Answer:
115
Step-by-step explanation:
Jill has 32 crayons. She loses 4 of the crayons. How many are left?
Answer:
the answer here is d
the answer is d
Answer:
28
Step-by-step explanation:
Total number of crayons = 32
Number of crayons lost = 4
Therefore, number of crayons she is left with is : 32 - 4 = 28
Working :
[tex]32\\04 - \\\overline{28}[/tex]
The following data was collected to explore how the average number of hours a student studies per night and the student's GPA affect their ACT score. The dependent variable is the ACT score, the first independent variable (x1)is the number of hours spent studying, and the second independent variable (x2) is the student's GPA
Effects on ACT Scores
Study Hours GPA ACT Score
5 4 27
5 2 18
5 3 18
1 3 20
2 4 21
Step 1 of 2: Find the p-value for the regression equation that fits the given data. Round your answer to four decimal places.
Step 2 of 2: Determine if a statistically significant linear relationship exists between the independent and dependent variables at the 0.01 level of significance. If the relationship is statistically significant, identify the multiple regression equation that best fits the data, rounding the answers to three decimal places. Otherwise, indicate that there is not enough evidence to show that the relationship is statistically significant.
Answer:
Pvalue = 0.1505
y = 0.550x1 + 3.600x2 + 7.300
Step-by-step explanation:
Given the data :
Study Hours GPA ACT Score
5 4 27
5 2 18
5 3 18
1 3 20
2 4 21
Using technology, the Pvalue obtained using the Fratio :
F = MSregression / MSresidual = 30.228571/ 8.190476 = 3.69
The Pvalue for the regression equation is:
Using the Pvalue from Fratio calculator :
F(1, 3), 3.69 = 0.1505
Using the Pvalue approach :
At α = 0.01
Pvalue > α ; Hence, we fail to reject H0 and conclude that ; There is not enough evidence to show that the relationship is statistically significant.
The regression equation :
y = A1x1 + A2x2 +... AnXn
y = 0.550x1 + 3.600x2 + 7.300
x1 and x2 are the predictor variables ;
y = predicted variable
J. Aitchison collected expenditures data for 20 randomly selected single men and 20 randomly selected single women. He uses the data to conduct a hypothesis test to determine if the mean percent of expenditures that goes toward housing (including fuel and light) is different for men and women. What is the correct alternative hypothesis?
a. Md = 0
b. μα = 0
c. ud > 0
d. Opmen — Вwomen
e. Himen > Mwomen
f. Mmen Mwomen
Answer:
The alternative hypothesis is [tex]H_1: \mu_M - \mu_W \neq 0[/tex], considering M for men and W for women.
Step-by-step explanation:
He uses the data to conduct a hypothesis test to determine if the mean percent of expenditures that goes toward housing (including fuel and light) is different for men and women.
At the null hypothesis, we test if there is not difference, that is, the difference of the mean is 0, so:
[tex]H_0: \mu_M - \mu_W = 0[/tex]
At the alternative hypothesis, we test if there is a difference, that is, the difference of the means is different of 0, so:
[tex]H_1: \mu_M - \mu_W \neq 0[/tex]
Martina made$391for17hours of work. At the same rate, how many hours would she have to work to make$253? a 11 hours b 9 hours c 22 hours d 33 hours
Answer:
11 hours is right answer i hope it will help you
find the length of side AB
Answer:
AB = 5.6 cm
Step-by-step explanation:
Reference angle (θ) = 62°
Hypotenuse = 12 cm
Adjacent = AB
Apply the trigonometric ratio formula, CAH, which is:
Cos θ = Adj/Hyp
Plug in the values
Cos 62° = AB/12
12*Cos 62° = AB
5.63365876 = AB
AB = 5.6 cm (1 decimal place)
Exactly how many planes contain points J, K, and N?
