55.5 percent converted to decimal.
First, we will tell you why it is useful to know 55.5 as a decimal.
Normally, to calculate 55.5 percent, you would multiply a number by 55.5 percent and then you would take the product of that and divide it by 100 to get the answer.
Instead, you can simply multiply a number by 55.5 as a decimal to get the answer.
55.5 percent means 55.5 per hundred. Therefore, to get 55.5 as a decimal, all you have to do is divide 55.5 by 100 like so:
55.5 ÷ 100 = 0.555
Answer:
55.5% = 0.555
Step-by-step explanation:
55.5% = 55.5/100 = 0.555
The diagonal of rhombus measure 16 cm and 30 cm. Find it's perimeter
Answer:
P = 68 cmStep-by-step explanation:
The diagonals of the rhombus divide it into 4 congruent right triangles.
So we can use Pythagorean theorem to calculate side of a rhombus.
[tex](\frac e2)^2+(\frac f2)^2=s^2\\\\e=30\,cm\quad\implies\quad\frac e2=15\,cm\\\\f=16\,cm\quad\implies\quad\frac f2=8\,cm\\\\15^2+8^2=s^2\\\\s^2=225+64\\\\s^2=289\\\\s=17[/tex]
Perimeter:
P = 4s = 4•17 = 68 cm
what is the coefficient of the variable in the expression 4-3x
As per the question,
We have to find what's the coefficient.
Let's start to seperate the expression.
Here,
x is the variable,
4 is a number.
-3 is also a number.
4, -3x
The number with x here is -3 in (-3x) as the coefficient is (-3) in the given equation.
Answer:
Hey there!
Rearrange the expression to: -3x+4
The coefficient would be -3.
Let me know if this helps :)
Which of the following images shows a scale copy of the trapezoid using a scale factor of 1/2
PLEASE HELP
Answer:
1
Step-by-step explanation:
split the shape to triangle and a rectangle
the rectangle at the original trapezoid has 2 squares in width and 3 squares for height multiply those numbers by 1/2 you will get 1 square for width and 1.5 squares for the height which is showen in option 1
Find the value of x.
Answer:
x = 20
Step-by-step explanation:
Intersecting Chords Theorem: ab = cd
Step 1: Label our variables
a = x
b = x - 11
c = x - 8
d = x - 5
Step 2: Plug into theorem
x(x - 11) = (x - 5)(x - 8)
Step 3: Solve for x
x² - 11x = x² - 8x - 5x + 40
x² - 11x = x² - 13x + 40
-11x = -13x + 40
2x = 40
x = 20
Answer: x=20
Step-by-step explanation:
[tex]ab=cd[/tex]
[tex]x(x - 11) = (x - 5)(x - 8)[/tex]
[tex]x^2 - 11x = x^2 - 13x + 40[/tex]
[tex]x^2 - 11x = x^2 - 8x - 5x + 40[/tex]
[tex]-11x = -13x + 40\\2x = 40\\x = 20[/tex]
What is the reason: if a+c=b+c then a=b
Step-by-step explanation:
Example 1:
a+c=b+c then a=b
First let the value of a and b be different (not equal)
a=5
b=7
c=10
a+c=b+c
5+10=7+10
15≠17
Example 2:
Let the value a and b be equal (the same)
a=5
b=5
c=10
a+c=b+c
5+10=5+10
15=15
So when,
a+c and b+c is equal, a and b are always equal.
Hope this helps ;) ❤❤❤
Answer:
a=b
Step-by-step explanation:
Reason:
a+c=b+c
a-b=c-c
c-c would be 0
if a-b=c-c=0
a-b=0
Only if a=b can a-b=0
You can also take it as:
b-a=c-c (a+c=b+c)
b-a=0=c-c
Therefore b=a
By the way even I am a BTS army
Find the area of the following shape. Show all work
Best way to solve this is by using
[tex] \sqrt{s(s - a)(s - b)(s - c)} [/tex]
[tex]where \: s = \frac{a + b + c}{2} [/tex]
s=(12+8+17)/2
=18.5
using the formulae
area =43.5
When computing the standard deviation, does it matter whether the data are sample data or data comprising the entire population? Explain. Yes. The formula for s is divided by n, while the formula for σ is divided by N − 1. Yes. The formula for s is divided by n − 1, while the formula for σ is divided by N. No. The formula for both s and σ is divided by n − 1. No. The formula for both s and σ is divided by N.
