Answer:
129469.3194
342000
212530.6806
Step-by-step explanation:
Going to assume that the 8% is a nominal, montly rate
which means the effective monthly rate is .08/12= .006667
using the annuity immediate formula...
a.)
[tex]950(\frac{1-(1+.006667)^{-30*12}}{.006667})=129469.3194[/tex]
b.) we would pay 950*30*12= 342000
c.) the amount in interest would be 342000-129469.3194=212530.6806
a) The loan one can afford is $1,29,460.2
b) The total amount of money paid to the loan company over the life of the loan is $342,000.
c) $212539.8 of the total amount paid is interest.
To determine the answers to these questions, we'll need to use the formula for calculating a fixed monthly mortgage payment:
[tex]M = \frac{P \times r \times (1 + r)^n}{((1 + r)^n - 1)}[/tex]
where:
M is the monthly payment,
P is the principal loan amount,
r is the monthly interest rate (annual interest rate divided by 12),
and n is the total number of payments (number of years multiplied by 12).
Given:
Monthly payment (M) = $950
Loan term = 30 years
Interest rate = 8% per year
a) How big of a loan can you afford?
Let's calculate the principal loan amount (P):
First, we need to convert the annual interest rate to a monthly interest rate:
r = 0.08 / 12
= 0.00667
n = 30 years × 12 months
n= 360
Using the formula and plugging in the values we have:
[tex]950 = \frac{P \times 0.00667 \times (1 + 0.00667)^{360}}{((1 + 0.00667)^{360} - 1)}[/tex]
[tex]950 = \frac{P \times 0.00667 \times 10.948}{10.948 - 1}[/tex]
[tex]950=\frac{P \times 0.07302316}{9.948}[/tex]
[tex]950\times9.948 = 0.0730P[/tex]
Divide by 0.073:
Now we can solve for P:
[tex]P=\frac{9450.6}{0.0730}[/tex]
[tex]P = 1,29,460.2[/tex]
Therefore, you can afford a loan amount of $1,29,460.2
b) The total amount paid to the loan company can be calculated by multiplying the monthly payment by the total number of payments:
Total amount = Monthly payment × Total number of payments
Total amount =[tex]$950 \times 360[/tex]
Total amount = [tex]342,000[/tex]
Therefore, the total amount of money paid to the loan company over the life of the loan is $342,000.
c) To find out how much of the total amount paid is interest, we can subtract the principal loan amount from the total amount:
Interest = Total amount - Principal loan amount
Interest = [tex]342,000 - 129460.2[/tex]
=$212539.8
Therefore, $212539.8 of the total amount paid is interest.
To learn more on Simple Interest click:
https://brainly.com/question/30964674
#SPJ4
Trigonometric ratio: find an angle measure
Answer:
[tex]T =56.3[/tex]
Step-by-step explanation:
Given
The attached triangle
Required
Measure of T
This is calculated as:
[tex]\cos T = \frac{Adjacent}{Hypotenuse}[/tex]
[tex]\cos T = \frac{5}{9}[/tex]
Take arccos
[tex]T = \cos^{-1}{(5/9)}[/tex]
[tex]T =56.3[/tex]
The population of a bacteria colony is growing exponentially, doubling every 6 hours. If there are 150 bacteria currently present, how many (to the nearest ten bacteria) will be present in 10 hours
Answer:
If rounded to the nearest 10 bacteria, then it would be 500 bacteria.
Step-by-step explanation:
First multiply 150 by two in order to get 300, that leaves 4 hours to figure out. From there you can figure out the rest by seeing that 4 is 2/3 of 6. I converted it into the decimal number .66. Multiply 300 by .66 to get 198 and then add it to 300 to get 498. Then just round it up to the nearest 10 bacteria which leaves you with the final answer of 500 bacteria.
The accompanying data represent the homework scores for material for a random sample of students in a college algebra course.
36
47
54
58
60
66
66
68
69
70
72
75
77
77
78
78
78
79
79
79
79
79
80
82
84
85
86
86
86
87
89
89
91
92
92
93
93
94
96
99
(a) Construct a relative frequency distribution with a lower class limit of the first class equal to 30 and a class width of 10.
(b) What is the probability a randomly selected student fails the homework (scores less than 70)? (The standard deviation is 13.64)
Simplify your answer to two decimal places.
