What is the derivative of x^2?
Answer:
[tex]\displaystyle \frac{d}{dx}[x^2] = 2x[/tex]
General Formulas and Concepts:
Calculus
Differentiation
DerivativesDerivative NotationBasic Power Rule:
f(x) = cxⁿf’(x) = c·nxⁿ⁻¹Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = x^2[/tex]
Step 2: Differentiate
Basic Power Rule: [tex]\displaystyle \frac{dy}{dx} = 2x^{2 - 1}[/tex]Simplify: [tex]\displaystyle \frac{dy}{dx} = 2x[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
someone find x for me lol
Hi there!
[tex]\large\boxed{x = 60^o}[/tex]
We know:
∠AGB ≅ ∠DGC because they are vertical angles. They both are 90°.
∠AGE ≅ FGC because they are vertical angles, equal 30°.
∠BGF ≅ ∠DGE are vertical angles, both equal x.
All angles sum up to 360°, so:
360° = 90° + 90° + 30° + 30° + x + x
Simplify:
360° = 240° + 2x
Subtract:
120° = 2x
x = 60°
A researcher wishes to estimate the proportion of adults who have high-speed Internet access. What size sample should be obtained if she wishes the estimate to be within with % confidence if (a) she uses a previous estimate of ? (b) she does not use any prior estimates?
Answer:
732 samples ;
752 samples
Step-by-step explanation:
Given :
α = 90% ; M.E = 0.03 ; p = 0.58 ; 1 - p = 1 - 0.58 = 0.42
Using the relation :
n = (Z² * p * (1 - p)) / M.E²
Zcritical at 90% = 1.645
n = (1.645² * 0.58 * 0.42) / 0.03²
n = 0.65918769 / 0.0009
n = 732.43076
n = 732 samples
B.)
If no prior estimate is given, then p = 0.5 ; 1 - p = 1 - 0.5 = 0.5
n = (Z² * p * (1 - p)) / M.E²
Zcritical at 90% = 1.645
n = (1.645² * 0.5 * 0.5) / 0.03²
n = 0.67650625 / 0.0009
n = 751.67361
n = 752 samples
Find the length of XW.
Answer:
XW = 78
Step-by-step explanation:
Both triangles are similar, therefore based on triangle similarity theorem we have the following:
XW/XZ = VW/YZ
Substitute
XW/6 = 104/8
XW/6 = 13
Cross multiply
XW = 13*6
XW = 78
What is the value of x in the equation
-%y = 30, when y = 15?
Answer:
x not given
therefore no answer for x
A jar contains 11red marbles, 12 blue marbles and 6 white marbles. Four marbles from the jar are selected. With each marble being replaced after each selection. What is the probability that the first red marble chosen is on the 5th selection?
Answer:
Red on the 5th draw = 0.0907
Step-by-step explanation:
The first to fourth selections are all the same.
Blue + white = 12 + 6 = 18
The total number of marbles is 11 + 12 + 6 = 29
P(~ red) for the first four times = (18/29)^4 = 0,1484
Now on the 5th time, the first red is 11/18
So the Probability is 0.1484 * 11/18 = 0.0907
The weights of newborn baby boys born at a local hospital are believed to have a normal distribution with a mean weight of 35113511 grams and a variance of 253,009253,009. If a newborn baby boy born at the local hospital is randomly selected, find the probability that the weight will be less than 46174617 grams. Round your answer to four decimal places.
Answer:
The answer is "0.1397".
Step-by-step explanation:
[tex]\mu=3511\\\\[/tex]
variance [tex]\ S^2= 253,009\\\\[/tex]
standard deviation [tex]\sigma =\sqrt{253,009}=503\\\\[/tex]
Finding the probability in which the weight will be less than [tex]4617 \ grams\\\\[/tex]
[tex]P(X<4617)=p[z<\frac{4617-3511}{503}]\\\\[/tex]
[tex]=p[z<\frac{1106}{503}]\\\\=p[z< 2.198]\\\\= .013975\approx 0.1397[/tex]
6. A boy pushes his little brother in a box with a force of 500 N for 324 m How much work is this if the force of
friction acting on the sliding box is (a) 100 N (6) 250. N?