Answer:
Yes. When computing the sample standard deviation, divide by n −1. When computing the population standard deviation, divide by N
Step-by-step explanation:
Please help,thanks!(:
Answer:
<4=<2
x+30=2x+15
x=15
therefore <4=(15)+30
=45°
5
What is the equation, in point-slope form, of the line that
is parallel to the given line and passes through the point
(-3, 1)?
4
3
2
(-3, 1)
42.27
1
5 4 3 2 1
2 3 4 5 x
y-1=-{(x+3)
y-1=-{(x + 3)
y-1= {(x + 3)
y-1= {(x + 3)
(-2, 4)
Answer: [tex]y-1=\dfrac32(x+3)[/tex]
Step-by-step explanation:
Slope of a line passes through (a,b) and (c,d) = [tex]\dfrac{d-b}{c-a}[/tex]
In graph(below) given line is passing through (-2,-4) and (2,2) .
Slope of the given line passing through (-2,-4) and (2,2) =[tex]\dfrac{-4-2}{-2-2}=\dfrac{-6}{-4}=\dfrac{3}{2}[/tex]
Since parallel lines have equal slope . That means slope of the required line would be .
Equation of a line passing through (a,b) and has slope m is given by :_
(y-b)=m(x-a)
Then, Equation of a line passing through(-3, 1) and has slope = is given by
[tex](y-1)=\dfrac32(x-(-3))\\\\\Rightarrow\ y-1=\dfrac32(x+3)[/tex]
Required equation: [tex]y-1=\dfrac32(x+3)[/tex]
What is the value of this expression? (the best answer receives a brainiest)
Answer:
answer is D
Step-by-step explanation:
2^4=16
16+(16-12)=20
over
(6+9)/(7-4)
15/3=5
so the new equation is 20/5=4
Answer:
D. 4
Step-by-step explanation:
Order of Operations: BPEMDAS
Step 1: Exponents
[tex]\frac{16 + (16 -3(4))}{(6+9)/(7-4)}[/tex]
Step 2: Parenthesis
[tex]\frac{16 + (16 -12)}{15/3}[/tex]
Step 3: Parenthesis
[tex]\frac{16 + 4}{15/3}[/tex]
Step 4: Divide
[tex]\frac{16 + 4}{5}[/tex]
Step 5: Add
[tex]\frac{20}{5}[/tex]
Step 6: Divide
4
The fuel efficiency of one type of car is recorded in a scatterplot where the amount of gas used, x (in gallons), is paired with the distance traveled, y (in miles), for various trips. The equation for the line of best fit for the data is y = 28x. How can the y-intercept and slope of this line be interpreted
Answer:
The answer can be interpreted by the distance moved by each gallon :))
Step-by-step explanation:
Answer:
D.
Step-by-step explanation:
Just took it. Edg 2020. Hope this helps :)
La fuerza necesaria para evitar que un auto derrape en una curva varía inversamente al radio de la curva y conjuntamente con el peso del auto y el cuadrado de la velocidad del mismo. Supongamos que 400 libras de fuerza evitan que un auto que pesa 1600 libras derrape en una curva cuyo radio mide 800 si viaja a 50mph. ¿Cuánta fuerza evitaría que el mismo auto derrapara en una curva cuyo radio mide 600 si viaja a 60mph ?
Answer:
768 libras de fuerza
Step-by-step explanation:
Tenemos que encontrar la ecuación que los relacione.
F = Fuerza necesaria para evitar que el automóvil patine
r = radio de la curva
w = peso del coche
s = velocidad de los coches
En la pregunta se nos dice:
La fuerza requerida para evitar que un automóvil patine alrededor de una curva varía inversamente con el radio de la curva.
F ∝ 1 / r
Y luego con el peso del auto
F ∝ w
Y el cuadrado de la velocidad del coche
F ∝ s²
Combinando las tres variaciones juntas,
F ∝ 1 / r ∝ w ∝ s²
k = constante de proporcionalidad, por tanto:
F = k × w × s² / r
F = kws² / r
Paso 1
Encuentra k
En la pregunta, se nos dice:
Suponga que 400 libras de fuerza evitan que un automóvil de 1600 libras patine alrededor de una curva con un radio de 800 si viaja a 50 mph.
F = 400 libras
w = 1600 libras
r = 800
s = 50 mph
Tenga en cuenta que desde el
F = kws² / r
400 = k × 1600 × 50² / 800
400 = k × 5000
k = 400/5000
k = 2/25
Paso 2
¿Cuánta fuerza evitaría que el mismo automóvil patinara en una curva con un radio de 600 si viaja a 60 mph?