Answer:
[tex]\begin{array}{ccc}{Class} & {Frequency} & {Relative\ Frequency} &{30-39} & {1} & {0.025} & {40-49} & {1} & {0.025} & {50 - 59} & {2} & {0.050} & {60 - 69} & {5} & {0.125} & {70 - 79} & {13} & {0.325} & {80 - 89} & {10} & {0.250} & {90 - 99} & {8} & {0.200} &{Total} & {40} & {1}\ \end{array}[/tex]
[tex]P(x < 70) = 0.225[/tex]
Step-by-step explanation:
Given
[tex]Lower = 30[/tex]
[tex]Width = 10[/tex]
Solving (a): The relative frequency table
First, we construct the frequency table using the given parameters.
[tex]\begin{array}{cc}{Class} & {Frequency} &{30-39} & {1} & {40-49} & {1} & {50 - 59} & {2} & {60 - 69} & {5} & {70 - 79} & {13} & {80 - 89} & {10} & {90 - 99} & {8} & {Total} & {40}\ \end{array}[/tex]
The relative frequency (RF) is calculated as:
[tex]RF = \frac{Frequency}{Total}[/tex]
Using the above formula to calculate the relative frequency, the relative frequency table is:
[tex]\begin{array}{ccc}{Class} & {Frequency} & {Relative\ Frequency} &{30-39} & {1} & {0.025} & {40-49} & {1} & {0.025} & {50 - 59} & {2} & {0.050} & {60 - 69} & {5} & {0.125} & {70 - 79} & {13} & {0.325} & {80 - 89} & {10} & {0.250} & {90 - 99} & {8} & {0.200} &{Total} & {40} & {1}\ \end{array}[/tex]
Solving (b): [tex]P(x < 70)[/tex]
To do this, we add up the relative frequencies of classes less than 70.
i.e.
[tex]P(x < 70) = [30 - 39] + [40 - 49] + [50 - 59] + [60 - 69][/tex]
So, we have:
[tex]P(x < 70) = 0.025 + 0.025 + 0.050 + 0.125[/tex]
[tex]P(x < 70) = 0.225[/tex]
4b^2+300=0 this is a quadratic equation that I am trying to solve including any solutions with imaginary numbers I will include a picture
Answer:
b= 5i square root of 3
b = -5i square root of 3
Step-by-step explanation:
4b^2+300=0
4b^2 = -300
b^2 = -75
b = square root of -75
b = -75^1/2
^1/2 means square root
b = 25^1/2 * 3^1/2 * i
b= 5i square root of 3
b = -5i square root of 3
(x-1)/(x-1)=1, what is the answer and explenation
Jamie left home on a bike traveling at 24 mph. Five hours later her brother realized Jamie had forgotten her wallet and decided to take it to her. He took his car and traveled at 64 mph. How many hours must the brother drive to catch Jamie?
Answer:
3 hrs
Step-by-step explanation:
5 * 24 = 120 miles
64x = 120 + 24x
40x = 120
x = 3 hrs
What’s the equation of the line
Answer:
[tex]y = - \frac{1}{3}x + 5[/tex]
Step-by-step explanation:
Consider two points through which the line passes.
Let it be ( 0 , 5 ) and ( 6 , 3 )
Step 1 : Find slope
[tex]Slope, m = \frac{y_2 - y_ 1 }{x_2 - x_1}[/tex]
[tex]= \frac{3-5}{6-0} \\\\=\frac{-2}{6}\\\\= -\frac{1}{3}[/tex]
Step 2 : Find the equation of the line passing through the points.
[tex]( y - y_1) = m (x - x_1)\\\\(y - 5) = -\frac{1}{3} ( x - 0) \\\\y = -\frac{1}{3}x + 5[/tex]
A closed, rectangular-faced box with a square base is to be constructed using only 36 m2 of material. What should the height h and base length b of the box be so as to maximize its volume
Answer:
[tex]b=h=\sqrt{6}[/tex] m
Step-by-step explanation:
Let
Bas length of box=b
Height of box=h
Material used in constructing of box=36 square m
We have to find the height h and base length b of the box to maximize the volume of box.
Surface area of box=[tex]2b^2+4bh[/tex]
[tex]2b^2+4bh=36[/tex]
[tex]b^2+2bh=18[/tex]
[tex]2bh=18-b^2[/tex]
[tex]h=\frac{18-b^2}{2b}[/tex]
Volume of box, V=[tex]b^2h[/tex]
Substitute the values
[tex]V=b^2\times \frac{18-b^2}{2b}[/tex]
[tex]V=\frac{1}{2}(18b-b^3)[/tex]
Differentiate w. r.t b
[tex]\frac{dV}{db}=\frac{1}{2}(18-3b^2)[/tex]
[tex]\frac{dV}{db}=0[/tex]
[tex]\frac{1}{2}(18-3b^2)=0[/tex]
[tex]\implies 18-3b^2=0[/tex]
[tex]\implies 3b^2=18[/tex]
[tex]b^2=6[/tex]
[tex]b=\pm \sqrt{6}[/tex]
[tex]b=\sqrt{6}[/tex]
The negative value of b is not possible because length cannot be negative.
