Answer:
$139.23
Step-by-step explanation:
50% off the original price of $239.99
= $239.99-(0.5*239.99)
= 239.99-119.995
= $119.995
She purchase a pair of shoes also worth $34.70
Total cost now= $119.995 + $34.70
Total cost now= $154.695
But she has a coupon that gives her 10% off her total sales
Now she wants pay
= $154.695 - 0.1(154.695)
= $154.695-15.4695
= $139.2255
Approximately $139.23
convert 407 in base 8 to decimal
[tex]4\cdot8^2+0\cdot8^1+7\cdot8^0=256+7=263[/tex]
[tex]407_8=263_{10}[/tex]
Find the function h(x) = f(x) - g(x) if f(x) = 3^x and g(x) = 3^2x - 3^x. A.h( x) = 0 B.h( x)=-3^2x C.h( x) = 3^x (2 - 3^x) D.h( x) = 2(3^2x)
Answer:
3^x( 2-3^x)
Step-by-step explanation:
f(x) = 3^x and g(x) = 3^2x - 3^x
h(x) = f(x) - g(x)
3^x - ( 3^2x - 3^x)
Distribute the minus sign
3^x - 3^2x + 3^x
2 * 3^x - 3 ^ 2x
Rewriting
We know that 3^2x = 3^x * 3^x
2 * 3^x - 3^x* 3^x
Factoring out 3^x
3^x( 2-3^x)
_______% of 44 = 22
Answer:
50%
Step-by-step explanation:
22 is half of 44.
So, this means 50% of 44 is 22.
There are 8 books needing re-shelving in a library where 65% of the library's collection consists of reference books. Let X be the number of reference books a student helper re-shelves out of the 8 on her cart. a) What is the probability that all 8 of them are reference books
Answer:
0.0319
Step-by-step explanation:
To approximate this probability, we shall be using the Bernoulli approximation of the Binomial distribution.
Let p = probability of selecting a reference book = 65% = 0.65
Let q = probability of selecting other books= 1-p = 1-0.65 = 0.35
Now, we want to find the probability that all of these 8 books to be re-shelved are reference book.
We set up the probability as follows;
P(X = 8) = 8C8 •p^8•q^0
P(X = 8) = 1 * (0.65)^8 * (0.35)^0
P(X = 8) = 0.031864481289 which is 0.0319 to 4 decimal places
A movie theater is having a special. If a group of four pays $7.25 each for tickets, each person can get popcorn and a drink for $5.75. Use the expression 4(5.75 + 7.25) to find the total cost for 4 friends.
Answer:
The price for 4 people is 52 dollars.
4 × (5.75 + 7.25) = 52
The total cost including drink and popcorn is $52 according to a given condition.
How to form an equation?Determine the known quantities and designate the unknown quantity as a variable while trying to set up or construct a linear equation to fit a real-world application.
In other words, an equation is a set of variables that are constrained through a situation or case.
Cost of movie ticket = $7.25/person
Cost of popcorn and drink = $5.75/person
Total cost per person = 5.75 + 7.25 = $13
Now,
Number of people = 4
So,
4(5.75 + 7.25) = 4(13) = $52
Hence "The total cost including drink and popcorn is $52 according to a given condition".
For more about the equation,
https://brainly.com/question/10413253
#SPJ2
(a) Find the standard error of the mean for each sampling situation (assuming a normal population). (Round your answers to 2 decimal places.) (a) σ = 18, n = 9 (b) σ = 18, n = 36 (c) σ = 18, n = 144
Answer:
a) 6.00
b) 3.00
c) 1.50
Step-by-step explanation:
Sample error of the mean is expressed mathematically using the formula;
SE = σ /√n where;
σ is the standard deviation and n is the sample size.
