You place a toy car at the top of a 2. 0m high ramp. The car has a mass of 25g. When released, the car travels with a speed of 5m/s. What is the kinetic energy of the car

Answers

Answer 1

The kinetic energy of the car is 0.3125 Joules. Kinetic energy represents the energy possessed by an object due to its motion.

To find the kinetic energy of the car, we can use the formula:

Kinetic Energy (KE) = 1/2 * mass * velocity^2

First, we need to convert the mass from grams to kilograms:

mass = 25g = 0.025kg

Substituting the values into the formula:

KE = 1/2 * 0.025kg * (5m/s)^2

Calculating the square of the velocity:

KE = 1/2 * 0.025kg * 25m^2/s^2

Simplifying the equation:

KE = 0.3125 Joules

To calculate the kinetic energy of the car, we use the formula KE = 1/2 * mass * velocity^2. Given that the mass of the car is 25 grams, we convert it to kilograms by dividing by 1000, resulting in a mass of 0.025 kg. The velocity of the car is 5 m/s. Substituting these values into the formula, we get KE = 1/2 * 0.025 kg * (5 m/s)^2 = 0.3125 Joules. Therefore, the kinetic energy of the car is 0.3125 Joules. in this case, it indicates the amount of energy the car possesses as it moves down the ramp.

Learn more about kinetic energy here:

https://brainly.com/question/999862

#SPJ11


Related Questions

Inertia is the natural tendency of every object to resist change to either speed or direction. Describe a way in which you observe this in your everyday life.

Answers

Inertia refers to the natural tendency of every object to resist any change in either speed or direction. Every object tends to maintain its state of motion until an external force acts on it.

Inertia is an essential concept in physics, and it can be observed in everyday life. Here is how you can observe inertia in your everyday life:

When you are in a moving car, and the driver suddenly stops, your body tends to move forward. This is because of inertia. Your body is already in motion, and when the car stops, your body tends to keep moving in the same direction. The seatbelt helps to prevent this movement by exerting a force on your body in the opposite direction.

When you are on a merry-go-round and it starts spinning, you tend to feel a force pushing you away from the center of the ride. This is also due to inertia. Your body is already in motion, and when the ride starts spinning, your body tends to keep moving in the same direction. The force that pushes you away from the center of the ride is known as the centrifugal force.

When you are playing a game of pool, and you hit the cue ball, it tends to keep moving until it comes into contact with another ball or hits the wall of the table. This is also due to inertia. The cue ball is already in motion, and it tends to maintain its state of motion until it comes into contact with another object or hits the wall of the table.

These are just a few examples of how you can observe inertia in your everyday life.

learn more about force here

https://brainly.com/question/30236242

#SPJ11

A 890kg enters a flat curve at 25m/s. The curve has a radius of curvature of 220m. What is the minimum coefficient of friction to keep the car from slid off the road?​

Answers

The minimum coefficient of friction required to keep the car from sliding off the road is approximately 0.285. This can be calculated using the equation: coefficient of friction = (v^2) / (g * r).

Where v is the velocity of the car, g is the acceleration due to gravity, and r is the radius of curvature of the curve.

To calculate the minimum coefficient of friction, we can use the equation:

coefficient of friction = (v^2) / (g * r)

Given:

Mass of the car (m) = 890 kg

Velocity of the car (v) = 25 m/s

Radius of curvature (r) = 220 m

Acceleration due to gravity (g) ≈ 9.8 m/s^2

Plugging in the values, we have:

coefficient of friction = (25^2) / (9.8 * 220)

≈ 625 / 2156

≈ 0.289

Therefore, the minimum coefficient of friction required to keep the car from sliding off the road is approximately 0.285. This means that the friction between the car's tires and the road must provide at least this much resistance to prevent the car from losing traction and sliding off the road during the turn.

learn more about friction here:

https://brainly.com/question/13000653

#SPJ11

Assuming a constant density, the size of an object scales as its mass raised to what power?.

Answers

Assuming a constant density, the size of an object scales as its mass raised to the power of 1/3 (one-third).

The mass, density, and volume of an object are related by the equation:

ρ = m/Vwhere ρ is the density, m is the mass, and V is the volume.

We can write this equation as

V = m/ρThis equation can be used to find the relationship between the mass and volume of an object of constant density.

Assume that we have two objects of the same material with masses m1 and m2.

We can find the ratio of their volumes by taking the ratio of their masses and density as follows:

V1/V2 = m1/ρ / m2/ρV1/V2 = m1/m2V1/V2 = (m1/m2)^(1/3)

This shows that the ratio of the volumes of two objects with the same density is proportional to the cube root of the ratio of their masses.

This relationship can be expressed as:

V ∝ m^(1/3)

This relationship can also be expressed as the size of an object scales as its mass raised to the power of 1/3.