Again differentiate w.r.t b
[tex]\frac{d^2V}{db^2}=-3b[/tex]
At [tex]b=\sqrt{6}[/tex]
[tex]\frac{d^2V}{db^2}=-3\sqrt{6}<0[/tex]
Hence, the volume of box is maximum at [tex]b=\sqrt{6}[/tex].
[tex]h=\frac{18-(\sqrt{6})^2}{2\sqrt{6}}[/tex]
[tex]h=\frac{18-6}{2\sqrt{6}}[/tex]
[tex]h=\frac{12}{2\sqrt{6}}[/tex]
[tex]h=\sqrt{6}[/tex]
[tex]b=h=\sqrt{6}[/tex] m
A researcher believes that 5% of pet dogs in Europe are Labradors. If the researcher is right, what is the probability that the proportion of Labradors in a sample of 806 pet dogs would be greater than 4%
Answer:
0.9036
Step-by-step explanation:
Calculation to determine the probability that the proportion of Labradors
P(Proportion greater than 4%)
= P(z> 0.04 -0.05 /√0.05 * 0.95/806
= P(z > -1.30)
=0.9036
Thereforethe probability that the proportion of Labradors is =0.9036
Given sets X, Y, Z, and U, find the set Xn(X - Y) using the listing method.
X = {d, c, f, a}
Y = {d, e, c}
Z ={e, c, b, f, g}
U = {a, b, c, d, e, f, g}
Answer:
{f, a}
Step-by-step explanation:
Given the sets:
X = {d, c, f, a}
Y = {d, e, c}
Z ={e, c, b, f, g}
U = {a, b, c, d, e, f, g}
To obtain the set X n (X - Y)
We first obtain :
(X - Y) :
The elements in X that are not in Y
(X - Y) = {f, a}
X n (X - Y) :
X = {d, c, f, a} intersection
(X - Y) = {f, a}
X n (X - Y) = elements in X and (X - Y)
X n (X - Y) = {f, a}
15×115-(-3)}(4-4)÷3{5+(-3)×(-6
Answer:
15×115+3{0÷3}5-3×(-6)
15×115+3of 0 of 5-3×(-6)
15×115+0 of 5-3×(-6)
15×115+0+18
1725+0+18
1743
What is the value of k?
K=?
9514 1404 393
Answer:
k = 2
Step-by-step explanation:
The geometric mean theorem for the altitude tells you ...
ON = √(OL·OM)
ON² = OL·OM . . . . . square both sides
4² = 8·k . . . . . . . . substitute values
k = 16/8 = 2 . . . . divide by the coefficient of k
_____
Additional comment
The geometric mean theorem for the legs tells you ...
MN = √(MO·ML) ⇒ l = 2√5
LN = √(LO·LM) ⇒ m = 4√5
These relations come from the fact that corresponding sides of the right triangles are proportional. (All of the triangles are similar.)
Imagine that you need to compute e^0.4 but you have no calculator or other aid to enable you to compute it exactly, only paper and pencil. You decide to use a third-degree Taylor polynomial expanded around x = 0. Use the fact that e^0.4 < e < 3 and the Error Bound for Taylor Polynomials to find an upper bound for the error in your approximation.
I error l ≤
Answer:
upper bound for the error, | Error | ≤ 0.0032
Step-by-step explanation:
Given the data in the question;
[tex]e^{0.4[/tex] < e < 3
Using Taylor's Error bound formula
| Error | ≤ ( m / ( N + 1 )! ) [tex]| x-a |^{N+1[/tex]
where m = [tex]| f^{N+1 }(x) |[/tex]
so we have
| Error | ≤ ( 3 / ( 3 + 1 )! ) [tex]|[/tex] -0.4 [tex]|[/tex]⁴
| Error | ≤ ( 3 / 4! ) [tex]|[/tex] -0.4 [tex]|[/tex]⁴
| Error | ≤ ( 3 / 24 ) [tex]|[/tex] -0.4 [tex]|[/tex]⁴
| Error | ≤ ( 0.125 ) [tex]|[/tex] -0.0256 [tex]|[/tex]
| Error | ≤ ( 0.125 ) 0.0256
| Error | ≤ 0.0032
Therefore, upper bound for the error, | Error | ≤ 0.0032
Andrew wants to build a square garden and needs to determine how much area he has for planting the perimeter of the garden is between 12 and 14 feet what is the range if the possible areas
Answer:
9 ft^2 and 12.25 ft^2
Step-by-step explanation:
We need to figure out the area for a square with a perimeter of 12 feet and 14 feet.