a - 0
b - 1
c - 2
d - 3
The parametric equations for the paths of two projectiles are given. At what rate is the distance between the two objects changing at the given value of t? (Round your answer to two decimal places.) x1 = 10 cos(2t), y1 = 6 sin(2t) First object x2 = 4 cos(t), y2 = 4 sin(t) Second object t = π/2
Answer:
- [tex]\frac{4}{\sqrt{29} }[/tex]
Step-by-step explanation:
The equations for the 1st object :
x₁ = 10 cos(2t), and y₁ = 6 sin(2t)
2nd object :
x₂ = 4 cos(t), y₂ = 4 sin(t)
Determine rate at which distance between objects will continue to change
solution Attached below
Distance( D ) = [tex]\sqrt{(10cos2(t) - 4cos(t))^2 + (6sin2(t) -4sin(t))^2}[/tex]
hence; dD/dt = - [tex]\frac{4}{\sqrt{29} }[/tex]
1. Find the Perimeter AND Area of the figure
below.
2 ft
5 ft
2 ft
5 ft
Answer:
A = 16 ft^2
P = 20 ft
Step-by-step explanation:
P = perimeter
A = area
STEP 1: divide the shape into rectangles
Rectangle 1: 2ft*3ft
Rectangle 2: 2ft*5ft
STEP 2: Find the area of each rectangle
Equation for area of a rectangle = bh
Rectangle 1: b = 2, h = 3
Rectangle 2: b = 2, h = 5
(2 * 3) + (2 * 5)
6 + 10
16 ft^2
Now, we have to find the perimeter
STEP 1: Find the unknown side lengths.
To find the lengths of the sides not labeled, you have to use the lengths of the sides we already know.
The length of one parallel side is 5, and the length of another parallel side is 2. The length of the unknown side starts at the same place as the top of the side length that is 5, and ends at the top of the side length that is 2. This means that we have to subtract 2 from 5 in order to find the unknown side length.
STEP 2: Add up all the side lengths
P = 2 + 5 + 5 + 2 + 3 + 3
P = 20 ft
Don't forget to label your answers!!
I hope this made sense, it's is a little hard to explain in simple terms without being able to draw, but I hope it helped.
If 128x is a perfect square number what is the least value of x
Please answer the question fast
Answer:
in a square all sides are equal so x has to equal
128
Hope This Helps!!!
In order to win a prize, Heather randomly draws two balls from a basket of 40. There are 25 blue balls, and the rest are green balls. Of the blue balls, 12% are winning balls. Of the green balls, 20% are winning balls. Calculate the expected number of winning balls that Heather draws.
Answer:
The expected number of winning balls that Heather draws is 0.3.
Step-by-step explanation:
The balls are chosen without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
Expected value of the hypergeometric distribution:
The expected value is given by:
[tex]E(X) = \frac{nk}{N}[/tex]
Expected number of blue and green balls:
40 balls, which means that [tex]N = 40[/tex]
2 are chosen, which means that [tex]n = 2[/tex]
25 are blue, which means that [tex]k = 25[/tex]
So
[tex]E(X) = \frac{nk}{N} = \frac{25(2)}{40} = 1.25[/tex]
1.25 balls are expected to be blue and 2 - 1.25 = 0.75 green.
Of the blue balls, 12% are winning.
Of the green balls, 20% are winning.
Calculate the expected number of winning balls that Heather draws.
[tex]E_w = 1.25*0.12 + 0.75*0.2 = 0.3[/tex]
The expected number of winning balls that Heather draws is 0.3.
What is the y-intercept of the graph of y = 2.5x? a. 2.5 c. 0 b. 1 d. -1
Answer:
answer is C
Step-by-step explanation:
General equation of a line is expressed as shown:
y = mx+c where;
m is the slope or gradient of the line
c is the intercept of the line
Given the equation of the line graph as y =2.5x
Comparing the given equation with the general equation, it is seen that m = 2.5 and c = 0 (since there is no value for the intercept)
Based on the explanation, the y-intercept of the graph is therefore 0
Answer:
B
Step-by-step explanation:
To find the x-intercept, substitute in
0 for y and solve for x
To find the y-intercept, substitute in 0 for x and solve for y
x-intercept(s): None
y-intercept(s): (0,1)
The function f is defined by the following rule. f(x) = 5x+1 Complete the function table.