Know more about constant density here:

https://brainly.com/question/6838128

#SPJ11

A call can supply circuit of 0. 4A and 0. 2A through a 4ohms and 10 ohms resistor respectively what is the internal resistant of the cell

Answers

A call can supply circuit of 0. 4A and 0. 2A through a 4ohms and 10 ohms resistor respectively what is the internal resistant of the cellThe internal resistance of the cell is 3 ohms.

According to Ohm's Law, the current in a circuit can be determined using the equation I = V/R, where I is the current, V is the voltage, and R is the resistance. In this case, we have two resistors connected in parallel. Let's assume the voltage of the cell is V.

For the 4-ohm resistor, the current is given as 0.4A. Using Ohm's Law, we can calculate the voltage across the resistor as V1 = I1 * R1 = 0.4A * 4ohms = 1.6V.

For the 10-ohm resistor, the current is given as 0.2A. Using Ohm's Law, we can calculate the voltage across the resistor as V2 = I2 * R2 = 0.2A * 10ohms = 2V.

Since the resistors are in parallel, the voltage across both resistors is the same, so V1 = V2. This means the internal resistance of the cell can be calculated as V = I * r, where r is the internal resistance. Substituting the values, we have 1.6V = 0.4A * r, which gives us r = 1.6V / 0.4A = 4 ohms.

learn more about supply circuit  here:

https://brainly.com/question/32392237

#SPJ11

3. A grating with 1555 lines/cm is illuminated with light of wavelength 565 nm. What


is the highest-order number that can be observed with this grating? (Hint:


Remember that sin can never be greater than 1 for a diffraction grating. )




important!

Answers

The highest-order number that can be observed with this grating using diffraction formula is 1/1555.

It is determined using the formula for diffraction: mλ = d sinθ. Where m is the order number, λ is the wavelength of light, d is the grating spacing, and θ is the angle of diffraction. In this case, the grating has 1555 lines/cm, which means the grating spacing is 1/1555 cm.

To determine the highest-order number, calculate m × (565 × 10^-9 meters) = (1/1555 cm) × sinθ, where θ must be less than or equal to 90 degrees to satisfy sinθ ≤ 1. Given the wavelength of light as 565 nm (or 565 × 10^-9 meters), we can proceed with the calculation. Since sinθ ≤ 1, the highest-order number (m) can be determined by substituting θ = 90 degrees into the equation: m = (1/1555 cm) × sin(90 degrees).

To know more about grating, visit

https://brainly.com/question/30460514

#SPJ11

The electron and proton of a hydrogen atom are separated by a distance of approximately 5.3 x 10^-11m. Find the magnitude of the electric and gravitational force between the two particles.

Answers

The magnitude of the electric force is 8.21 × 10⁻⁸ N and the gravitational force is 3.61 × 10⁻⁸ N. The electric force acting between the electron and proton of hydrogen atom is given by: Coulomb's Law of electrostatics, F = 1 / 4πε₀ × q₁q₂ / r².

Given that, Distance between the electron and proton of a hydrogen atom, r = 5.3 × 10⁻¹¹m, Mass of an electron, m₁ = 9.1 × 10⁻³¹ kg, Mass of a proton, m₂ = 1.67 × 10⁻²⁷ kg, Charge of an electron, q₁ = -1.6 × 10⁻¹⁹ C, Charge of a proton, q₂ = +1.6 × 10⁻¹⁹ C.

Where,ε₀ = permittivity of free space = 8.854 × 10⁻¹² C²/N m²

F = 1 / 4π (8.854 × 10⁻¹²) × (1.6 × 10⁻¹⁹)² / (5.3 × 10⁻¹¹)²

F = 8.21 × 10⁻⁸ N

The gravitational force acting between the electron and proton of hydrogen atom is given by:

Newton's Law of gravitation, F = G × m₁m₂ / r², Where, G = gravitational constant = 6.67 × 10⁻¹¹ N m²/kg²

F = (6.67 × 10⁻¹¹) × (9.1 × 10⁻³¹) × (1.67 × 10⁻²⁷) / (5.3 × 10⁻¹¹)²

F = 3.61 × 10⁻⁸ N

Therefore, the magnitude of the electric force is 8.21 × 10⁻⁸ N and the gravitational force is 3.61 × 10⁻⁸ N.

To know more about electric force, refer

https://brainly.com/question/30236242

#SPJ11

Susie estimated that she can run for hours at a steady rate of 8mph. She enters a marathon, a distance of 26miles. How long should it take her to complete the race? Give answers in hours and minutes.

Answers

To determine the time it would take Susie to complete the marathon, we can use the formula: Time = Distance / Speed

Given that the distance of the marathon is 26 miles and Susie's steady rate is 8 mph, we can substitute these values into the formula. Time = 26 miles / 8 mph. To calculate the time, we divide 26 miles by 8 mph: Time = 3.25 hours. Since there are 60 minutes in an hour, we can convert the decimal part of the time to minutes: 0.25 hours * 60 minutes/hour = 15 minutes.  Therefore, it would take Susie approximately 3 hours and 15 minutes to complete the marathon.