Answer:
(a) 129600 J
(b) 81000 J
Step-by-step explanation:
The work done is given by the product of force and the displacement in the direction of force.
Force, F = 500 N
distance, d = 324 m
(a) friction force, f = 100 N
The work done is
W = (F - f) x d
W = (500 - 100) x 324
W = 129600 J
(b) Friction, f = 250 N
The work done is
W = (F - f) d
W = (500 - 250) x 324
W = 81000 J
a soft drink vendor at a popular beach analyzes his sales recods and finds that if he sells x cans of soda pop in one day, his profit (in dollars) is given by
Complete Question:
A soft-drink vendor at a popular beach analyzes his sales records, and finds that if he sells x cans of soda pop in one day, his profit (in dollars) is given by P(x) = -0.001x² + 3x - 1800.
a. What is his maximum profit per day?
b. How many cans must be sold in order to obtain the maximum profit?
Answer:
a. $450
b. 1500 cans
Step-by-step explanation:
Given the following quadratic function;
P(x) = -0.001x² + 3x - 1800 ......equation 1
a. To find his maximum profit per day;
Since P(x) is a quadratic equation, P(x) would be maximum when [tex] x = \frac {-b}{2a} [/tex]
Note : the standard form of a quadratic equation is ax² + bx + c = 0 ......equation 2
Comparing eqn 1 and eqn 2, we have;
a = -0.001, b = 3 and c = -1800
Now, we determine the maximum profit;
[tex] x = \frac {-b}{2a} [/tex]
Substituting the values, we have;
[tex] x = \frac {-3}{2*(-0.001)} [/tex]
Cancelling out the negative signs, we have;
[tex] x = \frac {3}{2*0.001} [/tex]
[tex] x = \frac {3}{0.002} [/tex]
x at maximum = 1500
Substituting the value of "x" into equation 1;
P(1500) = -0.001 * 1500² + 3(1500) - 1800
P(1500) = -0.001 * 2250000 + 4500 - 1800
P(1500) = -2250 + 2700
P(1500) = $450
b. Therefore, the soft-drink vendor must sell 1500 cans in order to obtain the maximum profit.
Зу = -2 - 6
3y = 2z - 6
Answer:
y = -8/3, z = -1
Find the expression that is equivalent to 7(x2 – 5x + 1).
Answer:
7x^2 -35x +7
Step-by-step explanation:
7(x^2 – 5x + 1)
Distribute
7x^2 -7*5x +7*1
7x^2 -35x +7
The average cost when producing x items is found by dividing the cost function, C(x), by the number of items,x. When is the average cost less than 100, given the cost function is C(x)= 20x+160?
A) ( 2, infinit)
B) (0,2)
C) (-infinit,0) U (2,infinit)
D) (- infinit,0] U [2,infinit)
9514 1404 393
Answer:
A) (2, ∞) . . . . or C) (-∞, 0) ∪ (2, ∞) if you don't think about it
Step-by-step explanation:
We want ...
C(x)/x < 100
(20x +160)/x < 100
20 +160/x < 100 . . . . . separate the terms on the left
160/x < 80 . . . . . . . subtract 20
160/80 < x . . . . . multiply by x/80 . . . . . assumes x > 0
x > 2 . . . . . . simplify
In interval notation this is (2, ∞). matches choice A
__
Technically (mathematically), we also have ...
160/80 > x . . . . and x < 0
which simplifies to x < 0, or the interval (-∞, 0).
If we include this solution, then choice C is the correct one.
_____
Comment on the solution
Since we are using x to count physical items, we want to assume that the practical domain of C(x) is whole numbers, where x ≥ 0, so this second interval is not in the domain of C(x). That is, the average cost of a negative number of items is meaningless.
A car travels 1/8 mile in 2/13 minutes. What is the speed in terms of miles per minute?