F = ?? libras
w = ya que es el mismo carro = 1600 libras
r = 600
s = 60 mph
F = kws² / r
k = 2/25
F = 2/25 × 1600 × 60² / 600
F = 768 libras
Por lo tanto, la cantidad de fuerza que evitaría que el mismo automóvil patine en una curva con un radio de 600 si viaja a 60 mph es de 768 libras.
ALGEBRAIC EXPRESSION 11. Subtract the sum of 13x – 4y + 7z and – 6z + 6x + 3y from the sum of 6x – 4y – 4z and 2x + 4y – 7. 12. From the sum of x 2+ 3y 2 − 6xy, 2x 2 − y 2 + 8xy, y 2 + 8 and x 2 − 3xy subtract −3x 2 + 4y 2 – xy + x – y + 3. 13. What should be subtracted from x 2 – xy + y 2 – x + y + 3 to obtain −x 2+ 3y 2− 4xy + 1? 14. What should be added to xy – 3yz + 4zx to get 4xy – 3zx + 4yz + 7? 15. How much is x 2 − 2xy + 3y 2 less than 2x 2 − 3y 2 + xy?
Answer:
Explained below.
Step-by-step explanation:
(11)
Subtract the sum of (13x - 4y + 7z) and (- 6z + 6x + 3y) from the sum of (6x - 4y - 4z) and (2x + 4y - 7z).
[tex][(6x - 4y - 4z) +(2x + 4y - 7z)]-[(13x - 4y + 7z) + (- 6z + 6x + 3y) ]\\=[6x-4y-4z+2x+4y-7z]-[13x-4y+7z-6z+6x+3y]\\=6x-4y-4z+2x+4y-7z-13x+4y-7z+6z-6x-3y\\=(6x+2x-13x-6x)+(4y-4y+4y-3y)-(4z+7z+7z-6z)\\=-11x+y-12z[/tex]
Thus, the final expression is (-11x + y - 12z).
(12)
From the sum of (x² + 3y² - 6xy), (2x² - y² + 8xy), (y² + 8) and (x² - 3xy) subtract (-3x² + 4y² - xy + x - y + 3).
[tex][(x^{2} + 3y^{2} - 6xy)+(2x^{2} - y^{2} + 8xy)+(y^{2} + 8)+(x^{2} - 3xy)] - [-3x^{2} + 4y^{2} - xy + x - y + 3]\\=[x^{2} + 3y^{2} - 6xy+2x^{2} - y^{2} + 8xy+y^{2} + 8+x^{2} - 3xy]- [-3x^{2} + 4y^{2} - xy + x - y + 3]\\=[4x^{2}+3y^{2}-xy+8]-[-3x^{2} + 4y^{2} - xy + x - y + 3]\\=4x^{2}+3y^{2}-xy+8+3x^{2}-4y^{2}+xy-x+y-3\\=7x^{2}-y^{2}-x+y+5[/tex]
Thus, the final expression is (7x² - y² - x + y + 5).
(13)
What should be subtracted from (x² – xy + y² – x + y + 3) to obtain (-x²+ 3y²- 4xy + 1)?
[tex]A=(x^{2} - xy + y^{2} - x + y + 3) - (-x^{2}+ 3y^{2}- 4xy + 1)\\=x^{2} - xy + y^{2} - x + y + 3 +x^{2}- 3y^{2}+ 4xy -1\\=2x^{2}-2y^{2}+3xy-x+y+2[/tex]
Thus, the expression is (2x² - 2y² + 3xy - x + y + 2).
(14)
What should be added to (xy – 3yz + 4zx) to get (4xy – 3zx + 4yz + 7)?
[tex]A=(4xy-3zx + 4yz + 7)-(xy - 3yz + 4zx) \\=4xy-3zx + 4yz + 7 -xy + 3yz - 4zx\\=3xy-7zx+7yz+7[/tex]
Thus, the expression is (3xy - 7zx + 7yz + 7).
(15)
How much is (x² − 2xy + 3y²) less than (2x² − 3y² + xy)?
[tex]A=(2x^{2} - 3y^{2} + xy)-(x^{2} - 2xy + 3y^{2})\\=2x^{2} - 3y^{2} + xy-x^{2} + 2xy - 3y^{2}\\=x^{2}-6y^{2}+3xy[/tex]
Thus, the expression is (x² - 6y² + 3xy).
Black Diamond Ski Resort charges $25 for ski rental and $10 an hour to ski. Bunny Hill Ski Resort charges $50 for ski rental and $5 an hour to ski. Create an equation to determine at what point the cost of both ski slopes is the same.