To learn more about Speed, https://brainly.com/question/28224010

#SPJ11

A force of 25 N is applied to a screwdriver to pry the lid off of a can of paint. The screwdriver applies 75 N of force to the lid. What is the mechanical advantage of the screwdriver?

Answers

Answer:

The mechanical advantage of the screwdriver is 3.

Explanation:

The mechanical advantage can be calculated using the formula: mechanical advantage = output force / input force. In this case, the output force is 75 N (the force applied by the screwdriver to the lid), and the input force is 25 N (the force applied to the screwdriver).

Therefore, the mechanical advantage is:

mechanical advantage = 75 N / 25 N = 3.

Hence, the mechanical advantage of the screwdriver is 3.

Learn more about mechanical advantage here: https://brainly.com/question/32030248

#SPJ11.

A projectile is launched horizontally from a height of 8. 0 m. The projectile travels 6. 5 m before hitting the ground. The velocity of the projectile the moment it was launched, rounded to the nearest hundredth, is m/s.

Answers

The initial velocity of a projectile launched horizontally can be calculated using the equation of distance covered horizontally (x) = Initial velocity (u)  Time of flight (t). The horizontal component of the initial velocity can be determined by x = u  t, t = 1.63 s, x = 6.5 mu = x / t = 6.5 m / 1.63 su = 3.99 m/s  4.00 m/s.

The initial velocity of the projectile that was launched horizontally can be calculated using the equation below: Distance covered horizontally (x) = Initial velocity (u) × Time of flight (t) where, Time of flight (t) can be found using the formula below: t = [2 × vertical height (h)] / g where ,g is the acceleration due to gravity = 9.8 m/s².The vertical height (h) of the projectile is 8.0 m. So the time of flight of the projectile will bet = [2 × 8.0 m] / 9.8 m/s²t = 1.63 s Therefore, the horizontal component of the projectile’s initial velocity can be determined by: x = u × tt = 1.63 s, x = 6.5 mu = x / t = 6.5 m / 1.63 su = 3.99 m/s ≈ 4.00 m/s. So, the projectile was launched horizontally with a velocity of 4.00 m/s (rounded to the nearest hundredth).Content loaded: The term “content loaded” is used to indicate that the contents of a webpage or app have finished loading and are ready for viewing or use.

To know more about velocity Visit:

https://brainly.com/question/30559316

#SPJ11

In the experiment, we measure the total time for 20 complete revolutions and divide it by 20 to obtain the period of the rotation. why not measure the amount of time for one complete revolution directly and record it as the period of rotation?

Answers

In the experiment, measuring the total time for 20 complete revolutions and dividing it by 20 to obtain the period of rotation is done to reduce errors and improve the accuracy of the measurement.

Measuring the time for one complete revolution directly can be subject to human reaction time and potential errors in starting and stopping the stopwatch precisely at the beginning and end of each revolution. These errors can accumulate and affect the accuracy of the measurement.

By measuring the total time for 20 complete revolutions and then dividing it by 20, we are essentially averaging out these potential errors over multiple revolutions. This helps to minimize the impact of any individual timing error and provides a more reliable and accurate measurement of the period of rotation.

Additionally, by taking multiple measurements (in this case, 20), we increase the sample size and reduce the influence of outliers or irregularities in any individual measurement. This improves the overall precision and reliability of the calculated period.

Therefore, measuring the total time for multiple revolutions and dividing by the number of revolutions allows for a more accurate determination of the period of rotation in the experiment.

To know more about period here

https://brainly.com/question/30892752

#SPJ4

The sun heats land faster than it heats water. As a result, the air above the water is usually cooler than that above land. Many times, early in the morning, the air above the water is very dense and is difficult to see through. What effect is observed from this difference in temperature?.

Answers

The effect that is observed from the difference in temperature is a sea breeze.

A sea breeze is a cooling wind that blows from the sea to the land and results from the difference in temperature between the land and the sea. The sun heats land faster than water, which causes the air above the land to heat up faster than the air above the water, as per the given statement.

As a result, the warm air above the land rises, creating low pressure over the land. On the other hand, the cool air above the sea sinks, creating high pressure over the sea. As a result, the cool air moves from the sea to the land, which is known as a sea breeze.So, the difference in temperature caused by the sun's heating land faster than water leads to the formation of a sea breeze.

To learn more about temperature visit;

https://brainly.com/question/7510619

#SPJ11

What is the approximate wavelength of a light whose second-order dark band forms a diffraction angle of 15. 0° when it passes through a diffraction grating that has 250. 0 lines per mm? 26 nm 32 nm 414 nm 518 nm.

Answers

To find the approximate wavelength of the light, we can use the formula:

wavelength (λ) = (d * sin(θ)) / m

where d is the spacing between the lines of the diffraction grating, θ is the angle of diffraction, and m is the order of the dark band.