a) Given σ = 18, n = 9
Standard error of the mean = σ /√n
Standard error of the mean = 18/√9
Standard error of the mean = 18/3
Standard error of the mean = 6.00
b) Given σ = 18, n = 36
Standard error of the mean = σ /√n
Standard error of the mean = 18/√36
Standard error of the mean = 18/6
Standard error of the mean = 3.00
c) Given σ = 18, n = 144
Standard error of the mean = σ /√n
Standard error of the mean = 18/√144
Standard error of the mean = 18/12
Standard error of the mean = 3/2
Standard error of the mean = 1.50
Reduce 18/24 to its lowest terms
Answer:
3/4
Step-by-step explanation:
find a common number that 18 and 24 are both divisible by. I chose 6. So when i divide 6 by 18, I got 3. Which I put on my numerator, when I divided 24 by 6 I got 4 which I put on my denominator. My end result was 3/4
Answer:
3/4
Step-by-step explanation:
18/24
=2*9=18
=2*12=24
=9/12
=3/4
Nisha is looking out the window of her apartment building at a sculpture in a park across the street. The top of Nisha's window is 80 feet from the ground. The angle of depression from the top of Nisha's window to the bottom of the sculpture is 20°. How far away from the building is the sculpture? Round your answer to the nearest hundredth.
Answer:
219.80 feet
Step-by-step explanation:
Tan 20= 80/b
Tan 20= 0.363970234266
(0.363970234266)b=80
b= 219.80 feet
The distance between the sculpture and the bottom of the building is required.
The distance between the building and sculpture is 219.80 feet.
Trigonometry[tex]\theta[/tex] = Angle of depression = Angle of elevation = [tex]20^{\circ}[/tex]
p = Height of building = 80 feet
b = Required length
From the trigonometric ratios we have
[tex]\tan\theta=\dfrac{p}{b}\\\Rightarrow b=\dfrac{p}{\tan\theta}\\\Rightarrow b=\dfrac{80}{\tan 20}\\\Rightarrow b=219.80\ \text{feet}[/tex]
Learn more about trigonometry:
https://brainly.com/question/23899312
A string passing over a smooth pulley carries a stone at one end. While its other end is attached to a vibrating tuning fork and the string vibrates forming 8 loops. When the stone is immersed in water 10 loops are formed. The specific gravity of the stone is close to
A) 1.8
B) 4.2
C) 2.8
D) 3.2
Answer:
correct option is C) 2.8
Step-by-step explanation:
given data
string vibrates form = 8 loops
in water loop formed = 10 loops
solution
we consider mass of stone = m
string length = l
frequency of tuning = f
volume = v
density of stone = [tex]\rho[/tex]
case (1)
when 8 loop form with 2 adjacent node is [tex]\frac{\lambda }{2}[/tex]
so here
[tex]l = \frac{8 \lambda _1}{2}[/tex] ..............1
[tex]l = 4 \lambda_1\\\\\lambda_1 = \frac{l}{4}[/tex]
and we know velocity is express as
velocity = frequency × wavelength .....................2
[tex]\sqrt{\frac{Tension}{mass\ per\ unit \length }}[/tex] = f × [tex]\lambda_1[/tex]
here tension = mg
so
[tex]\sqrt{\frac{mg}{\mu}}[/tex] = f × [tex]\lambda_1[/tex] ..........................3
and
case (2)
when 8 loop form with 2 adjacent node is [tex]\frac{\lambda }{2}[/tex]
[tex]l = \frac{10 \lambda _1}{2}[/tex] ..............4
[tex]l = 5 \lambda_1\\\\\lambda_1 = \frac{l}{5}[/tex]
when block is immersed
equilibrium eq will be
Tenion + force of buoyancy = mg
T + v × [tex]\rho[/tex] × g = mg
and
T = v × [tex]\rho[/tex] - v × [tex]\rho[/tex] × g
from equation 2
f × [tex]\lambda_2[/tex] = f × [tex]\frac{1}{5}[/tex]
[tex]\sqrt{\frac{v\rho _{stone} g - v\rho _{water} g}{\mu}} = f \times \frac{1}{5}[/tex] .......................5
now we divide eq 5 by the eq 3
[tex]\sqrt{\frac{vg (\rho _{stone} - \rho _{water})}{\mu vg \times \rho _{stone}}} = \frac{fl}{5} \times \frac{4}{fl}[/tex]
solve irt we get
[tex]1 - \frac{\rho _{stone}}{\rho _{water}} = \frac{16}{25}[/tex]
so
relative density [tex]\frac{\rho _{stone}}{\rho _{water}} = \frac{25}{9}[/tex]
relative density = 2.78 ≈ 2.8
so correct option is C) 2.8
g If A and B are disjoint events, with P( A) = 0.20 and P( B) = 0.30. Then P( A and B) is: a. .00 b. .10 c. .50 d. 0.06
Answer: A) 0
P(A and B) = 0 when events A and B are disjoint, aka mutually exclusive.