Answer:
[tex]-5 \to -24[/tex]
[tex]-1 \to -4[/tex]
[tex]2 \to 11[/tex]
[tex]3 \to 16[/tex]
[tex]4 \to 21[/tex]
Step-by-step explanation:
Given
[tex]f(x) = 5x + 1[/tex]
Required
Complete the table (see attachment)
When x = -5
[tex]f(-5) = 5 * -5 + 1 = -24[/tex]
When x = -1
[tex]f(-1) = 5 * -1 + 1 = -4[/tex]
When x = 2
[tex]f(2) = 5 * 2 + 1 = 11[/tex]
When x = 3
[tex]f(3) = 5 * 3 + 1 = 16[/tex]
When x = 4
[tex]f(4) = 5 * 4 + 1 = 21[/tex]
So, the table is:
[tex]-5 \to -24[/tex]
[tex]-1 \to -4[/tex]
[tex]2 \to 11[/tex]
[tex]3 \to 16[/tex]
[tex]4 \to 21[/tex]
Complete the information for that object by making estimates using appropriate units of measurement of the dimensions and by getting the actual measurements using an appropriate measuring instrument.
Answer:
hlo how are u?whats ur day is going
Find the solution of the differential equation that satisfies the given initial condition. (dP)/(dt)
Answer:
[tex]P = (\frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3})^2[/tex]
Step-by-step explanation:
Given
[tex]\frac{dP}{dt} = \sqrt{Pt[/tex]
[tex]P(1) = 2[/tex]
Required
The solution
We have:
[tex]\frac{dP}{dt} = \sqrt{Pt[/tex]
[tex]\frac{dP}{dt} = (Pt)^\frac{1}{2}[/tex]
Split
[tex]\frac{dP}{dt} = P^\frac{1}{2} * t^\frac{1}{2}[/tex]
Divide both sides by [tex]P^\frac{1}{2}[/tex]
[tex]\frac{dP}{ P^\frac{1}{2}*dt} = t^\frac{1}{2}[/tex]
Multiply both sides by dt
[tex]\frac{dP}{ P^\frac{1}{2}} = t^\frac{1}{2} \cdot dt[/tex]
Integrate
[tex]\int \frac{dP}{ P^\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
Rewrite as:
[tex]\int dP \cdot P^\frac{-1}{2} = \int t^\frac{1}{2} \cdot dt[/tex]
Integrate the left hand side
[tex]\frac{P^{\frac{-1}{2}+1}}{\frac{-1}{2}+1} = \int t^\frac{1}{2} \cdot dt[/tex]
[tex]\frac{P^{\frac{-1}{2}+1}}{\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
[tex]2P^{\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
Integrate the right hand side
[tex]2P^{\frac{1}{2}} = \frac{t^{\frac{1}{2} +1 }}{\frac{1}{2} +1 } + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{t^{\frac{3}{2}}}{\frac{3}{2} } + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + c[/tex] ---- (1)
To solve for c, we first make c the subject
[tex]c = 2P^{\frac{1}{2}} - \frac{2}{3}t^\frac{3}{2}[/tex]
[tex]P(1) = 2[/tex] means
[tex]t = 1; P =2[/tex]
So:
[tex]c = 2*2^{\frac{1}{2}} - \frac{2}{3}*1^\frac{3}{2}[/tex]
[tex]c = 2*2^{\frac{1}{2}} - \frac{2}{3}*1[/tex]
[tex]c = 2\sqrt 2 - \frac{2}{3}[/tex]
So, we have:
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + 2\sqrt 2 - \frac{2}{3}[/tex]
Divide through by 2
[tex]P^{\frac{1}{2}} = \frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3}[/tex]
Square both sides
[tex]P = (\frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3})^2[/tex]
ABCD is a square of side 12 cm. It is formed from two rectangles AEGD and
EBCG. H is a point on AD and F is a point on BC.