In this case, the diffraction grating has 250.0 lines per mm, which means the spacing between the lines is:

d = 1 / 250.0 mm

The second-order dark band has an angle of diffraction of 15.0°, and we want to find the wavelength. So we can plug these values into the formula:

wavelength (λ) = [(1 / 250.0 mm) * sin(15.0°)] / 2

Calculating this expression gives us:

wavelength (λ) ≈ 32 nm

Therefore, the approximate wavelength of the light is 32 nm.

Learn more about wavelength here:

brainly.com/question/31143857

#SPJ11

Veronica’s velocity was measured as 4. 3 m/s. She displaced 20 meters in 4. 7 seconds. Which piece of information is missing for the correct calculation of velocity?

Answers

The missing piece of information required for the correct calculation of velocity is the direction of the displacement.

In order to calculate velocity accurately, we need to have both the displacement and the time. In this scenario, the displacement of 20 meters in 4.7 seconds is provided, but the missing piece of information is the direction of the displacement. Velocity is a vector quantity, which means it includes both magnitude (speed) and direction. To calculate the velocity accurately, we need to know whether Veronica's displacement was in a specific direction (e.g., north, east, etc.) or if it was only given as a magnitude (20 meters) without a direction.

Learn more about velocity  here:

https://brainly.com/question/847745

#SPJ11

A 5-kg object is moving to the right at 4 m/s and collides with another object moving to the left at 5 m/s. The objects collide and stick together. After the collision, the combined object:

Answers

After the collision, the two objects stick together and move as one. Their total mass is m1 + m2 = 5 kg + m2.

How to determine the effect of the collision

In this case, we can apply the principle of conservation of linear momentum

The initial momentum of the first object (P1_initial) is given by its mass (m1) times its velocity (v1), which is [tex]5 kg * 4 m/s = 20 kg*m/s.[/tex]

Therefore, the total initial momentum [tex](P_{total_initial}) is P1_{initial} + P2_{initial} = 20 kg*m/s - m2 * 5 m/s.[/tex]

After the collision, the two objects stick together and move as one.

Their total mass is m1 + m2 = 5 kg + m2.

Read more on collision here:

https://brainly.com/question/24915434

#SPJ4

A 0.27-kg volleyball has a kinetic energy of 1.8 J. What is the speed of the volleyball?

Answers

the speed of the volleyball is 3.85 m/s.

Given: The mass of the volleyball m = 0.27-kg;

The kinetic energy of the volleyball KE = 1.8 J

We know that the kinetic energy of an object is given as:

KE = (1/2)mv²

Where,KE = Kinetic energy of the object

m = Mass of the object

v = Velocity of the object

Substituting the given values in the equation,1.8 = (1/2) × 0.27 × v²

On simplifying, we get:

v² = (2 × 1.8) / 0.27v² = 4 / 0.27v² = 14.81

Taking the square root of both sides, we get:

v = 3.85 m/s

Therefore, the speed of the volleyball is 3.85 m/s.

learn more about speed here

https://brainly.com/question/13943409

#SPJ11

After scientists have a number of ideas about robot movement in mind, what types of tests do they then perform?

Answers

After scientists have a number of ideas about robot movement in mind, they then perform various types of tests to validate their theories and see how the robot actually moves in the real world. Robotics engineers design, build, and program robots, and their work focuses on a few key areas such as mechanics, control theory, electronics, and computer programming. Robotics engineers work in a variety of fields and industries, including manufacturing, aerospace, and healthcare. Before a robot is sent to the market, it must go through rigorous testing to ensure that it functions as intended and meets the safety standards set by regulatory bodies.

To test the robot movement, engineers use computer simulations and physical prototypes. Computer simulations allow engineers to test robot behavior and movement in a virtual environment, while physical prototypes are used to test the robot's movement in the real world. Once the robot has been built, the engineers will test it to see if it moves as intended.

They may also conduct tests to see how the robot performs in different environments or under different conditions.Some of the tests that the engineers might perform to validate their theories include:Simulation tests: Simulation tests are computer-based tests that allow engineers to test the robot's behavior and movement in a virtual environment. Engineers can create different scenarios and see how the robot performs in each scenario. This allows them to fine-tune the robot's programming before it is built.

learn more about  Robotics engineers

https://brainly.com/question/22788959

#SPJ11

A particle with a charge of 5nC has a distance of 0. 5m away from a charge of 9. 5nC. What is its electric potential energy?

Answers

The electric potential energy of the particle with a charge of 5nC, located 0.5m away from a charge of 9.5nC, is 1.9 J.

To calculate the electric potential energy, we can use the formula:

Electric potential energy = (k * q1 * q2) / r

Where:

k is the electrostatic constant (9 x 10^9 N m^2/C^2),

q1 and q2 are the charges of the two particles (in this case, 5nC and 9.5nC, respectively),

r is the distance between the charges (0.5m).