We say that two events are mutually exclusive if they cannot happen at the same time. An example would be flipping a coin to have it land on heads and tails at the same time.
Which is one of the transformations applied to the graph of f(x) = X^2 to change it into the graph of g(x) = -x^2 +16x - 44
Answer: First a horizontal shift of 8 units, then a reflection over the x-axis, and then a vertical shift of 20 units.
Step-by-step explanation:
Let's construct g(x) in baby steps.
Ok, we start with f(x) = x^2
The first thing we have is a horizontal translation of A units (where A is not known)
A vertical translation of N units to the right, is written as:
g(x) = f(x - N)
Then we have:
g(x) = (x - A)^2 = x^2 - 2*A*x + A^2
Now, you can see that actually g(x) has a negative leading coefficient, which means that we also have an inversion over the x-axis.
Remember that if we have a point (x, y), a reflection over the x-axis transforms our point into (x, -y)
Then if we apply also a reflection over the x-axis, we have:
g(x) = -f(x - A) = -x^2 + 2*A*x - A^2 = -x^2 + 16*x - 44
Then:
2*A = 16
A*A = 44.
The first equation says that A = 16/2 = 8
But 8^2 is not equal to 44.
Then we need another constant coefficient, which is related to a vertical translation.
If we have a relation y = f(x), a vertical translation of N units up, will be
y = f(x) + N.
Then:
g(x) = -f(x - A) + B
-x^2 + 2*A*x - A^2 + B = x^2 + 16*x - 44
Now we have:
2*A = 16
-A^2 + B = - 44
From the first equation we have A = 8, now we replace it in the second equation and get:
-8^2 + B = -44
B = -44 + 64 = 20
Then we have:
The transformation is:
First an horizontal shift of 8 units, then a reflection over the x-axis, and then a vertical shift of 20 units.
What is f(0) given f(x) = 5(x + 2)2 – 10?
Answer:
10
Step-by-step explanation:
f(o) is given when x= 0 in f(x)
f(0) = 5 ( 0 + 2 ) 2 - 10
= 20 - 10
= 10
Answer:
[tex] \boxed{ \bold{ \huge{ \sf{f{(0) = 10}}}}}[/tex]
Step-by-step explanation:
Given, f ( x ) = 5 ( x + 2 )² - 10
Let's find f ( 0 ) :
[tex] \sf{f(0) = 5( {0 + 2)}^{2} - 10}[/tex]
Add the numbers
⇒[tex] \sf{f(0) = 5( {2)}^{2} - 10}[/tex]
Evaluate the power
⇒[tex] \sf{f(0) = 5 \times 4 - 10}[/tex]
Multiply the numbers
⇒[tex] \sf{ 20 - 10}[/tex]
Subtract 10 from 20
⇒[tex] \sf{10}[/tex]
Hope I helped !
Best regards !!
please help me guys please find the value of 3x°
Answer:
finding the value of x first
2x + 3x + 10 = 180 (linear pair)
5x = 180 - 10
x = 170 / 5
x = 34
3x = 102
A ladder 10 ft long leans against a vertical wall. If the lower end is being moved away from the wall at the rate of 6 ft/sec, how fast is the height of the top changing (this will be a negative rate) when the lower end is 6 feet from the wall?
Answer:
-4.5ft per sec
Step-by-step explanation:
Assume that vertical wall has a distance of y and the horizontal floor is x (6 ft).