A square has four sides that are all equal in length, therefore:
12/4 = 3
14/4 = 3.5
3 and 3.5 are the individual side lengths of the garden, so to find the area, we just multiply those numbers by themselves (since it is a square garden).
3*3 = 9
3.5*3.5 = 12.25
Therefore, the answer is 9 ft^2 and 12.25 ft^2
If y- 1 equals 10 then y
Answer:
11
Step-by-step explanation:
y-1=10
Any figure that crosses equal sign, the operational sign changes.
y=10+1
y= 11
A study was conducted to investigate the effectiveness of hypnotism in reducing pain. Results for randomly selected subjects are given below. At the 1% level of significance, test the claim that the sensory measurements are lower after hypnotism (scores are in cm. on a pain scale). Assume sensory measurements are normally distributed. Note: You do not need to type these values into Minitab Express; the data file has been created for you.Before 6.6 6.5 9.0 10.3 11.3 8.1 6.3 11.6 After 6.8 2.4 7.4 8.5 8.1 6.1 3.4 2.0
Answer:
sensory measurement are lower after hypnotism
Step-by-step explanation:
Given the data :
Before 6.6 6.5 9.0 10.3 11.3 8.1 6.3 11.6
After 6.8 2.4 7.4 8.5 8.1 6.1 3.4 2.0
The difference ;
After - Before, d = 0.2, - 4.1, - 1.6, - 1.8, - 3.2, - 2, - 2.9, - 9.6
Hypothesis :
H0 : μd = 0
H0 : μ < 0
The test statistic ;
T = μd / sd/√n
Where, xd = mean of difference
sd = standard deviation of difference
n = sample size
Mean of difference, μd = Σx/n = - 3.13
Standard deviation of difference, sd = 2.91
T = - 3.13 / 2.91/√8
T = - 3.13 / 1.0288403
T = - 3.042
α = 0.01
The Pvalue using a Pvalue calculator ;
Degree of freedom, df = n - 1 ; 8-1 = 7
Pvalue(-3.042, 7) = 0.00939
Pvalue < α ; we reject the null and conclude that sensory measurement are lower after hypnotism
PLEASE HELP!!! I have been adding and multiplying many different ways however my answer are wrong. How do I go about solving the perimeter then?
Answer:
66 m
Step-by-step explanation:
First, lets add up the numbers you know. It should be:
16, 8, 17, and 7.
Add them all up, and you will get:
48.
For the last two sides, subtract 7 from 16 to get 9.
For the last slide, subtract 8 from 17 to get 9.
Add them all up, and get 66.
Use the given graph of f to state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)
The x y-coordinate plane is given.
The function enters the window in the second quadrant, goes up and right becoming less steep, crosses the y-axis at approximately y = 3.2, changes direction at the approximate point (0.7, 3.3), goes down and right becoming more steep, and stops at the closed point (2, 3).
The function starts again at the open point (2, 1), goes up and right becoming more steep, goes up and right becoming less steep, passes through the open point (4, 4), changes direction at the approximate point (4.2, 4.1), goes down and right becoming more steep, and exits the window in the first quadrant.
(a) lim x → 2− f(x)
(b) lim x → 2+ f(x)
(c) lim x → 2 f(x)
(d) f(2)
(e) lim x → 4 f(x)(f) f(4)
Answer:
Hence the answer is given as follows,
Step-by-step explanation:
Graph of y = f(x) given,
(a) [tex]\lim_{x\rightarrow 2^{-}}f(x)=3[/tex]
(b) [tex]\lim_{x\rightarrow 2^{+}}f(x)=1[/tex]
(c) [tex]\lim_{x\rightarrow 2}f(x)= DNE \left \{ \therefore \lim_{x\rightarrow 2^{-}} f(x)\neq \lim_{x\rightarrow 2^{+}}f(x) \right.[/tex]
(d) [tex]f(2)=3[/tex]
(e) [tex]\lim_{x\rightarrow 4}f(x) = 4[/tex]
(f) [tex]f(4)= DNE.[/tex]{ Hole in graph}
Hence solved.
Type the correct answer in each box. Use numerals instead of words.