Answer:
13/16 miles per minute
Step-by-step explanation:
Take the miles and divide by the minutes
1/8 ÷ 2/13
Copy dot flip
1/8 * 13/2
13/16 miles per minute
please help me its timed -H.M
Answer:
f(3) = g(3)
General Formulas and Concepts:
Algebra I
Functions
Function NotationGraphingStep-by-step explanation:
We can see from the graph that the lines intersect at (3, 6). If this is the case, then that means that when x = 3 for both functions, it outputs f(x) = 6.
Rewriting this in terms of function notation:
f(3) = 6, g(3) = 6
∴ f(3) = g(3)
can someone help me out with this question???
Answer:
a
Step-by-step explanation:
13 A traffic roundabout has a circular garden
in the centre and two lanes for traffic
encircling the garden. The diameter of the
garden is 16 metres and each lane is 3 metres
wide. Each lane is to be resurfaced. Calculate
the area to be resurfaced. Answer in square
metres to the nearest whole number.
Answer:
Step-by-step explanation:
The area to be resurfaced is the area of the
whole circle including garden and lanes minus
the area of the garden.
Area of a circle is (pi)r2
radius of garden is (1/2)diameter = 8 m
Garden area: (pi)82 = 64(pi) m2
Diameter of garden plus traffic lanes is
16 + 2(6) because we add 6 m to both sides
of the diameter of the garden.
Full diameter = 16+12 = 28 m
Full radius = 28/2 = 14 m
Full area: (pi)142 = 196(pi) m2
Area to be resurfaced:
196(pi) - 64(pi) = 132(pi) m2 ≅ 415 m2
Which of the following expressions are equivalent to -3x- 6/10
Choose all that apply:
A=3/6x1/10
b=- 3/10x-6
c= none of the above
Answer:
c= none of the above
Step-by-step explanation:
-3x- 6/10
This has two separate terms, a term with a variable
-3x and a term with a constant -6/10
A=3/6x1/10 This has only one term
b=- 3/10x-6 This has a different x term -3/10 which is not -3
c= none of the above
A sofa regularly sells for $760. The sale price is $676.40. Find the percent decrease of the sale price from the regular price.
Answer: (760 - 676. 40) × 100 ÷ 760 = 11%
Step-by-step explanation:
Answer:
11% decrease
Step-by-step explanation:
Concepts:
Percent change is the change between an old value and its new value represented as a %. If a percent change is a decrease, it means that the new value is less than the old value. If a percent change is a increase, it means that the old value is less than the new value. The formula for percent change is: (NV - OV)/OV · 100 = C, where NV = New Value, OV = Old Value, and C = Percent Change.The sale price is the price at which something sells or sold after the price has been reduced by sales, discounts, etc.Solving:
Let's find the percent change by using the formula.
1. Formula for Percent Change
(NV - OV)/OV · 100 = C2. Plug in the values of NV and OV
(676.40 - 760)/760 · 100 = C3. Simplify
-83.6/760 · 100 = C-0.11 · 100 = C-11 = CTherefore, our percent decrease is 11% decrease.
Not sure how to do this
^please answer, thanks in advance ^
Answer:
There is not enough information to determine the mean, the median is 28.
There is not enough information to determine the mean absolute deviation, the interquartile range is 18
Step-by-step explanation:
The box plot given has a skewed distribution, this means that both the mean and median values are not the same. From a box plot, the median value Can be obtained as the point in between the box.
From the box plot given, the marked point in between the box is 28 cm
Hence, Median = 28 cm
The mean cannot be inferred from the skewed box plot.