Substituting the given values into the formula:

Electric potential energy = (9 x 10^9 N m^2/C^2) * (5 x 10^-9 C) * (9.5 x 10^-9 C) / 0.5m

Calculating the expression:

Electric potential energy ≈ 1.9 J

Therefore, the electric potential energy of the particle is approximately 1.9 Joules.

learn more about electric potential here:

https://brainly.com/question/28444459

#SPJ11

A 20. Kilogram rock is lifted 7. 0 meters above the ground. What is the gravitational


potential energy of the rock?

Answers

The gravitational potential energy of the rock is 1,372 Joules.

The gravitational potential energy (PE) of an object can be calculated using the formula:

PE = m * g * h, where:

m is the mass of the object,

g is the acceleration due to gravity, and

h is the height or distance above the reference point.

In this case, the mass of the rock (m) is 20 kilograms, and the height (h) is 7.0 meters.

The acceleration due to gravity (g) is approximately 9.8 m/s².

Now we can calculate the gravitational potential energy:

PE = 20 kg * 9.8 m/s² * 7.0 m

PE = 1,372 Joules

Therefore, the gravitational potential energy of the rock is 1,372 Joules.

Learn more about gravitational PE visit:

brainly.com/question/3910603

#SPJ11

A wire that is 0.50 m long and carrying a current of 8.0 A is at right angles to a uniform magnetic field. The force on the wire is 0.40 N. What is the strength of the magnetic field? SRL

Answers

The strength of the magnetic field is 0.16 T. This can be calculated using the formula: magnetic field strength (B) = force (F) / (current (I) × length (L) × sin(θ)),

where θ is the angle between the wire and the magnetic field (90 degrees in this case).

The formula to calculate the force on a current-carrying wire in a magnetic field is given by the equation: F = BILsin(θ), where F is the force, B is the magnetic field strength, I is the current, L is the length of the wire, and θ is the angle between the wire and the magnetic field.

Rearranging the formula, we get B = F / (ILsin(θ)).

Given:

Current (I) = 8.0 A

Length (L) = 0.50 m

Force (F) = 0.40 N

Angle (θ) = 90 degrees (since the wire is at right angles to the magnetic field)

Plugging in the values into the formula, we have:

B = 0.40 N / (8.0 A × 0.50 m × sin(90°)).

Since sin(90°) is equal to 1, the equation simplifies to:

B = 0.40 N / (8.0 A × 0.50 m × 1) = 0.16 T.

Therefore, the strength of the magnetic field is 0.16 T.

learn more about magnetic field here:

https://brainly.com/question/19542022

#SPJ11

Steam burns are pretty dangerous because there's often a lot of


thermal energy in the steam. When the steam hits you, it is going to


transfer some of that energy to you, cooling the steam. If a 6.4 kg cloud of


steam at 150 degrees, hits you and cools to 100 degrees, What is the loss


of heat energy? (no scientific notation)

Answers

The loss of heat energy when a 6.4 kg cloud of steam at 150 degrees Celsius hits you and cools to 100 degrees Celsius is 13,440,000 Joules.

To calculate the heat energy loss, we can use the formula:

Q = mcΔT

Where Q represents heat energy, m is the mass of the steam cloud (6.4 kg), c is the specific heat capacity of water (4,186 J/kg°C), and ΔT is the change in temperature (150°C - 100°C = 50°C).

Plugging in the values, we have:

Q = (6.4 kg) × (4,186 J/kg°C) × (50°C)

Q = 13,440,000 Joules

Therefore, the loss of heat energy when the steam cools from 150°C to 100°C is 13,440,000 Joules.

Learn more about heat energy calculations here:

https://brainly.com/question/30320641

#SPJ11

A pendulum consists of a mass m hanging at the bottom end of a massless rod of length l, which has a frictionless pivot at its top end. A mass m, moving as shown in the figure with velocity v impacts m and becomes embedded.

Answers

The common velocity of masses m and M after the impact is v = mv / sqrt(m (m + M)). A pendulum consists of a mass m hanging at the bottom end of a massless rod of length l, which has a frictionless pivot at its top end. A mass m, moving as shown in the figure with velocity v impacts m and becomes embedded.

The given figure shows the before and after impact of two masses m and M with velocities v and 0, respectively, where mass M is hanging with the help of a rod and performing simple harmonic motion. Therefore, the given system of masses is an example of an inelastic collision. As per the principle of conservation of linear momentum in physics, the momentum of a system is conserved if the net external force acting on it is zero. As the given system of masses has no external force acting on it, its momentum is conserved.

The initial momentum of the system can be calculated as:pi = mv + 0Since mass M is at rest, its initial momentum is zero. Therefore, the total initial momentum of the system ispi = mv. The final momentum of the system can be calculated as:pf = (m + M)V. Here, V is the common velocity of masses m and M after the impact, which can be calculated using the principle of conservation of mechanical energy.

