Answer:
Number of photons emit per second = 1.9 × 10²⁹ (Approx)
Explanation:
Given:
Frequency = 91.5 MHz
Power = 11.5 Kw = 11,500 J/s
Find:
Number of photons emit per second
Computation:
Total energy with frequency (E) = hf
Total energy with frequency (E) = 6.626×10⁻³⁴ × 91.5×10⁶
Total energy with frequency (E) = 6.06×10⁻²⁶ J
Number of photons emit per second = 11,500 / 6.06×10⁻²⁶
Number of photons emit per second = 1897.689 × 10²⁶
Number of photons emit per second = 1.9 × 10²⁹ (Approx)
What is the reason for the increase and decrease size of the moon and write down in a paragraph.
Answer:
The reason for the increase or decrease of the moon is due to the angular perception of the moon.
Explanation:
Also called lunar illusion, this phenomenon is due to the position in which the moon is, it can be at the zenith or on the horizon, both distances are different from each other with respect to the position of the person.
The zenith is the highest part of the sky and the horizon the lowest.
When there are landmarks such as trees, buildings or mountains on the horizon, the illusion of closeness is given and the illusion of distance is misinterpreted.
But when looking up at the sky as there is no reference point there will be a failure in the perception of size.
The following situation will be used for the next three problems: A rock is projected upward from the surface of the moon, at time t = -0.0s, with a velocity of 30m/s. The acceleration due to gravity at the surface of the moon is 1.62m/s2 the time when the rock is ascending at a height of 180m is closest to:______.
a. 8s .
b. 12s.
c. 17s.
d. 23s.
e. 30s
For the previous situation, the height of the rock when it is descending with a velocity of 20m/s is closest to:_____.
A. 115m.
B. 125m.
C. 135m.
D. 145m
E. 155m.
Explanation:
Given that,
Initial speed of the rock, u = 30 m/s
The acceleration due to gravity at the surface of the moon is 1.62 m/s².
We need to find the time when the rock is ascending at a height of 180 m.
The rock is projected from the surface of the moon. The equation of motion in this case is given by :
[tex]h=ut-\dfrac{1}{2}gt^2\\\\180=30t-\dfrac{1}{2}\times 1.62t^2[/tex]
It is a quadratic equation, after solving whose solution is given by:
t = 7.53 s
or
t = 8 seconds
(e)If it is decending, v = -20 m/s
Now t' is the time of descending. So,
[tex]v=-u+gt\\\\t=\dfrac{v+u}{g}\\\\t=\dfrac{20+30}{1.62}\\\\t=30.86\ s[/tex]
Let h' is the height of the rock at this time. So,
[tex]h'=ut-\dfrac{1}{2}gt^2\\\\h'=30\times 30.86-\dfrac{1}{2}\times 1.62\times 30.86^2\\\\h'=154.40\ m[/tex]
or
h' = 155 m
Let surface S be the boundary of the solid object enclosed by x^2+z^2=4, x+y=6, x=0, y=0, and z=0. and, let f(x,y,z)=(3x)i+(x+y+2z)j + (3z)k be a vector field (for example, the velocityfaild of a fluid flow). the solid object has five sides, S1:bottom(xy-plane), S2:left side(xz-plane), S3 rear side(yz-plane), S4:right side, and S5:cylindrical roof.
a. Sketch the solid object.
b. Evaluate the flux of F through each side of the object (S1,S2,S3,S4,S5).
c. Find the total flux through surface S.
a. I've attached a plot of the surface. Each face is parameterized by
• [tex]\mathbf s_1(x,y)=x\,\mathbf i+y\,\mathbf j[/tex] with [tex]0\le x\le2[/tex] and [tex]0\le y\le6-x[/tex];
• [tex]\mathbf s_2(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf k[/tex] with [tex]0\le u\le2[/tex] and [tex]0\le v\le\frac\pi2[/tex];
• [tex]\mathbf s_3(y,z)=y\,\mathbf j+z\,\mathbf k[/tex] with [tex]0\le y\le 6[/tex] and [tex]0\le z\le2[/tex];
• [tex]\mathbf s_4(u,v)=u\cos v\,\mathbf i+(6-u\cos v)\,\mathbf j+u\sin v\,\mathbf k[/tex] with [tex]0\le u\le2[/tex] and [tex]0\le v\le\frac\pi2[/tex]; and
• [tex]\mathbf s_5(u,y)=2\cos u\,\mathbf i+y\,\mathbf j+2\sin u\,\mathbf k[/tex] with [tex]0\le u\le\frac\pi2[/tex] and [tex]0\le y\le6-2\cos u[/tex].
b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.