This forms a triangle with the ladder as the hypothenus of length 10ft
We have dy/dt = 6ft per sec
According to Pythagoras law the relationship between x and y is
(x^2) + (y^2) = (hypothenus ^2) = 10^2
When we differentiate both sides of the equation
2x(dx/dt) + 2y(dy/dt) = 0
dy/dt = (x/y) * (dx/dt)
y= √(10^2) - (6^2) = 8ft
So dy/dt = (6/8)* (6/1)= -4.5 ft per sec
It is a negative rate
Which of the following statements is TRUE about the stepwise selection procedure?
A. The stepwise selection procedure uses Adjusted R-square as the "best" model criterion.
B. Backward stepwise procedure and forward stepwise procedure would end up with the same "best" model.
C. The "best" model determined by the stepwise selection method is the same model as what would be selected by complete search but stepwise method is usually faster.
D. Different choices of alpha limits for variable selection may end up with different final models.
Answer:
A. The stepwise selection procedure uses Adjusted R-square as the "best" model criterion.
Step-by-step explanation:
Stepwise regression is a model which uses variables in step by step manner. The procedure involves removal or inclusion of independent variables one by one. It adds the most significant independent variable and removes the less significant independent variable. Usually stepwise selection uses R-square or Mallows Cp for picking the best fit.
A leaf blower was marked up 100% from an original cost of $152. If Eva bought the leaf blower and paid 7% sales tax, how much in total did she pay?
Answer:
$325.28
Step-by-step explanation:
152+152=304
304x1.07=325.28
Answer:
325.28
Step-by-step explanation:
increase the price by 100 %
152* 100%
152
Add this to the original price
152+152 = 304
Now find the sales tax
304 * 7%
304 * .07
21.28
Add this to the amount of the purchase price
304+21.28
325.28
The perimeter of a rectangle is 80 inches, if the width is 18 inches what is the area of the rectangle? A.22 sq.in B.324 sq.in C.396 sq.in D.6,400 sq.in
Answer:
396 in^2
Step-by-step explanation:
The perimeter of a triangle is given by the formula:
● P = 2w+2L
L is the length and w is the width
■■■■■■■■■■■■■■■■■■■■■■■■■■
The width hereis 18 inches and the perimeter is 80 inches.
Replace w by 18 and P by 80 to find L.
● P= 2L+2w
● 80 = 2L + 2×18
● 80 = 2L + 36
Substrat 36 from both sides
● 80-36 = 2L+36-36
●44 = 2L
Divide both sides by 2
● 44/2 = 2L/2
● 22 = L
So the length is 22 inches
■■■■■■■■■■■■■■■■■■■■■■■■■■
The area of a rectangle is given by the formula:
● A= L×w
● A = 22×18
● A = 396 in^2
The sum of two numbers is twenty-four. The second number is equal to twice the first number. Call the first number m and the second number n.
Answer:
Step-by-step explanation:
Hello, please consider the following.
m and n are the two numbers.
m + n = 24, right?
n = 2 m
We replace n in the first equation, it comes
m + 2m =24
3m = 24 = 3*8
So, m = 8 and n = 16
Thank you
The first number is 8 and second number is 16.
What is equation?Equation is the defined as mathematical statements that have a minimum of two terms containing variables or numbers is equal.
What are Arithmetic operations?Arithmetic operations can also be specified by the subtract, divide, and multiply built-in functions.
Given that the sum of two numbers is twenty-four
The second number is equal to twice the first number
Let x and y are the two numbers.
According to the question,
m + n = 24,
n = 2m
Substitute the value of n in the first equation,
m + 2m =24
3m = 24
m = 24/3
m = 8
Substitute the value of m in the n = 2m
So, n = 2(8)
n = 16
Hence, the first number is 8 and second number is 16.
Learn more about equation here:
brainly.com/question/10413253
#SPJ5
illustrate the distributive property to solve 144/8
Answer:
8 (19) or 8 (18 +1)
Step-by-step explanation:
Distributive property means to distribute.
HCF of 144 and 8.