Find the area of EFGH.
Answer:72 [tex]cm^{2}[/tex]
Solution 1:
Step 1: Find EF use Pythagorean theorem
[tex]EF^{2} = EB^{2} + BF^{2}[/tex]
[tex]EF^{2} = 6^{2} + 6^{2}[/tex]
EF = [tex]\sqrt{6^{2} + 6^{2} }[/tex] = 6[tex]\sqrt{2}[/tex] cm
Step 2: The area of EFGH = [tex]EF^{2}[/tex]= [tex](6\sqrt{2} )^{2}[/tex] = 72
Solution 2: See that the area of EFGH is equal [tex]\frac{1}{2}[/tex] the area of ABCD
The area of ABCD = 12x12 = 144
Thus, the area of EFGH = 144: 2 = 72:)
Have a nice day!
10=−4x+3x^2 solve
please help!
Answer:
-1.28 AND 2.61
Step-by-step explanation:
[tex]10= -4x+3x^2\\ 3x^2 -4x - 10 = 0\\\\[/tex]
use quadratic formula
x = [tex]\frac{-b+\sqrt{b^{2} -4ac} }{2a}[/tex] x = [tex]\frac{-b-\sqrt{b^{2} -4ac} }{2a}[/tex]
Solution/X-Intercepts: -1.28 AND 2.61
Find the value of x.
Answer:
x = 3
Step-by-step explanation:
A midsegment in a trapezoid is formed when one connects the midpoints of the two legs (non-parallel sides) in a trapezoid. The midsegment theorem states that the length of the midsegment is equal to the average of the two bases (that is the parallel sides).
One can apply the midsegment theorem here by stating the following;
[tex]\frac{(YZ)+(TM)}{2}=PW[/tex]
Substitute,
[tex]\frac{23+11x+2}{2}=29[/tex]
Simplify,
[tex]\frac{25+11x}{2}=29[/tex]
Inverse operations,
[tex]\frac{25+11x}{2}=29[/tex]
[tex]25+11x=58\\\\11x = 33\\\\x = 3[/tex]
19. The sum of a number m and a number n, multiplied by ninety-one 20. Forty-one times the difference when six is subtracted from a num- bera 21. A number r divided by the difference between eighty-three and ten 22. The total of a number p and twelve, divided by eighteen 23. The product of a number c and three more than the sum of nine and twelve 24. The sum of a number y and ten, divided by the difference when a number x is decreased by five. I need to convert all of them into expressions. PLEASE HELP.
Answer:
Step-by-step explanation:
19.
The numbers are m and n
Sum of m and n = m + n
Sum is multiplied by 91 = 91 x ( m + n )
20.
Let the number be = m
Six subtracted from the number = m - 6
41 times the difference = 41 x ( m - 6)
21.
Let the number be = r
Difference between 83 and 10 = 83 - 10 = 73
[tex]The \ number\ divided \ by\ the \ difference \ = \frac{r}{73}[/tex]
22.
Total of p and 23 = p + 12
[tex]Total \ divided \ by \ 18 = \frac{p + 12 }{18}[/tex]
23.
The product of c and 3 = 3c
Sum of 9 and 12 = 21
Product is more than Sum = 3c + 21
24.
Sum of y and 10 = y + 10
Number x decreased by 5 = x - 5
[tex]Sum \ divided \ by \ difference = \frac{ y + 10 }{x - 5}[/tex]
PLSHELPASAPDFFFFFFFFFFFFFFFFFFFFFFFFFF
im struggling with the same one
Which figure can be formed from the net?
pls answer fast for brainiest !
Answer:
It should be the top right one
(with 6ft as the height)
Step-by-step explanation:
Answer:
It must be the lower to the left choice.
Step-by-step explanation:
As you can see, the net we have is composed of only triangles.
So we should be choosing a figure with a triangular base.