[tex]\mathbf n_1=\dfrac{\partial\mathbf s_1}{\partial y}\times\dfrac{\partial\mathbf s_1}{\partial x}=-\mathbf k[/tex]
[tex]\mathbf n_2=\dfrac{\partial\mathbf s_2}{\partial u}\times\dfrac{\partial\mathbf s_2}{\partial v}=-u\,\mathbf j[/tex]
[tex]\mathbf n_3=\dfrac{\partial\mathbf s_3}{\partial z}\times\dfrac{\partial\mathbf s_3}{\partial y}=-\mathbf i[/tex]
[tex]\mathbf n_4=\dfrac{\partial\mathbf s_4}{\partial v}\times\dfrac{\partial\mathbf s_4}{\partial u}=u\,\mathbf i+u\,\mathbf j[/tex]
[tex]\mathbf n_5=\dfrac{\partial\mathbf s_5}{\partial y}\times\dfrac{\partial\mathbf s_5}{\partial u}=2\cos u\,\mathbf i+2\sin u\,\mathbf k[/tex]
Then integrate the dot product of f with each normal vector over the corresponding face.
[tex]\displaystyle\iint_{S_1}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{6-x}f(x,y,0)\cdot\mathbf n_1\,\mathrm dy\,\mathrm dx[/tex]
[tex]=\displaystyle\int_0^2\int_0^{6-x}0\,\mathrm dy\,\mathrm dx=0[/tex]
[tex]\displaystyle\iint_{S_2}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,0,u\sin v)\cdot\mathbf n_2\,\mathrm dv\,\mathrm du[/tex]
[tex]\displaystyle=\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=-8[/tex]
[tex]\displaystyle\iint_{S_3}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^6\mathbf f(0,y,z)\cdot\mathbf n_3\,\mathrm dy\,\mathrm dz[/tex]
[tex]=\displaystyle\int_0^2\int_0^60\,\mathrm dy\,\mathrm dz=0[/tex]
[tex]\displaystyle\iint_{S_4}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,6-u\cos v,u\sin v)\cdot\mathbf n_4\,\mathrm dv\,\mathrm du[/tex]
[tex]=\displaystyle\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=\frac{40}3+6\pi[/tex]
[tex]\displaystyle\iint_{S_5}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^{\frac\pi2}\int_0^{6-2\cos u}\mathbf f(2\cos u,y,2\sin u)\cdot\mathbf n_5\,\mathrm dy\,\mathrm du[/tex]
[tex]=\displaystyle\int_0^{\frac\pi2}\int_0^{6-2\cos u}12\,\mathrm dy\,\mathrm du=36\pi-24[/tex]
c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.
Alternatively, since S is closed, we can find the total flux by applying the divergence theorem.
[tex]\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_R\mathrm{div}\mathbf f(x,y,z)\,\mathrm dV[/tex]
where R is the interior of S. We have
[tex]\mathrm{div}\mathbf f(x,y,z)=\dfrac{\partial(3x)}{\partial x}+\dfrac{\partial(x+y+2z)}{\partial y}+\dfrac{\partial(3z)}{\partial z}=7[/tex]
The integral is easily computed in cylindrical coordinates:
[tex]\begin{cases}x(r,t)=r\cos t\\y(r,t)=6-r\cos t\\z(r,t)=r\sin t\end{cases},0\le r\le 2,0\le t\le\dfrac\pi2[/tex]
[tex]\displaystyle\int_0^2\int_0^{\frac\pi2}\int_0^{6-r\cos t}7r\,\mathrm dy\,\mathrm dt\,\mathrm dr=42\pi-\frac{56}3[/tex]
as expected.
Currents in DC transmission lines can be 100 A or higher. Some people are concerned that the electromagnetic fields from such lines near their homes could pose health dangers.
A. For a line that has current 150 A and a height of 8.0 m above the ground, what magnetic field does the line produce at ground level? Express your answer in teslas.
B. What magnetic field does the line produce at ground level as a percent of earth's magnetic field which is 0.50 G?
C. Is this value of magnetic field cause for worry? Choose your answer below.
i. Yes. Since this field does not differ a lot from the earth's magnetic field, it would be expected to have almost the same effect as the earth's field.
ii. No. Since this field is much lesser than the earth's magnetic field, it would be expected to have less effect than the earth's field.
iii. Yes. Since this field is much greater than the earth's magnetic field, it would be expected to have more effect than the earth's field.
iv. No. Since this field does not differ a lot from the earth's magnetic field, it would be expected to have almost the same effect as the earth's field.
Answer:
Explanation:
magnetic field due to an infinite current carrying conductor
B = k x 2I / r where k = 10⁻⁷ , I is current in conductor and r is distance from wire
putting the given data
B = 10⁻⁷ x 2 x 100 / 8
= 25 x 10⁻⁷ T .
B )
earth's magnetic field = .5 gauss
= .5 x 10⁻⁴ T
= 5 x 10⁻⁵ T
percent required = (25 x 10⁻⁷ / 5 x 10⁻⁵) x 100
= 5 %
C )
ii. No. Since this field is much lesser than the earth's magnetic field, it would be expected to have less effect than the earth's field.
What is the power P of the eye when viewing an object 61.0 cm away? Assume the lens-to-retina distance is 2.00 cm , and express the answer in diopters.