=> 8 is the HCF of 144 and 8
8 (18 + 1)
=> 8 (19)
Heidi bought a machine that throws tennis balls for her dog to fetch. The height of each ball thrown by the machine, in feet, is modeled by the function f(x) = –x2 + x + 2, where x represents time in seconds. How many seconds after the machine throws the ball does it hit the ground?
Answer:
2 seconds
Step-by-step explanation:
Given the equation:
[tex]f(x) = -x^2 + x + 2[/tex]
Where f(x) represents the height of each ball thrown by machine.
and x represents the time in seconds.
To find:
The number of seconds after which the machine throws the balls hits the ground = ?
Solution:
In other words, we have to find the value of [tex]x[/tex] after which the [tex]f(x) = 0[/tex]
(Because when the ball hits the ground, the height becomes 0).
Let us put [tex]f(x) = 0[/tex] and solve for [tex]x[/tex]
[tex]f(x) = -x^2 + x + 2 =0\\\Rightarrow -x^2 + x + 2 =0\\\Rightarrow x^2 - x - 2 =0\\\Rightarrow x^2 - 2x+x - 2 =0\\\Rightarrow x(x - 2)+1(x - 2) =0\\\Rightarrow (x+1)(x - 2) =0\\\Rightarrow x =-1, 2[/tex]
[tex]x=-1[/tex] sec is not a valid answer because time can not be negative.
So, the answer is after 2 seconds, the ball hits the ground.
find the value of X from the given picture
Answer:
x = 108
Step-by-step explanation:
The sum of a circle is 360
90 + x/2 + x+x = 360
Combine like terms
90 + 2x+x/2 = 360
90 + 5/2 x = 360
Subtract 90 from each side
5/2x = 270
Multiply each side by 2/5
5/2x * 2/5 = 270*2/5
x =108
∠ACB is a circumscribed angle. Solve for x. 1) 46 2) 42 3) 48 4) 44
Answer:
[tex]\Huge \boxed{x=44}[/tex]
Step-by-step explanation:
The circumscribed angle and the central angle are supplementary.
∠ACB and ∠AOB add up to 180 degrees.
Create an equation to solve for x.
[tex]3x+10+38=180[/tex]
Add the numbers on the left side of the equation.
[tex]3x+48=180[/tex]
Subtract 48 from both sides of the equation.
[tex]3x=132[/tex]
Divide both sides of the equation by 3.
[tex]x=44[/tex]
Answer:
4)44
Step-by-step explanation:
The numbers of words defined on randomly selected pages from a dictionary are shown below. Find the mean, median, mode of the listed numbers. 72 58 62 38 44 66 42 49 76 52 What is the mean? Select the correct choice below and ,if necessary ,fill in the answer box within your choice.(around to one decimal place as needed)
Answer:
72 58 62 38 44 66 42 49 76 52 ( arrange it!)
38 42 44 49 52 58 62 66 72 76 (done!)
Median: Find the number in the middle after we arranged, so the answer is (52+58)/2= 110/2 = 55
Mode : None (there is no number appear more than other number)
Mean = (38+42+44+49+52+58+62+66+72+76)/10
=559/100
=5,5
Hope it helps ^°^
what is the value of x?
Answer:
[tex]\boxed{\sf x = 80}[/tex]
Step-by-step explanation:
A quadrilateral inscribed in a circle has opposite sides equal to 180.
So,
x + x + 20 = 180
2x + 20 = 180
Subtracting 20 from both sides
2x = 180 - 20
2x = 160
Dividing both sides by 2
x = 80
━━━━━━━☆☆━━━━━━━
▹ Answer
x = 80
▹ Step-by-Step Explanation
x + x + 20 = 180
2x + 20 = 180
2x = 180 - 20
2x = 160
x = 80
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
From her purchased bags, Rory counted 110 red candies out of 550 total candies. Using a 90% confidence interval for the population proportion, what are the lower and upper limit of the interval? Answer choices are rounded to the thousandths place.
Answer:
The Confidence Interval = (0.172, 0.228)
Where:
The lower limit = 0.172
The upper limit = 0.228
Step-by-step explanation:
The formula to be applied or used to solve this question is :
Confidence Interval formula for proportion.