Our answers are narrowed down into the top right and lower left choices because both figures have triangular bases.
The other person down there chose the top right choice and was incorrect, so the answer should be the lower to the left figure.
Also, its the lower left figure because look at the triangular base, it is an isosceles meaning that two sides have the same length.
If the net says that the long side measures 9 ft, then the other two sides should be the same length and shorter than 9 ft. So the answer is the lower left figure.
Hope this helps
Find the median: 16.12.7.9.10.16
Answer:
hey hi mate
hope you like it
plz mark it as brainliest
Please help me >_< will give out brainliest
====================================================
Explanation:
We have an octagon because there are n = 8 sides. The diagram below shows one way to number the sides so you can count them efficiently (without missing any or double counting any).
----------------
Plug n = 8 into the formula below
S = 180(n-2)
S = 180(8-2)
S = 180(6)
S = 1080
The 8 interior angles add up to 1080 degrees.
Yellowstone National Park is a popular held trip destination. This year the senior class at
High School A and the senior class at High School B both planned trips there. The senior
class at High School A rented and filed 2 vans and 3 buses with 153 students. High
School Brented and nited il vans and 10 buses with 534 students. Every van had the
same number of students in it as did the buses. Find the number of students in each van
and in each bus.
Van: 39
Bus: 18
Van: 21
Bus: 21
o
Van: 27
Bus: 19
.
Van: 18
Bus: 39
Answer:
Who was the first president of United States?
Do you want to own your own candy store? Wow! With some interest in running your own business and a decent credit rating, you can probably get a bank loan on startup costs for franchises such as Candy Express, The Fudge Company, Karmel Corn, and Rocky Mountain Chocolate Factory. Startup costs (in thousands of dollars) for a random sample of candy stores are given below. Assume that the population of x values has an approximately normal distribution.
Answer:
[tex]\bar x = 107.11[/tex]
[tex]\sigma_x = 31.07[/tex]
Step-by-step explanation:
See comment for complete question
Given
[tex]x: 97\ 178\ 129\ 90\ 75\ 94\ 116\ 100\ 85[/tex]
Solving (a): The sample mean
This is calculated using:
[tex]\bar x = \frac{\sum x}{n}[/tex]
So, we have:
[tex]\bar x = \frac{97+ 178+ 129+ 90+ 75+ 94+ 116+ 100+ 85}{9}[/tex]
[tex]\bar x = \frac{964}{9}[/tex]
[tex]\bar x = 107.11[/tex]
Solving (b): The sample standard deviation
This is calculated as:
[tex]\sigma_x = \sqrt{\frac{\sum(x - \bar x)^2}{n-1}}[/tex]
So, we have:
[tex]\sigma_x = \sqrt{\frac{(97 - 107.11)^2 +.............+ (85- 107.11)^2 }{9-1}}[/tex]
[tex]\sigma_x = \sqrt{\frac{7720.8889}{8}}[/tex]
[tex]\sigma_x = \sqrt{965.1111125}[/tex]
[tex]\sigma_x = 31.07[/tex]
A school contains 140 boys and 160 girls. what is the ratio of boys to girls?
I need full working out please
Answer:
7 : 8
Step-by-step explanation:
that is the procedure above
SCALCET8 3.9.015. A street light is mounted at the top of a 15-ft-tall pole. A man 6 ft tall walks away from the pole with a speed of 4 ft/s along a straight path. How fast is the tip of his shadow moving when he is 35 ft from the pole
Answer:
[tex]X=6.67ft/s[/tex]
Step-by-step explanation:
From the question we are told that:
Height of pole [tex]H_p=15[/tex]
Height of man [tex]h_m=6ft[/tex]
Speed of Man [tex]\triangle a =4ft/s[/tex]
Distance from pole [tex]d=35ft[/tex]
Let
Distance from pole to man=a
Distance from man to shadow =b
Therefore
[tex]\frac{a+b}{15}=\frac{b}{6}[/tex]
[tex]6a+6b=15y[/tex]
[tex]2a=3b[/tex]
Generally the equation for change in velocity is mathematically given by
[tex]2(\triangle a)=3(\triangle b )[/tex]
[tex]2*4=3(\triangle b)[/tex]
[tex]\triangle a=\frac{8}{3}[/tex]
Since
The speed of the shadow is given as
[tex]X=\triangle b+\triangle a[/tex]
[tex]X=4+8/3[/tex]
[tex]X=6.67ft/s[/tex]
Which represents can be used to determine the slope of the linear function graphed below
Thomas Supply Company Inc. is a distributor of gas-powered generators. As with any business, the length of time customers take to pay their invoices is important. Listed below, arranged from smallest to largest, is the time, in days, for a sample of The Thomas Supply Company Inc. invoices.