Answer:
The power of the eye is 51.64 diopters
Explanation:
The power of the eye is given by;
[tex]P = \frac{1}{f} = \frac{1}{d_o} +\frac{1}{d_i}[/tex]
where;
P is the power of the eye in diopter
f is the focal length of the eye
[tex]d_o[/tex] is the distance between the eye and the object
[tex]d_i[/tex] is the distance between the eye and the image
Given;
[tex]d_o[/tex] = 61.0 cm = 0.61 m
[tex]d_i[/tex] = 2.0 cm = 0.02 m
[tex]P = \frac{1}{d_o} +\frac{1}{d_i} \\\\P = \frac{1}{0.61} + \frac{1}{0.02} \\\\P = 51.64 \ D[/tex]
Therefore, the power of the eye is 51.64 diopters.
The power P of the eye when viewing an object 61.0 cm away is 51.639D
The power of a lens is a reciprocal of its focal length and it is expressed as:
[tex]P=\frac{1}{f}[/tex]
According to the mirror formula
[tex]\frac{1}{f} =\frac{1}{d_i} +\frac{1}{d_0}[/tex]
where
[tex]d_i[/tex] is the distance from the lens to the image = 61.0cm = 0.61m
[tex]d_0[/tex] is the distance from the lens to the object = 2.00cm = 0.02m
[tex]P=\frac{1}{f} =\frac{1}{0.02} +\frac{1}{0.61}\\P=50+1.639\\P=51.639D[/tex]
Hence the power P of the eye when viewing an object 61.0 cm away is 51.639D
Learn more here: https://brainly.com/question/14870552
The ability of a water strider to move along the surface of water without breaking the surface is due to:
Answer:
The ability of a water strider to move along the surface of water without breaking the surface is due to:
SURFACE TENSION
Explanation:
this is because Water molecules are more attracted to each other than they are to other materials, so they generate a force to stay together called surface tension. Which allows the strider to move without breaking the surface
A rectangular conducting loop of wire is approximately half-way into a magnetic field B (out of the page) and is free to move. Suppose the magnetic field B begins to decrease rapidly in strength
Requried:
What happens to the loop?
1. The loop is pushed to the left, toward the magnetic field.
2. The loop doesn’t move.
3. The loop is pushed downward, towards the bottom of the page.
4. The loop will rotate.
5. The loop is pushed upward, towards the top of the page.
6. The loop is pushed to the right, away from the magnetic field
Answer:
. The loop is pushed to the right, away from the magnetic field
Explanation
This decrease in magnetic strength causes an opposing force that pushes the loop away from the field
Give an example of a fad diet that is not healthy and one that is healthy. Explain how you know the difference.
Answer:
Good Diet: ! gallon of water a day, Fruits, Vegetables, White meats(Chicken), Don't eat past 3 PM.
Bad Diet: Pizza, Red meat, Baked goods, Eating at late hours.
Explanation: I know the difference because, When you drink water first thing in the morning it gets your metabolism running. Than means you can digest foods better, you want to feed your body good foods but you should not eat until you feel stuffed. You should eat until you are no longer starving. Than you should drink a cup of water in between meals. I know you should not eat past 3 pm because your body needs time to digest foods because you should never go to sleep with a full stomach. I know the difference between good food and bad food because when you eat healthy food and a balanced diet, your body will have more energy and you wont feel tired afterwards. Eating bad foods and food with artificial sugars will clump up in your kidneys, and your body will have small bursts of energy but you will feel lazy afterwards...Your body is supposed to stay energized from a healthy meal in order to give you the energy your body needs to exercise. If you feel droopy all the time and you don't want to do anything, than you are unhealthy.
Answer:
A vegetarian diet is an example of a good fad diet if you do it correctly. It can help you get lots of veggies and good nutrients from them while still following the non-meat diet you want. This can be effective and good for weight loss becasue you are still eating and getting all the good nutrients and calories from less fatty foods.
Vegan diet (some can be successful but many people fail and do not do good that is why I choose this) The problem with this fad diet is that it can cause nutritional deficiencies and lead to a host of additional health problems, including negatively impacting hormonal health and metabolism. Many people also struggle to find healthy vegan food and end up eating bad and fatty foods instead.
Explanation:
Got a 100
an electric device is plugged into a 110v wall socket. if the device consumes 500 w of power, what is the resistance of the device
Answer: R=24.2Ω
Explanation: Power is rate of work being done in an electric circuit. It relates to voltage, current and resistance through the following formulas:
P=V.i
P=R.i²
[tex]P=\frac{V^{2}}{R}[/tex]
The resistance of the system is:
[tex]P=\frac{V^{2}}{R}[/tex]
[tex]R=\frac{V^{2}}{P}[/tex]
[tex]R=\frac{110^{2}}{500}[/tex]
R = 24.2Ω
For the device, resistance is 24.2Ω.
what effect does decreasing the field current below its nominal value have on the speed versus voltage characteristic of a separately excited dc motor
Answer
The effect is that it Decreases the field current IF and increases slope K1
Which best identifies the requirements for work to be performed? an object that has a force acting on it an object that is moving and has no net force a force acting on a motionless object a force that moves an object
Answer:
a force that moves an object
Explanation:
the formula for work is force * distance
This question involves the concepts of work, force, and displacement.