The formula is given as :
p ± z × √[p(1 - p)/n]
n = Total number of red candies = 550 red candles
p = proportion = Number of red candies counted/ Total number of red candies
= 110/550 = 1/5 = 0.2
z = z score for the given confidence interval.
We are given a confidence interval of 90%. Therefore, the z score = 1.6449
Confidence Interval = p ± z × √[p(1 - p)/n]
Confidence Interval = 0.2 ± 1.6449 × √[0.2(1 - 0.2)/550]
= 0.2 ± 1.6449 √0.2 × 0.8/550
= 0.2 ± 1.6449 × 0.0170560573
= 0.2 ± 0.0280555087
Hence, the Confidence Interval = 0.2 ± 0.0280555087
0.2 - 0.0280555087 = 0.1719444913
Approximately = 0.172
0.2 + 0.0280555087 = 0.2280555087
Approximately = 0.228
Therefore, the Confidence Interval = (0.172, 0.228)
Where:
The lower limit = 0.172
The upper limit = 0.228
Answer:
Lower Limit: 0.172
Upper Limit: 0.228
Step-by-step explanation:
Given the two functions, which statement is true?
fx = 3^4, g(x) = 3^x + 5
Answer:
third option
Step-by-step explanation:
Given f(x) then f(x) + c represents a vertical translation of f(x)
• If c > 0 then shift up by c units
• If c < 0 then shift down by c units
Given
g(x) = [tex]3^{x}[/tex] + 5 ← this represents a shift up of 5 units
Thus g(x) is the graph of f(x) translated up by 5 units
Answer:
[tex]\boxed{\sf{Option \: 3}}[/tex]
Step-by-step explanation:
g(x) is translated up 5 units compared to f(x). In a vertical translation, when the graph is moved 5 units up, 5 is added to the function. When the graph is moved 5 units down, 5 is subtracted from the function. The graphs are shifted in the direction of the y-axis.
Please help!! find the value of the expression
Answer:
7
Step-by-step explanation:
First plug in the variable amounts so the expression now looks like this:
(3 × 4 - 12) + 1/2(4 × 6 - 10)
Now, start by solving the multiplication parts first, so it now looks like this:
(12 - 12) + 1/2(24 - 10)
Now, apply the rules of order of operation, so start by solving what's in parenthesis. It should now look like this: (0) + 1/2(14)
Next, solve the multiplication part, so it now looks like this: 0 + 7
Solve that and the answer is 7.
A European study of thousands of men found that the PSA screening for prostate cancer reduced the risk of a man’s dying from prostate cancer from 3.0 percent to 2.4 percent. "But it’s already a small risk. I don’t think a difference of less than 1 percent would be of practical importance," said Ed. Do you agree with Ed’s conclusion?
Answer:
Following are the answer to this question:
Step-by-step explanation:
In the given statement, we don't agree with Ed’s conclusion, because it is not relevant simply since it is not statistically significant. The reduction of prostate cancer is the death risk, which is highly significant even if it decreases significantly. It can also be something statistically important without becoming important.
What is the difference in their elevations?
An airplane flies at an altitude of 26,000 feet. A submarine dives to a depth of 700 feet below sea level
Answer:
their difference in elevations are: they both don't fly one fly and one dive if you take the airplane it works quicker but if you take the submarine you won't reach faster
Find the distance between (8,4) and (8,8).
Answer:
From the given points above, the distance between them is 4 units.
Step-by-step explanation:
In order to find the distance between the two points, we must know the distance formula.
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Now, we plug in our numbers from the coordinate points that we are given to their respectful places.
[tex]d=\sqrt{(8-8)^2+(8-4)^2}[/tex]
Now, we solve. First, simplify the terms in parentheses. So, subtract 8 from 8 and subtract 4 from 8.
[tex]d=\sqrt{(0)^2+(4)^2}[/tex]
Next, solve for the exponents.
[tex]d=\sqrt{0+16}[/tex]
Add the numbers in the radical.
[tex]d=\sqrt{16}[/tex]
Solve the radical.
[tex]d=4[/tex]
So, the distance between the two given points is 4 units.