Answer:
25 + 10h = 50+5h
Step-by-step explanation:
Black Diamond Ski Resort
25 + 10h
Bunny Hill Ski Resort
50+5h
We want when they are equal
25 + 10h = 50+5h
Answer:
10x + 25 = 5x + 50
Step-by-step explanation:
How to do this question plz answer me step by step plzz plz plz plz plz plz plz plz
Answer:
288.4m
Step-by-step explanation:
This track is split into a rectangle and two semi-circles.
We can find the length of the semi-circles by finding its circumference with the formula [tex]2\pi r[/tex].
[tex]2\cdot3.14\cdot30\\188.4[/tex]
However this is half a circle, so:
[tex]188.4\div2=94.2[/tex].
There are two semi-circles.
[tex]94.2\cdot2=188.4[/tex]
Since there are two legs of 50m each, we add 100 to 188.4
[tex]188.4+100=288.4[/tex]m
Hope this helped!
Answer:
Step-by-step explanation:
To solve for the perimeter, we first look at the rectangle in the middle. the length is 50m, and there are two sides to it, so: 50 * 2 = 100m for the top and bottom of the track.
For the circle, we can see the diameter is 30m. To solve for the circumference, we need to use the formula 2πr.
15 * 2π ≈ 94.2477796077
We add that to 100m and get:
194.2477796077
Jonah will cover a cube in wrapping paper. Each edge of the cube is 25 cm long. What is the least amount of
wrapping paper he needs to cover the cube?
15 625 square centimeters
25 square centimeters
37.5 square centimeters
42 25 square centimeters
Save and Exit
Next
Subm
MO
Answer:
3750 cm²
Step-by-step explanation:
To find the answer, we need to find the surface area of the cube. The surface area formula for a cube is 6a² where a = the length of an edge. We know that a = 25 so the surface area is 6 * 25² = 6 * 625 = 3750 cm².
Answer:
37.5 hopefully this is the answer you were looking for!
Step-by-step explanation:
Use slope-intercept form to graph each system of equations and solve each system.
Answer:
(0,3), graph is attached.
Step-by-step explanation:
We know that the first equation will increase 2 points in y for every 1 x, since the constant next to x is 2. We also know it's y-intercept will be 3.
As for the second equation, we know it will have no y and instead run through the y=3 line, crossing every value of x.
Graphing this, we see that these lines intersect at (0,3) so that's the solution to this system.
Hope this helped!
Peter attempted to use the divide-center method to find the line of best fit on a scatterplot.
What was his mistake?
He had a different number of points to the left of the vertical line than to the right of the vertical line.
He had a different number of points above the line of best fit than below the line of best fit.
He didn’t approximate the center of the cluster located on the left side of the vertical line and of the cluster located on the right side of the vertical line.
He didn’t connect the centers of the clusters on the left side and right side of the vertical line to produce the line of best fit.
Answer:
He had a different number of points to the left of the vertical line than to the right of the vertical line.
Step-by-step explanation:
Divide-center method is the method which involves dividing the data on the graph into two equal parts and then fin the line of best fit. The center of each group is approximated and then a line is constructed between two centers which is estimated as line of best fit.
I NEED HELP PLEASE I GIVE 5 STARS !
Answer:
C. 2[tex]\sqrt{29}[/tex]
Step-by-step explanation:
Square root of 116 is 10.7703296
Square root of 29 is 5.38516481, but as it is multiplied by 2, it becomes 10.7703296
3.03 times 10^-3 in scientific nation
Answer:
3.03 • 10⁻³ is scientific notation
0.00303 is decimal form
A power failure on the bridge of a Great Lakes freighter has resulted in the ship's navigator having to do her own calculations. She measures the angle between the ship's course and a lighthouse on shore as 32°. After the ship has travelled 1500 m, she measures the angle to be 72°. Determine if the ship was closer to or farther from the lighthouse at the second sighting, and by what distance. (4 marks)
It is impossible to measure the length of a particular swamp directly. Kendra put a stake in the ground and measured from the stake to opposite ends of the swamp, the results being 410 m and 805 m. She measured the angle between the distances to be 57°. What is the length of the swamp? (4 marks)
Answer:
1) The ship is closer
2) 675.73 m
Step-by-step explanation:
1) The given parameters are;
The initial angle between the ship's course and the lighthouse = 32°
The final angle between the ship's course and the lighthouse = 72°
The distance traveled by the sip between he two positions = 1500 m
Therefore we have a triangle formed between the distance covered by the ship and the two distances of the ship from the lighthouse, a and b
Where;
a = The initial distance fro the lighthouse
b = The final distance fro the lighthouse
The angles of the triangle are
32°, (180 - 72) = 108° and 180 - 32 - 108 = 40°
By sine rule we have;
1500/(sin(40)) = a/(sin(108)) = b/(sin(32)) =
Therefore, a = sin(108°) × 1500/(sin(40°)) = 2219.37 m
b = (sin(32°)) × 1500/(sin(40°)) = 1236.61 m
Therefore, a > b
The initial distance fro the lighthouse > The final distance fro the lighthouse, which shows that the ship is closer
2) By cosine rule we have
a² = b² + c² - 2× b×c×cos(A)
Where the given measurements by Kendra are;
410 m and 805 m with an included (in between) angle of 57°, we have;
Let b = 410 m, c = 805 m, and A = 57°, we have;
a² = 410^2 + 805^2 - 2× 410×805×cos(57 degrees) = 456608.77 m²
a = The length of the stream = 675.73 m.