The statement that best identifies the requirements for work to be performed is "a force that moves an object".
Work is defined as the product of force applied on an object and the distance moved by the object. Mathematically,
Work = (Force)(Displacement)
Hence, both the applied force and the displacement of the object as a result of the application of the force is necessary for the work to be done. If any one of these values becomes zero, the work automatically becomes zero, which means no work is performed.
Learn more about work here:
https://brainly.com/question/4095205
An isolated system consists of two masses. The first, m1, has a mass of 1.90 kg, and is initially traveling to the east with a speed of 6.71 m/s. The second, m2, has a mass of 2.94 kg, and is initially traveling to the west with an unknown initial speed. The two masses collide head-on in a completely inelastic collision that stops them both. Calculate the initial kinetic energy of m2.
Answer:
m1v1=m2v2, v2=4.3m/s KE=(0.5)(2.94)(4.3)=6.2J
The primary difference between a barometer and a manometer is
A. a barometer is used to measure atmospheric pressure, and a manometer is used to measure gauge pressure.
B. a barometer uses mercury, while a manometer can use any liquid. a barometer is used to measure atmospheric pressure, and a manometer is used to measure absolute pressure.
C a barometer reads in mm, while a manometer reads in Pa.
D a barometer can measure either positivee or negative pressure, while a manometer only
E positive pressure. measures
Answer:
a barometer is used to measure atmospheric pressure, and a manometer is used to measure gauge pressure.
Explanation:
A barometer measures air pressure at any locality with sea level as the reference.
However, a manometer is used to measure all pressures especially gauge pressures. Thus, if the aim is to measure the pressure at any point below a fluid surface, a barometer is used to determine the air pressure. The manometer may now be used to determine the gauge pressure
The algebraic sum of these two values gives the absolute pressure.
If 1.7 kg of 238Pu is required to power the spacecraft's data transmitter, for how long after launch would scientists be able to receive data? Round to the nearest year. Do not round intermediate calculations.
The question is incomplete. Here is the complete question.
The isotope of Plutonium 238Pu is used to make thermoeletric power sources for spacecraft. Suppose that a space probe was launched in 2012 with 3.5 kg of 238Pu.
(a) If the half-life of 238Pu is 87.7 yr, write a function of the form [tex]Q(t)=Q_{0}e^{-kt}[/tex] to model the quantity Q(t) of 238Pu left after t years. Round ythe value of k to 3 decimal places. Do not round intermediate calculations.
(b) If 1.7kg of 238Pu is required to power the spacecraft's data transmitter, for low long after launch would scientists be able to receive data? Round to the nearest year. Do not round intermediate calculations.
Answer: (a) [tex]Q(t)=3.5e^{-0.0079t}[/tex]
(b) 91 years.
Explanation:
(a) Half-life is time it takes a substance to decrease to half of itself, i.e.:
Q(t) = [tex]0.5Q_{0}[/tex]
[tex]0.5Q_{0}=Q_{0}e^{-87.7k}[/tex]
[tex]0.5=e^{-87.7k}[/tex]
[tex]ln(0.5)=ln(e^{-87.7k})[/tex]
[tex]ln(0.5)=-87.7k[/tex]
[tex]k = \frac{ln(0.5)}{-87.7}[/tex]
k = 0.0079
Knowing k and [tex]Q_{0}[/tex]=3.5kg, function is [tex]Q(t)=3.5e^{-0.0079t}[/tex]
(b) Using function:
[tex]Q(t)=3.5e^{-0.0079t}[/tex]
[tex]1.7=3.5e^{-0.0079t}[/tex]
[tex]e^{-0.0079t}=\frac{1.7}{3.5}[/tex]
[tex]e^{-0.0079t}=0.4857[/tex]
[tex]ln(e^{-0.0079t})=ln(0.4857)[/tex]
[tex]-0.0079t=-0.7221[/tex]
[tex]t = \frac{-0.7221}{-0.0079}[/tex]
t = 91.41
t ≈ 91 years
Scientists will be able to receive data for approximately 91 years.
Now the friends are ready to tackle a homework problem. A pulse is sent traveling along a rope under a tension of 29 N whose mass per unit length abruptly changes, from 19 kg/m to 45 kg/m. The length of the rope is 2.5 m for the first section and 2.8 m for the second, and the second rope is rigidly fixed to a wall. Two pulses will eventually be detected at the origin: the pulse that was reflected from the medium discontinuity and the pulse that was originally transmitted, which hits the wall and is reflected back and transmitted through the first rope. What is the time difference, Δt, between the two pulses detected at the origin? s
Answer:
The time difference is 2.97 sec.