There is also not enough information to determine the mean absolute deviation ;
The interquartile range:
(Q3 - Q1)
Q3 = upper quartile, the endpoint of the box = 40
Q1 = the starting point of the box = 22
IQR = Q3 - Q1
IQR = 40 - 22 = 18
Find the exact length of the curve. x=et+e−t, y=5−2t, 0≤t≤2 For a curve given by parametric equations x=f(t) and y=g(t), arc length is given by
The length of a curve C parameterized by a vector function r(t) = x(t) i + y(t) j over an interval a ≤ t ≤ b is
[tex]\displaystyle\int_C\mathrm ds = \int_a^b \sqrt{\left(\frac{\mathrm dx}{\mathrm dt}\right)^2+\left(\frac{\mathrm dy}{\mathrm dt}\right)^2} \,\mathrm dt[/tex]
In this case, we have
x(t) = exp(t ) + exp(-t ) ==> dx/dt = exp(t ) - exp(-t )
y(t) = 5 - 2t ==> dy/dt = -2
and [a, b] = [0, 2]. The length of the curve is then
[tex]\displaystyle\int_0^2 \sqrt{\left(e^t-e^{-t}\right)^2+(-2)^2} \,\mathrm dt = \int_0^2 \sqrt{e^{2t}-2+e^{-2t}+4}\,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^2 \sqrt{e^{2t}+2+e^{-2t}} \,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^2\sqrt{\left(e^t+e^{-t}\right)^2} \,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^2\left(e^t+e^{-t}\right)\,\mathrm dt[/tex]
[tex]=\left(e^t-e^{-t}\right)\bigg|_0^2 = \left(e^2-e^{-2}\right)-\left(e^0-e^{-0}\right) = \boxed{e^2-\frac1{e^2}}[/tex]
The exact length of the curve when the parametric equations are x = f(t) and y = g(t) is given below.
[tex]e^2 -\dfrac{1}{e^2 }[/tex]
What is integration?It is the reverse of differentiation.
The parametric equations are given below.
[tex]\rm x=e^t+e^{-t}, \ \ 0\leq t\leq 2\\\\y=5-2t, \ \ \ \ \ 0\leq t\leq 2[/tex]
Then the arc length of the curve will be given as
[tex]\int _0^2 \sqrt{(\dfrac{dx}{dt})^2+(\dfrac{dy}{dx})^2}[/tex]
Then we have
[tex]\rm \dfrac{dx}{dt} = e^t-e^{-t}\\\\ \dfrac{dy}{dt} = -2[/tex]
Then
[tex]\rightarrow \int _0^2 \sqrt{(\dfrac{dx}{dt})^2+(\dfrac{dy}{dx})^2}\ \ dt\\\\\rightarrow \int _0^2 \sqrt{(e^t-e^{-t})^2 + (-2)^2} \ dt\\\\\rightarrow \int _0^2 \sqrt{(e^t+e^{-t})^2} \ dt\\\\\rightarrow \int _0^2 (e^t+e^{-t}) \ dt\\\\\rightarrow (e^2-e^{-2}) \\\\\rightarrow e^2 - \dfrac{1}{e^2}[/tex]
More about the integration link is given below.
https://brainly.com/question/18651211
Find the number that comes after 144five
Answer:
The number that comes after 144five is:
= 200five.
Step-by-step explanation:
Adding 1 to 144 base 5 will result in:
144
+ 1
= 200
b) To obtain the next number that comes after 144five, add 1five to 144five. Since the numbers are in base 5, 1five added to 4five will result in 0 with 1 carried backward. When 1 is added to the next 4, the result will be 0 with 1 carried backward. 1 added to 1 = 2, all in base 5. Figures in base 5 cannot exceed 4. The usual numbers for a base 5 operation are 0, 1, 2, 3, and 4.
What is the least common denominator that will allow you to combine the constant terms? 10 21 35 or 42
Answer:
[tex]LCM = 21[/tex]
Step-by-step explanation:
Given
[tex]-\frac{3}{5}y + \frac{1}{7}= \frac{1}{3}y -\frac{2}{3}[/tex]
Required
LCM of the constant terms
Collect like terms
[tex]\frac{1}{3}y+\frac{3}{5}y = \frac{1}{7}+\frac{2}{3}[/tex]
The constant terms are on the right-hand side
To combine them, we simply take the LCM of the denominator, i.e. 7 and 3
The prime factorization of 3 and 7 are:
[tex]3 = 3[/tex]
[tex]7 = 7[/tex]
So:
[tex]LCM = 3 * 7[/tex]
[tex]LCM = 21[/tex]
What is the value of Z? Z =2^3
the value of Zis 8.