As the given system of masses is an example of an inelastic collision, some energy is lost during the impact due to deformation of the masses. Therefore, the conservation of mechanical energy can be written as:

1/2 mv² = (1/2) (m + M) V²

Solving for V, we get:V² = mv² / (m + M)V = v * sqrt(m / (m + M))

Therefore, the final momentum of the system can be calculated as:pf = (m + M) v * sqrt(m / (m + M)) = v * sqrt(m (m + M))

Therefore, applying the principle of conservation of linear momentum, we have:pi = pfmv = v * sqrt(m (m + M))v = mv / sqrt(m (m + M))

Hence, the common velocity of masses m and M after the impact is v = mv / sqrt(m (m + M)).

To learn more about velocity visit;

https://brainly.com/question/30559316

#SPJ11

Driving a car 100m requires the same amount of _____ as pushing it 100m by hand. A. PowerB. Power and EnergyC. TimeD. Work

Answers

Driving a car 100m requires the same amount of work as pushing it 100m by hand as the concept of work in physics refers to the transfer of energy when a force is applied over a certain distance.

When driving a car or pushing it by hand, the same amount of work is done because the distance covered is the same. However, it's important to note that the power required to accomplish this work may differ, as power is the rate at which work is done or energy is transferred. So, while the work is the same, the power required for driving a car is typically much higher than the power needed to push it by hand.

To know more about energy, visit

https://brainly.com/question/18771704

#SPJ11

In a game of pool, a 0. 4 kg cue ball is traveling at 0. 80 m/s when it hits a slower striped ball moving at 0. 38 m/s. After the collision, the striped ball moves off at 0. 62 m/s. What is the magnitude of the final velocity of the cue ball? Assume all pool balls have the same mass. 0. 20 m/s 0. 56 m/s 1. 0 m/s 1. 8 m/s.

Answers

When solving the problem of pool game and calculating the magnitude of the final velocity of the cue ball, the correct option is 0.56 m/s.

The following method: Use the principle of conservation of momentum, i.e. momentum before the collision is equal to the momentum after the collision, which is mathematically written as: [tex]$$mv_1+Mv_2=(m + M)v_3$$[/tex]

Where, m is the mass of the cue ball,

M is the mass of the striped ball,

v1 is the velocity of the cue ball before the collision,

v2 is the velocity of the striped ball before the collision, and

v3 is the velocity of the cue ball after the collision.

Using the above formula, we get the final velocity of the cue ball as:

[tex]$$v_3=frac {mv_1+Mv_2}{m+M}$$[/tex]

Plug in the given values, we get,

[tex]$$v_3=frac{0.4*0.80+0.4*0.38}{0.4+0.4}$$[/tex]

Solving for v3, we get [tex]$v_3=0.59$[/tex] m/s Therefore, the magnitude of the final velocity of the cue ball is 0.59 m/s.

To know more about velocity visit :

https://brainly.com/question/18084516

#SPJ11

What is the energy of a wave that has a frequency of 9. 50 x 10^12 Hz?

Answers

The energy of the wave with a frequency of 9.50 x 10^12 Hz is approximately 6.2947 x 10^-21 Joules.

The energy of a wave can be calculated using the equation E = h*f, where E represents the energy, h is Planck's constant (approximately 6.626 x 10^-34 J·s), and f is the frequency of the wave.

Given a frequency of 9.50 x 10^12 Hz, we can substitute this value into the equation to find the energy:

E = (6.626 x 10^-34 J·s) * (9.50 x 10^12 Hz)

E = 6.2947 x 10^-21 J

Therefore, the energy of the wave with a frequency of 9.50 x 10^12 Hz is approximately 6.2947 x 10^-21 Joules.

Learn more about frequency visit:

brainly.com/question/31938473

#SPJ11

A web browser is open on yur screen. The lengh of the monitor is x+7. The area of the browser windw is 24 inches. The dimensions of the browser window are x-2 and x. Find the length of the browser window x. Part B. The browser covers 3/13 of the screen. What are the dimensions of the screen

Answers

The length of the browser window (x) is 6. The dimensions of the screen are approximately 3 inches (width) and 18/13 inches (height).

Let's solve the equations step by step:

Part A:

The area of the browser window is given by the equation:

(x - 2) * x = 24

Expanding the equation:

[tex]x^{2}[/tex] - 2x = 24

Rearranging the equation to standard quadratic form:

[tex]x^{2}[/tex] -  2x - 24 = 0

Factoring the quadratic equation:

(x - 6)(x + 4) = 0

Setting each factor to zero:

x - 6 = 0 or x + 4 = 0

Solving for x:

x = 6 or x = -4

Since the length of the monitor cannot be negative, we discard the solution x = -4.

Therefore, the length of the browser window (x) is 6.

Part B:

The dimensions of the screen can be calculated using the length of the monitor (x+7) and the coverage ratio of the browser window (3/13).

The width of the screen is given by:

Width = (3/13) * (x + 7)

The height of the screen is given by:

Height = (3/13) * (x)

Substituting the value of x = 6:

Width = (3/13) * (6 + 7) = (3/13) * 13 = 3

Height = (3/13) * 6 = 18/13

Therefore, the dimensions of the screen are approximately 3 inches (width) and 18/13 inches (height).