Explanation:
Given that,
Tension = 29 N
Mass per unit length [tex]\mu_{1}=19\ kg/m[/tex]
Mass per unit length [tex]\mu_{2}=45\ kg/m[/tex]
Length of first section = 2.5 m
Length of second section = 2.8 m
We need to total distance of first pulse
Using formula for distance
[tex]d=2.5+2.5[/tex]
[tex]d_{1}=5.0\ m[/tex]
We need to total distance of second pulse
Using formula for distance
[tex]d=2.8+2.8[/tex]
[tex]d_{2}=5.6\ m[/tex]
We need to calculate the speed of pulse in the first string
Using formula of speed
[tex]v_{1}=\sqrt{\dfrac{T}{\mu_{1}}}[/tex]
Put the value into the formula
[tex]v_{1}=\sqrt{\dfrac{29}{19}}[/tex]
[tex]v_{1}=1.24\ m/s[/tex]
We need to calculate the speed of pulse in the second string
Using formula of speed
[tex]v_{2}=\sqrt{\dfrac{T}}{\mu_{2}}}[/tex]
Put the value into the formula
[tex]v_{2}=\sqrt{\dfrac{29}{45}}[/tex]
[tex]v_{2}=0.80\ m/s[/tex]
We need to calculate the time for first pulse
Using formula of time
[tex]t_{1}=\dfrac{d_{1}}{v_{1}}[/tex]
Put the value into the formula
[tex]t_{1}=\dfrac{5.0}{1.24}[/tex]
[tex]t_{1}=4.03\ sec[/tex]
We need to calculate the time for second pulse
Using formula of time
[tex]t_{2}=\dfrac{d_{1}}{v_{1}}[/tex]
Put the value into the formula
[tex]t_{2}=\dfrac{5.6}{0.80}[/tex]
[tex]t_{2}=7\ sec[/tex]
We need to calculate the time difference
Using formula of time difference
[tex]\Delta t=t_{2}-t_{1}[/tex]
Put the value into the formula
[tex]\Delta t=7-4.03[/tex]
[tex]\Delta t=2.97\ sec[/tex]
Hence, The time difference is 2.97 sec.
What physical feature of a wave is related to the depth of the wave base? What is the difference between the wave base and still water level?
Answer:
physical feature of a wave is related to the depth of the wave base is The circular orbital motion
B. The wave base is the depth, and the still water level is the horizontal level
A soccer ball of mass 0.4 kg is moving horizontally with a speed of 20 m/s when it is kicked by a player. The kicking force is so large that the ball flies up at an angle of 30 degrees above the ground. The player however claims (s)he aimed her/his foot at a 40 degree angle above the ground. Calculate the average kicking force magnitude and the final speed of the ball, if you are given that the foot was in contact with the ball for one hundredth of a second.
Answer:
v_{f} = 74 m/s, F = 230 N
Explanation:
We can work on this exercise using the relationship between momentum and moment
I = ∫ F dt = Δp
bold indicates vectors
we can write this equations in its components
X axis
Fₓ t = m ( -v_{xo})
Y axis
t = m (v_{yf} - v_{yo})
in this case with the ball it travels horizontally v_{yo} = 0
Let's use trigonometry to write the final velocities and the force
sin 30 = v_{yf} / vf
cos 30 = v_{xf} / vf
v_{yf} = vf sin 30
v_{xf} = vf cos 30
sin40 = F_{y} / F
F_{y} = F sin 40
cos 40 = Fₓ / F
Fₓ = F cos 40
let's substitute
F cos 40 t = m ( cos 30 - vₓ₀)
F sin 40 t = m (v_{f} sin 30-0)
we have two equations and two unknowns, so the system can be solved
F cos 40 0.1 = 0.4 (v_{f} cos 30 - 20)
F sin 40 0.1 = 0.4 v_{f} sin 30
we clear fen the second equation and subtitles in the first
F = 4 sin30 /sin40 v_{f}
F = 3.111 v_{f}
(3,111 v_{f}) cos 40 = 4 v_{f} cos 30 - 80
v_{f} (3,111 cos 40 -4 cos30) = - 80
v_{f} (- 1.0812) = - 80
v_{f} = 73.99
v_{f} = 74 m/s
now we can calculate the force
F = 3.111 73.99
F = 230 N
The momentum of an electron is 1.75 times larger than the value computed non-relativistically. What is the speed of the electron
Answer:
Speed of the electron is 2.46 x 10^8 m/s
Explanation:
momentum of the electron before relativistic effect = [tex]M_{0} V[/tex]
where [tex]M_{0}[/tex] is the rest mass of the electron
V is the velocity of the electron.
under relativistic effect, the mass increases.
under relativistic effect, the new mass M will be
M = [tex]M_{0}/ \sqrt{1 - \beta ^{2} }[/tex]
where
[tex]\beta = V/c[/tex]
c is the speed of light = 3 x 10^8 m/s
V is the speed with which the electron travels.