Z =2^3=8
Now we have to,
find the required value of Z.
→ Z = 2^3
→ [Z = 8]
Therefore, value of Z is 8.
The mortgage on your new house is $180,000. Your monthly mortgage payment is $839 for 30 years. How much interest will be paid if the house is kept for the full 30 years?
9514 1404 393
Answer:
$122,040
Step-by-step explanation:
The interest is the difference between the mortgage value and the total amount paid.
($839/mo)×(12 mo/yr)×(30 yr) -180,000 = $302,400 -180,000 = $122,040
$122,040 will be paid in interest.
Coefficient of y in the equation: 3(2x -1/3y) = 0 is equal to a) 3 b) 1 c)-3 d)-1
Answer:
d is the right answer because the coefficient of y is 3*(-1/3) which results -1 so d is the right answer
The coefficient of y in the given equation is 1. Therefore, option B is the correct answer.
What is an equation?In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign =.
The given equation is 3(2x -1/3y)=0.
Now, 6x-1/y=0
A numerical or constant quantity placed before and multiplying the variable in an algebraic expression.
Here, coefficient of y is 1.
Therefore, option B is the correct answer.
To learn more about an equation visit:
https://brainly.com/question/14686792.
#SPJ2
PLEASE CORRECT BEFORE ANSWERING I AM HAVING TROUBLE GETTING THINNGS RIGHT SO PLEASE HELP
9514 1404 393
Answer:
3
Step-by-step explanation:
AB is 1 unit long.
A'B' is 3 units long.
The scale factor is the ratio of these lengths:
scale factor = A'B'/AB = 3/1 = 3
ABC is dilated by a factor of 3 to get A'B'C'.
A drinking container is shaped like a cone and must hold at least 10 ounces of fluid. The radius of the top of the container is 2.25 inches. The steps for determining the height of the cone-shaped container are shown below.
9514 1404 393
Answer:
C. h ≥ 1.9 in
Step-by-step explanation:
As the final step, divide both sides of the inequality by 5.3:
(5.3h)/5.3 ≥ 10/5.3
h ≥ 1.9
Use a table of values to graph the function ƒ(x) = x−−√. Choose the correct graph from the options below.
Answer:
B
Step-by-step explanation:
The square root function's graph is graph (b). This makes logical sense, because, when taking the square root (the principal root in particular), a general rule is that both the input and the output must be positive. Moreover, if one were to create a table of values to find points on the graph of the function, each of the points can be found on graph (b).
[tex]f(x)=\sqrt{x}[/tex]
x y
1 1
4 2
9 3
16 4
Therefore graph (B) is the correct answer.
Can someone explain how to solve this step by step? Thank you
Answer:
x=10
Step-by-step explanation:
Using the Rational Roots Test, we can say that the potential rational roots are
± (1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90).
Unfortunately, there doesn't really seem to be an easy way to figure out which numbers are actually roots outside of guess and check. Therefore, to solve this, we'll have to go through numbers until we hit something.
To make the process faster, I wrote a Python script as follows:
numbers = [1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90]
negative_numbers = [i * (-1) for i in numbers]
numbers = numbers + negative_numbers
for i in numbers:
if (i**3 - 10*(i**2) + 9*i-90) == 0:
print(i)
The result comes out as 10, meaning that 10 is our only rational root. Using the Factor Theorem, we can say that because 10 is a root, (x-10) is a factor of the polynomial. Using synthetic division, we can divide (x-10) from the polynomial to get
10 | 1 -10 9 -90
| 10 0 90
_________________
1 0 9 0
Therefore, we can say that
(x³-10x²+9x-90)/(x-10) = (x²+0x+9), so
x³-10x²+9x-90 = (x-10)(x²+9)
As the only solution to x²+9=0 contains imaginary numbers, x=10 is the only solution to x³-10x²+9x-90 = (x-10)(x²+9) = 0