Multiply the expressions.
If a = 1, find the values of b, c, and d that make the given expression equivalent to the expression below.
Answer:
a=1, b=9, c=-2, d=4
Step-by-step explanation:
20 and 1/2 feet times 13 and 1/8 feet is what total
Answer:
269 and 1/16 feet total (or 269.0625 feet to be precise)
Step-by-step explanation:
20 and 1/2 = 20.5
13 and 1/8 = 13.125
20.5 * 13.125 = 269.0625 feet = 269 and 1/16 feet
The quadrilateral KLMN is dilated with the center of dilation located at point M. Which statement is accurate?
1. The scale factor is 3, which means the length of the image of segment KL will be 1/3 times as long.
2. The scale factor is 1/3, which means the length of the image of segment KL will be 1/3 times as long.
3. The scale factor is 3, which means the length of the image of segment KL will be 3 times as long.
4. The scale factor is 1/3, which means the length of the image of segment KL will be 3 times as long.
Answer:
3. The scale factor is 3, which means the length of the image of segment KL will be 3 times as long.
Step-by-step explanation:
Transformation is the movement of a point from its initial location to a new location. Types of transformation are rotation, translation, reflection and dilation.
Dilation is the increase or decrease in the size of a figure. If a point A(x, y) is dilated about the center of dilation located at O(a, b), the new point is at A'[k(x - a) + a, k(y - b) + b].
Quadrilateral KLMN has vertices at K(2, 1), L(-1, -5), M(6, -5) and N(6, 1). If it is dilated by 3, about the center M(6, -5), the new points are:
K' = (3(2 - 6) + 6, 3(1 - (-5)) + (-5)) = (-6, 13)
L' = (3(-1 - 6) + 6, 3(-5 - (-5)) + (-5)) = (-15, -5)
M' = (3(6 - 6) + 6, 3(-5 - (-5)) + (-5)) = (6, -5)
N' = (3(6 - 6) + 6, 3(1 - (-5)) + (-5)) = (6, 13)
Therefore the image of segment KL will be 3 times long.
Order the following decimals. State your method of choice and your reasons for choosing it. Explain how you know this order is accurate.
Answer:
.40 is the greatest .350 is the second greatest and last but not least .3456 is the lowest
Step-by-step explanation:
3x+4 number of terms
9514 1404 393
Answer:
2
Step-by-step explanation:
In this expression, the terms are the parts of the sum. They are 3x and 4. There are 2 terms.
what is the value of the expression 5²5
Answer:
5^2×5
=25×5
=125
hope this will help you
Answer:
125
Step-by-step explanation:
hope this helps you
=25×5
=125
ASAP What is the rule for this relation? i will give brainliest
Answer:
your selected answer is right
insert a digit in place of each ... to make a number that is divisible by 6
4 . . . 6
Answer:
2
Step-by-step explanation:
andrea uses 3.12 cups of flour in a recipe that makes 8 key lime cupcakes. Corey uses 2.52 cups of flour in a recipe that makes 7 key lime cupcakes. How much more flour per cupcake is needed for corey's recipe
Answer:
0.03 more flour per cupcake
Step-by-step explanation:
3.12/8 = 0.39
2.52/7 = 0.36
0.39 - 0.36 = 0.03
Hope this helps c:
if triangle TAN has vertices T(0, 2), A(-1,3), and N(-2,-4), which of the following coordinates is N' of the dilation from the origin using the scale factor 3?
Answer:
(-6,-12)
Step-by-step explanation:
A dilation makes a figure gets bigger so just multiply 3 to point N to find N prime.
[tex] - 2 \times 3 = - 6[/tex]
[tex] - 4 \times 3 = - 12[/tex]
So our new coordinates is
(-6,-12)
Answer:
(-6,-12)
Step-by-step explanation:
A dilation makes a figure gets bigger so just multiply 3 to point N to find N prime.
So our new coordinates is
(-6,-12)
Step-by-step explanation:
The length of the box is 15 centimeters, the breadth of the box is 20 centimeter, the height of a box, 20 centimeter fine its volume. Step by step
Answer:
volume=length×width×height
v=15×20×20
v=6000
Draw a line representing the "rise" and a line representing the "run" of the line. State the slope of the line in simplest form.
Answer:
See attachment showing the rise and run
Slope = 1
Step-by-step explanation:
In the diagram attached below, the rise is represented by the blue line, while the run is represented by the red line.
Rise = 4 units
Run = 4 units
It's a positive slope because the line slopes upwards from left to right
Slope = rise/run = 4/4
Slope = 1