The new momentum will therefore be
==> [tex]M_{0}V/ \sqrt{1 - \beta ^{2} }[/tex]
It is stated that the relativistic momentum is 1.75 times the non-relativistic momentum. Equating, we have
1.75[tex]M_{0} V[/tex] = [tex]M_{0}V/ \sqrt{1 - \beta ^{2} }[/tex]
the equation reduces to
1.75 = [tex]1/ \sqrt{1 - \beta ^{2} }[/tex]
square both sides of the equation, we have
3.0625 = 1/[tex](1 - \beta ^{2} )[/tex]
3.0625 - 3.0625[tex]\beta ^{2}[/tex] = 1
2.0625 = 3.0625[tex]\beta ^{2}[/tex]
[tex]\beta ^{2}[/tex] = 0.67
β = 0.819
substitute for [tex]\beta = V/c[/tex]
V/c = 0.819
V = c x 0.819
V = 3 x 10^8 x 0.819 = 2.46 x 10^8 m/s
A man using a 70kg garden roller on a level surface, exerts a force of 200N at 45 degrees to the ground. find the vertical force of the roller on the ground if,
i.he pulls
ii.he pushes the roller
Answer:
i) 545.2 N upwards
ii) 828.2 N downwards
Explanation:
mass of the roller = 70 kg
force exerted = 200 N
angle the force makes with the ground ∅ = 45°
weight of the roller W = mg
where
m is the mass of the roller
g is the acceleration due to gravity = 9.81 m/s^2
weight of the roller = 70 x 9.81 = 686.7 N
The effective vertical force exerted by the man = F sin ∅ = 200 x sin 45°
==> F = 200 x 0.707 = 141.5 N
i) if the man pulls, then the exerted force will be in opposite direction to the weight of the roller vertically upwards
Resultant vertical force = 686.7 N - 141.5 N = 545.2 N upwards
ii) if he pushes, then the exerted force will be in the direction of the weight vertically downwards
Resultant vertical force = 686.7 N + 141.5 N = 828.2 N downwards
What is the angle between a wire carrying an 8.40 A current and the 1.20 T field it is in, if 50.0 cm of the wire experiences a magnetic force of 2.55 N? ° (b) What is the force (in N) on the wire if it is rotated to make an angle of 90° with the field? N
Answer:
A. 30.38°
B 5.04N
Explanation:
Using
F= ILBsin theta
2 .55N= 8.4Ax 0.5mx 1.2T x sintheta
Theta = 30.38°
B. If theta is 90°
Then
F= 8.4Ax 0.5mx 1.2x sin 90°
F= 5.04N
Experiments are performed with ultracold neutrons having velocities of 7.54 m/s. (a) What is the wavelength (in nm) of such a neutron
Answer:
λ = 52.5 nm
Explanation:
De Broglie's duality principle states that all matter has wave and particle characteristics, being related by the expression
p = h / λ
where the moment
p = mv
λ = h / mv
let's calculate
λ = 6.63 10⁻³⁴ / 1.675 10⁻²⁷ 7.54
λ = 5.25 10⁻⁸ m
Let's reduce anm
λ = 5.25 10⁻⁸ m (10⁹ nm / 1m)
λ = 52.5 nm
A bar magnet is dropped from above and falls through the loop of wire. The north pole of the bar magnet points downward towards the page as it falls. Which statement is correct?a. The current in the loop always flows in a clockwise direction. b·The current in the loop always flows in a counterclockwise direction. c. The current in the loop flows first in a clockwise, then in a counterclockwise direction. d. The current in the loop flows first in a counterclockwise, then in a clockwise direction. e. No current flows in the loop because both ends of the magnet move through the loop.
Answer:
b. The current in the loop always flows in a counterclockwise direction.
Explanation:
When a magnet falls through a loop of wire, it induces an induced current on the loop of wire. This induced current is due to the motion of the magnet through the loop, which cause a change in the flux linkage of the magnet. According to Lenz law, the induced current acts in such a way as to repel the force or action that produces it. For this magnet, the only opposition possible is to stop its fall by inducing a like pole on the wire loop to repel its motion down. An induced current that flows counterclockwise in the wire loop has a polarity that is equivalent to a north pole on a magnet, and this will try to repel the motion of the magnet through the coil. Also, when the magnet goes pass the wire loop, this induced north pole will try to attract the south end of the magnet, all in a bid to stop its motion downwards.
The current in the loop always flows in a counterclockwise direction. Hence, option (b) is correct.
The given problem is based on the concept and fundamentals of magnetic bars. When a magnet falls through a loop of wire, it induces an induced current on the loop of wire. There is some magnitude of current induced in the wire.
This induced current is due to the motion of the magnet through the loop, which cause a change in the flux linkage of the magnet. According to Lenz law, the induced current acts in such a way as to repel the force or action that produces it. For this magnet, the only opposition possible is to stop its fall by inducing a like pole on the wire loop to repel its motion down. An induced current that flows counterclockwise in the wire loop has a polarity that is equivalent to a north pole on a magnet, and this will try to repel the motion of the magnet through the coil. Also, when the magnet goes pass the wire loop, this induced north pole will try to attract the south end of the magnet, all in a bid to stop its motion downwards.Thus, we can say that the current in the loop always flows in a counterclockwise direction. Hence, option (b) is correct.
Learn more about the magnetic field here:
https://brainly.com/question/14848188
Scientists today learn about the world by _____. 1. using untested hypotheses to revise theories 2. observing, measuring, testing, and explaining their ideas 3. formulating conclusions without testing them 4. changing scientific laws
Answer:
Option 2 (observing, measuring, testing, and explaining their ideas) is the correct choice.