13 13 13 20 26 29 32 33 34 34 35 35 36 37 38
41 41 41 45 46 47 47 48 52 54 55 56 62 67 82
(Round your answers to 2 decimal places.)
a. Determine the first and third quartiles.
Q1 =
Q3 =
b. Determine the second decile and the eighth decile.
D2 =
D8 =
c. Determine the 67th per
Answer:
Q1 = 32.5
Q3 = 50
D2 = 29
D8 = 52
67th percentile = 46.5
Step-by-step explanation:
Given the ordered data:
13, 13, 13, 20, 26, 29, 32, 33, 34, 34, 35, 35, 36, 37, 38, 41, 41, 41, 45, 46, 47, 47, 48, 52, 54, 55, 56, 62, 67, 82
The first quartile :
Q1 = 1/4(n+1)th term
n = sample size = 30
Q1 = 1/4(31) = 7.75 = (7th + 8th) / 2 = (32+33) / 2 = 32.5
Q3 = 3/4(n+1)th term
n = sample size = 30
Q3 = 3/4(31) = 23.25 = (23rd + 24th) / 2 = (48+52) / 2 = 50
D2 = 2nd decile
2 * 10% = 20%
20% * n
0.2 * 30 = 6th = 29
D8 = 8th decile
8 * 10% = 80%
80% * 30 = 24th = 52
67th percentile :
0.67 * 30 = 20.1 th
(20th + 21th) / 2
(46 + 47) / 2
= 46.5
5. Lisa has a cubed-shaped box with a
volume of 512 cm. If Lisa fills the box
with 1-cubic centimeter blocks, how
many blocks make up each layer?
Answer:
64
Step-by-step explanation:
[tex]\sqrt[3]{512} = 8\\8x8 = 64[/tex]
In the diagram, WZ=StartRoot 26 EndRoot.
On a coordinate plane, parallelogram W X Y Z is shown. Point W is at (negative 2, 4), point X is at (2, 4), point Y is at (1, negative 1), and point Z is at (negative 3, negative 1).
What is the perimeter of parallelogram WXYZ?
units
units
units
units
Answer:
[tex]P = 8 + 2\sqrt{26}[/tex]
Step-by-step explanation:
Given
[tex]W = (-2, 4)[/tex]
[tex]X = (2, 4)[/tex]
[tex]Y = (1, -1)[/tex]
[tex]Z = (-3,-1)[/tex]
Required
The perimeter
First, calculate the distance between each point using:
[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 -y_2)^2[/tex]
So, we have:
[tex]WX = \sqrt{(-2- 2)^2 + (4-4)^2 } =4[/tex]
[tex]XY = \sqrt{(2- 1)^2 + (4--1)^2 } =\sqrt{26}[/tex]
[tex]YZ = \sqrt{(1- -3)^2 + (-1--1)^2 } =4[/tex]
[tex]ZW = \sqrt{(-3--2)^2 + (-1-4)^2 } =\sqrt{26}[/tex]
So, the perimeter (P) is:
[tex]P = 4 + \sqrt{26} + 4 + \sqrt{26}[/tex]
[tex]P = 8 + 2\sqrt{26}[/tex]
Answer:
its D.
Step-by-step explanation:
took test