Scouts of ABC school made to run around a regular hexagonal ground fig 9, of perimeter 270 m .If they started running from point X and covered two fifth (2/5th) of the total distance.Which side of the ground will they reach?
Answer:
Scouts are on the third side in the sense they are running
Step-by-step explanation:
A regular hexagonal shape of perimeter 270 has each side of 270/6 = 45
Let´s call d the run distance then
d = 2/5 * 270 d = 108 m
We don´t have fig 9 available therefore if X is a vertex in the hexagon or at the middle point of one side, scouts are 108 m from the starting point which means they had run 2,4 sides of the hexagon. If X is not either a vertex or a middle point of a side then, we have two solutions for the question depending on the sense the scouts took when began the run (clockwise or counterclockwise)
Find the amplitude of y = -2 sin x
Answer:
Amplitude = 2
Step-by-step explanation:
The amplitude of this sine wave is 2 denoted by the coefficient -2 in front of the sin(x). The negative of the coefficient denotes that the sine wave is the opposite of the standard sine wave.
Cheers.
please help me i offered all my points and this is really important!!! The question is attached.
Answer:
25[tex]\sqrt{3}[/tex] +60
Step-by-step explanation: The first thing you need to do is realize that, this figure is a isosceles trapezoid due to the markings on each side.
So now we know both sides are 10.
We also know the the top two angles are congruent to each other and so are the bottom two angles due to the trapezoid being isosceles.
So the top two angles are 120 degrees and bottom two angles are 60 degrees.
It seems like we can't find the sides, let's try drawing two lines from each top angle all the way down to form two right triangles.
Wow, these two triangles are special right triangles in the form of
30 - 60 - 90 degrees.
shorter side = n
longer side = n[tex]\sqrt{3}[/tex]
hypotenuse = 2n
So, 2n = 10
n = 5 for the short side
The bottom base is 4[tex]\sqrt{3}[/tex] + 5 + 5 = 10 + 4[tex]\sqrt{3}[/tex]
The longer side is 5[tex]\sqrt{3}[/tex].
The area of trapezoid = (base1 + base2)/2 * height
= (4[tex]\sqrt{3}[/tex] + 10 + 4[tex]\sqrt{3}[/tex])/2 * 5[tex]\sqrt{3}[/tex] = (10 + 8[tex]\sqrt{3}[/tex])/2 * 5[tex]\sqrt{3}[/tex] = (5+4[tex]\sqrt{3}[/tex])*5[tex]\sqrt{3}[/tex] = 25[tex]\sqrt{3}[/tex] +60
So, 25[tex]\sqrt{3}[/tex] + 60 is our answer.
Answer:
60 +25√3
Step-by-step explanation:
In the figure of the isosceles trapezoid below, the angles at C and D are supplementary to the given angle, so are 60°. That makes triangle BDE a 30°-60°-90° right triangle, which has side length ratios ...
DE : BE : BD = 1 : √3 : 2 = 5 : 5√3 : 10
Triangle BDE can be relocated to the other end of the figure to become triangle CAD'. Then the area of concern is that of the rectangle with height 5√3 and length 5+4√3. The area is then ...
Area = lh = (5√3)(5 +4√3) = 5·5√3 +5·4·3
Area = 60 +25√3 . . . square units
_____
In the figure, 6.93 = 4√3, and 8.66 = 5√3, 16.93 = 10+4√3.