Explanation:
A traditional perception of such a scientist is those of an individual who performs experiments in some kind of a white coat. The reality of the situation is, a researcher can indeed be described as an individual interested in the comprehensive as well as a recorded review of the occurrences occurring in nature but perhaps not severely constrained to physics, chemistry as well as biology alone.The other three choices have no relation to a particular task. So the option given here is just the right one.
If you were to come back to our solar system in 6 billion years, what might you expect to find?
A) a red giant star
B) a rapidly spinning pulsar
C) a white dwarf
D) a black hole
E) Everything will be essentially the same as it is now
Answer:
A)a red giant star
Figure (3) shows a car travelling along the route PQRST in 30 minutes. What is the average speed of the car in km/hour?
Answer:
60 km/hour.
Explanation:
We'll begin by calculating the total distance traveled by the car. This is illustrated below:
Total distance traveled = sum of distance between PQRST
Total distance = 10 + 5 + 10 + 5
Total distance = 30 km
Next, we shall convert 30 mins to hour. This can obtained as follow:
Recall:
60 mins = 1 hour
Therefore,
30 mins = 30/60 = 0.5 hour.
Finally, we shall determine the average speed of the car as follow:
Distance = 30 km
Time = 0.5 hour
Speed =?
Speed = distance /time
Speed = 30/0.5
Speed = 60 km/hour
Therefore, the speed of the car is 60 km/hour.
A lab technician uses laser light with a wavelength of 650 nmnm to test a diffraction grating. When the grating is 42.0 cmcm from the screen, the first-order maxima appear 6.09 cmcm from the center of the pattern. How many lines per millimeter does this grating have?
Answer:
221 lines per millimetre
Explanation:
We know that for a diffraction grating, dsinθ =mλ where d = spacing between grating, θ = angle to maximum, m = order of maximum and λ = wavelength of light.
Since the grating is 42.0 cm from the screen and its first order maximum (m = 1) is at 6.09 cm from the center of the pattern,
tanθ = 6.09 cm/42.0 cm = 0.145
From trig ratios, cot²θ + 1 = cosec²θ
cosecθ = √((1/tanθ)² + 1) = √((1/0.145)² + 1) = √48.562 = 6.969
sinθ = 1/cosecθ = 1/6.969 = 0.1435
Also, sinθ = mλ/d at the first-order maximum, m = 1. So
sinθ = (1)λ/d = λ/d
Equating both expressions we have
0.1435 = λ/d
d = λ/0.1435
Now, λ = 650 nm = 650 × 10⁻⁹ m
d = 650 × 10⁻⁹ m/0.1435
d = 4529.62 × 10⁻⁹ m per line
d = 4.52962 × 10⁻⁶ m per line
d = 0.00452962 × 10⁻³ m per line
d = 0.00452962 mm per line
Since d = width of grating/number of lines of grating
Then number of lines per millimetre = 1/grating spacing
= 1/0.00452962
= 220.77 lines per millimetre
≅ 221 lines per millimetre since we can only have a whole number of lines.
B. CO
A wave has frequency of 2 Hz and a wave length of 30 cm. the velocity of the wave is
A. 60.0 ms
B. 6.0 ms
D. 0.6 ms
Answer:
0.6 m/s
Explanation:
2Hz = 2^-1 = 2 /s
30cm = .3m
Velocity is in the units m/s, so multiplying wavelength in meters by the frequency will give you the velocity.
(.3m)*(2 /s) = 0.6 m/s
Two automobiles are equipped with the same singlefrequency horn. When one is at rest and the other is moving toward the first at 20 m/s , the driver at rest hears a beat frequency of 9.0 Hz.
Requried:
What is the frequency the horns emit?
Answer: f ≈ 8.5Hz
Explanation: The phenomenon known as Doppler Shift is characterized as a change in frequency when one observer is stationary and the source emitting the frequency is moving or when both observer and source are moving.
For a source moving and a stationary observer, to determine the frequency:
[tex]f_{0} = f_{s}.\frac{c}{c-v_{s}}[/tex]
where:
[tex]f_{0}[/tex] is frequency of observer;
[tex]f_{s}[/tex] is frequency of source;
c is the constant speed of sound c = 340m/s;
[tex]v_{s}[/tex] is velocity of source;
Rearraging for frequency of source:
[tex]f_{0} = f_{s}.\frac{c}{c-v_{s}}[/tex]
[tex]f_{s} = f_{0}.\frac{c-v_{s}}{c}[/tex]
Replacing and calculating:
[tex]f_{s} = 9.(\frac{340-20}{340})[/tex]
[tex]f_{s} = 9.(0.9412)[/tex]
[tex]f_{s} =[/tex] 8.5
Frequency the horns emit is 8.5Hz.