To know more about dimensions here

https://brainly.com/question/23246002

#SPJ4

An elastic wire expands by 2cm when load of 40g hangs from it. What additional load will be required to cause a further extension of 4cm

Answers

To solve this problem, we can use Hooke's Law, which states that the extension of an elastic material is directly proportional to the force applied to it.

First, let's convert the mass of the load from grams to kilograms:
Mass of the load = 40 g = 0.04 kg

Next, we need to find the spring constant of the wire. The spring constant (k) is a measure of the stiffness of the wire and represents the force required to produce a unit extension. We can find it by dividing the force (weight) by the extension.

Given:
Extension 1 = 2 cm = 0.02 m
Force 1 = Weight = 0.04 kg × 9.8 m/s^2 (acceleration due to gravity) = 0.392 N

Using Hooke's Law, we can calculate the spring constant:
k = Force 1 / Extension 1
k = 0.392 N / 0.02 m
k = 19.6 N/m

Now that we have the spring constant (k), we can calculate the additional load required to cause a further extension of 4 cm.

Given:
Extension 2 = 4 cm = 0.04 m

Using Hooke's Law:
Force 2 = k × Extension 2
Force 2 = 19.6 N/m × 0.04 m
Force 2 = 0.784 N

Therefore, an additional load of 0.784 N will be required to cause a further extension of 4 cm.
Answer:
An additional load of 80g will be required to cause a further extension of 4cm.

Step by step explanation:
To find the additional load required to cause a further extension of 4cm, we can use the concept of proportionality.

The extension of the wire is directly proportional to the load applied. This means that the ratio of the extension to the load remains constant.

In this case, we have an initial extension of 2cm when a load of 40g is applied. We can set up the following proportion:

2cm / 40g = 4cm / x

Cross-multiplying, we get:

2cm * x = 40g * 4cm

2x = 160g cm

To find the additional load required, we need to solve for x:

x = 160g cm / 2
x = 80g

Therefore, an additional load of 80g will be required to cause a further extension of 4cm.

A stevedore slides a crate along a dock with a 50 kg horizontal force of 175 N. The opposing force of friction is 120 N. If started from rest, what is the crates’s final velocity after 0.5s?

Answers

To determine the crate's final velocity after 0.5 seconds, we can use the concept of Newton's second law of motion, which states that the net force acting on an object is equal to its mass multiplied by its acceleration.

In this scenario, the stevedore applies a horizontal force of 175 N to move the crate along the dock. However, there is also an opposing force of friction acting in the opposite direction, which has a magnitude of 120 N. The net force is the difference between these two forces, so we can calculate it as follows:

Net force = Applied force - Frictional force

Net force = 175 N - 120 N

Net force = 55 N

Now, using Newton's second law of motion, we can determine the acceleration of the crate. Rearranging the equation, we have:

Net force = mass * acceleration

55 N = 50 kg * acceleration

Solving for acceleration:

acceleration = 55 N / 50 kg

acceleration = 1.1 m/s²

Since we know the initial velocity of the crate is zero (as it starts from rest), and we want to find the final velocity after 0.5 seconds, we can use the equation of motion:

final velocity = initial velocity + (acceleration * time)

Plugging in the values:

final velocity = 0 + (1.1 m/s² * 0.5 s)

final velocity = 0.55 m/s

Therefore, the crate's final velocity after 0.5 seconds is 0.55 m/s. This means that after being subjected to a 175 N force and experiencing 120 N of friction, the crate gains a velocity of 0.55 m/s in the direction of the applied force.

To know more about Velocity visit-

brainly.com/question/30559316

#SPJ11

A 0. 10-kg ball traveling at 10 m/s hits a stationary wall and rebounds back with a velocity of 10 m/s. What is the impulse imparted by the wall?

Answers

The impulse imparted by the wall is -2 kg·m/s. The negative sign indicates a change in direction due to the rebound of the ball.

To determine the impulse imparted by the wall, we can use the principle of conservation of momentum. The impulse is equal to the change in momentum experienced by the ball.

The momentum of an object is given by the product of its mass and velocity:

Momentum = mass × velocity

Given:

Mass of the ball (m) = 0.10 kg

Initial velocity of the ball (v₁) = 10 m/s

Final velocity of the ball (v₂) = -10 m/s (negative sign indicates a change in direction)

The initial momentum of the ball is:

Initial momentum = m × v₁ = 0.10 kg × 10 m/s = 1 kg·m/s

The final momentum of the ball is:

Final momentum = m × v₂ = 0.10 kg × (-10 m/s) = -1 kg·m/s

The change in momentum is the difference between the final and initial momentum:

Change in momentum = Final momentum - Initial momentum = (-1 kg·m/s) - (1 kg·m/s) = -2 kg·m/s

Learn more about the ball here:

https://brainly.com/question/28335414

#SPJ11

Lidia makes a graphic organizer of the methods of charging. There is a venn diagram with 3 intersecting circles. One circle is labeled friction, one circle is labeled conduction and the last circle is labeled induction. There is an X in the overlapping section of all 3. Which label belongs in the region marked X? Charged object must touch Charged object must not touch Electrons move Protons move.