Problem 25.40 What is the energy (in eV) of a photon of visible light that has a wavelength of 500 nm
Answer:
E = 2.48 eV
Explanation:
The energy of a photon is given by the following formula:
E = hυ
where,
E = Energy of Photon = ?
h = Plank's Constant = 6.626 x 10⁻³⁴ J.s
υ = frequency of photon = c/λ
Therefore,
E = hc/λ
where,
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of light = 500 nm = 5 x 10⁻⁷ m
Therefore,
E = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(5 x 10⁻⁷ m)
E = (3.97 x 10⁻¹⁹ J)(1 eV/1.6 x 10⁻¹⁹ J)
E = 2.48 eV
A photon of visible light that has a wavelength of 500 nm, has an energy of 2.48 eV.
We can calculate the energy (E) of a photon with a wavelength (λ) of 500 nm using the Planck's-Einstein relation.
[tex]E = \frac{h \times c}{\lambda } = \frac{(6.63 \times 10^{-34}J.s ) \times (3.00 \times 10^{8}m/s )}{500 \times 10^{-9}m } = 3.98 \times 10^{-19} J[/tex]
where,
h: Planck's constantc: speed of lightWe can convert 3.98 × 10⁻¹⁹ J to eV using the conversion factor 1 J = 6.24 × 10¹⁸ eV.
[tex]3.98 \times 10^{-19} J \times \frac{6.24 \times 10^{18} eV }{1J} = 2.48 eV[/tex]
A photon of visible light that has a wavelength of 500 nm, has an energy of 2.48 eV.
Learn more: https://brainly.com/question/2058557
In a physics laboratory experiment, a coil with 250 turns enclosing an area of 14 cm2 is rotated in a time interval of 0.030 s from a position where its plane is perpendicular to the earth's magnetic field to a position where its plane is parallel to the field. The earth's magnetic field at the lab location is 5.0×10^−5 T.Required:a. What is the total magnetic flux through the coil before it is rotated? After it is rotated? b. What is the average emf induced in the coil?
Explanation:
Consider a loop of wire, which has an area of [tex]A=14 \mathrm{cm}^{2}[/tex] and [tex]N=250[/tex] turns, it is initially placed perpendicularly in the earth magnetic field. Then it is rotated from this position to a position where its plane is parallel to the field as shown in the following figure in [tex]\Delta t=0.030[/tex] s. Given that the earth's magnetic field at the position of the loop is [tex]B=5.0 \times 10^{-5} \mathrm{T}[/tex], the flux through the loop before it is rotated is,
[tex]\Phi_{B, i} &=B A \cos \left(\phi_{i}\right)=B A \cos \left(0^{\circ}\right[/tex]
[tex]=\left(5.0 \times 10^{-5} \mathrm{T}\right)\left(14 \times 10^{-4} \mathrm{m}^{2}\right)(1)[/tex]
[tex]=7.0 \times 10^{-8} \mathrm{Wb}[/tex]
[tex]\quad\left[\Phi_{B, i}=7.0 \times 10^{-8} \mathrm{Wb}\right[/tex]
after it is rotated, the angle between the area and the magnetic field is [tex]\phi=90^{\circ}[/tex] thus,
[tex]\Phi_{B, f}=B A \cos \left(\phi_{f}\right)=B A \cos \left(90^{\circ}\right)=0[/tex]
[tex]\qquad \Phi_{B, f}=0[/tex]
(b) The average magnitude of the emf induced in the coil equals the change in the flux divided by the time of this change, and multiplied by the number of turns, that is,
[tex]{\left|\mathcal{E}_{\mathrm{av}}\right|=N\left|\frac{\Phi_{B, f}-\Phi_{B, i}}{\Delta t}\right|}{=} & \frac{1.40 \times 10^{-5} \mathrm{Wb}}{0.030 \mathrm{s}}[/tex]
[tex]& 3.6 \times 10^{-4} \mathrm{V}=0.36 \mathrm{mV}[/tex]
[tex]\mathbb{E}=0.36 \mathrm{mV}[/tex]
(a) The initial and final flux through the coil is 1.75 × 10⁻⁵ Wb and 0 Wb
(b) The induced EMF in the coil is 0.583 mV
Flux and induced EMF:Given that the coil has N = 250 turns
and an area of A = 14cm² = 1.4×10⁻³m².
It is rotated for a time period of Δt = 0.030s such that it is parallel with the earth's magnetic field that is B = 5×10⁻⁵T
(a) The flux passing through the coil is given by:
Ф = NBAcosθ
where θ is the angle between area vector and the magnetic field
The area vector is perpendicular to the plane of the coil.
So, initially, θ = 0°, as area vector and earth's magnetic field both are perpendicular to the plane of the coil
So the initial flux is:
Φ = NABcos0° = NAB
Ф = 250×1.4×10⁻³×5×10⁻⁵ Wb
Ф = 1.75 × 10⁻⁵ Wb
Finally, θ = 90°, and since cos90°, the final flux through the coil is 0
(b) The EMF induced is given by:
E = -ΔФ/Δt
E = -(0 - 1.75 × 10⁻⁵)/0.030
E = 0.583 × 10⁻³ V
E = 0.583 mV
Learn more about magnetic flux:
https://brainly.com/question/15359941?referrer=searchResults