Answers

The label that belongs in the region marked X is "Electrons move."

The title "Electrons move" is applicable for the area denoted by the X, which is the intersection of the three circles (friction, conduction, and induction).

This is due to the critical role that electron movement plays in the processes of charging by friction, conduction, and induction.

Electrons are moved between two objects during frictional charging as a result of rubbing or friction. Electrons transfer directly from a charged object to another during conduction.

When an object is subjected to induction, electrons move around inside it under the influence of an outside charged object without coming into contact.

The flow of electrons, which produces electric charge, is thus a shared characteristic of these techniques.

For more details regarding charge transfer, visit:

https://brainly.com/question/14671491

#SPJ12

A bookshelf is at rest in a room. A force of 35. 0 newtons is applied to a bookshelf. If the floor imparts a frictional force of 2. 90 newtons, what is the net force acting on the bookshelf?.

Answers

The net force acting on the bookshelf is 32.1 N. It is given that the net force acting on a bookshelf that is at rest in a room when a force of 35.0 N is applied to it and the floor imparts a frictional force of 2.90 N.

The force that is applied to an object minus the frictional force acting on it is called net force. This net force is responsible for causing motion in the object. Therefore, if the object is at rest, the net force is zero. If it is in motion, the net force is nonzero.

The formula for calculating net force is: Net force = Applied force - Frictional force

Given: Applied force = 35.0 N, Frictional force = 2.90 N

We know that, Net force = Applied force - Frictional force

= 35.0 N - 2.90 N

= 32.1 N

Therefore, the net force acting on the bookshelf is 32.1 N.

To know more about net force, refer

https://brainly.com/question/14361879

#SPJ11

Other Questions
Juan and Clausen are playing a card game called "Magic." The number ofcards they have is in a ratio of Juan: Clausen = 7:4. Juan has 56 cards.How many cards does Clausen have? How many gold coins can a leprechaun put in an empty pot. Rectangle TUVW is on a coordinate plane at T (a, b), U (a 2, b 2), V (a 5, b 1), and W (a 3, b 3). What is the slope of the line that is parallel to the line that contains side WV? 2 2 1 1. This model shows DNA, chromosomes, and genes. If B is a cell and C is the nucleus, what is A? A) DNA B) Chromatid C) Chromosome D) Gene Max invest $1000 in a savings account that earns simple 3% interest how long will he have to leave it there in order to make $150 in interest The minute arm of a tower clock is 1. 8 m long. It took 35 minutes to move from 2 to 9. The angular displacement of the minute arm is? Sabrina can type 2 pages per hour. How many pages can she type in 8 hours and 20 minutes? What is 13+1 Please help i cant answering in my exam Selena and Julian want to plant saplings in their backyard. Selena's tree is 54.2 centimeters high and Julian's tree is 47.6 centimeters high. One centimeter is approximately equal to 0.4 inches. How many inches taller is Selena's tree than Julian's? Which equation best models the data in the scatter plot?AnswerAy = x + 1By = x 1Cy = x + 1Dy = x 1 The Grade 8 learners decide to start living more healthily. They will either jog or cycle. There are 125 Grade Iearners and they jog and cycle in the ratio 3:2. Calculate how many learners participate in each sport Madeline is saving up to buy a new jacket. She already has $65 and can save anadditional $5 per week using money from her after school job. How much totalmoney would Madeline have after 5 weeks of saving? Also, write an expression thatrepresents the amount of money Madeline would have saved in w weeks.Savings after 5 weeks:Savings after w weeks: Gabe kept track of the trick-or-treaters who came to his door and found that 1/2 were dressed as ghosts and 2/5 were dressed as witches. What fraction of the trick-or-treaters were dressed as either ghosts or witches? Tadpoles survive hatching in water because they are born knowing how to swim. This is an example of _____. Discuss the rational subgroup concept. What part does it play in control chart analysis?. What are the functions of the sori found on the leaves? Pls list like three. if BAT is congruent to DOG and angle B equals 14 angle G equals 29 and angle O is equal to 10 X +7 find X and angle O Read this excerpt from "The Lady of Shalott" by Alfred, Lord Tennyson. How is the isolation of the Lady emphasized through the poem's settings? On either side the river lie Long fields of barley and of rye, That clothe the wold and meet the sky; And thro' the field the road runs by To many-tower'd Camelot; And up and down the people go, Gazing where the lilies blow Round an island there below, The island of Shalott. What is the following product? (StartRoot 14 EndRoot minus StartRoot 3 EndRoot) (StartRoot 12 EndRoot StartRoot 7 EndRoot). In the last basketball game. Arnav scored 6 more than one fourth of his team's points. Let P represent the number of points Arnav's team scored. Write an expression for yhe number of points Arnav scored.