9514 1404 393
Answer:
y = 12 -x0 ≤ y ≤ 12Step-by-step explanation:
The perimeter of a rectangle is given by ...
P = 2(L +W) . . . . . where L and W represent the length and width
Filling in the given values, we have ...
24 = 2(y +x)
Solving for y, we get ...
12 = y + x . . . . . divide by 2
y = 12 -x . . . . . . subtract x
The length y is the difference between 12 and the width x.
__
We want both x and y to be non-negative, so possible values of y range from 0 to 12.
Which is the same length as 4 kilometers?
Answer:
A. 4000 meters because
1 km = 1000 meters
and 4 km = 1000 × 4 = 4000
............
X>70
y<45
What is the smallest whole number value of x - y?
Answer:
27
Step-by-step explanation:
x-y
We are subtracting and we want the smallest number
We want the smallest number for x and the largest number for y
The smallest number for x is 71
The largest number for y is 44
71-44
27
Mai is kayaking on a river that has a current of 2 miles per hour. If r represents her rate in calm water, then (r + 2) represents her rate with the current, and (r – 2) represents her rate against the current. Mai kayaks 2 miles downstream and then back to her starting point. Use the formula for time,
t
=
d
r
t=
r
d
, where d is the distance, to write a simplified expression for the total time it takes Mai to complete the trip.
4
(
r
+
2
)
(
r
−
2
)
h
o
u
r
s
(r+2)(r−2)
4
hours
4
r
(
r
+
2
)
h
o
u
r
s
(r+2)
4r
hours
4
r
(
r
+
2
)
(
r
−
2
)
h
o
u
r
s
(r+2)(r−2)
4r
hours
4
(
r
−
2
)
h
o
u
r
s
(r−2)
4
hours
Answer:
Plese explain your answer properly
Step-by-step explanation:
Answer:what is the answer
Step-by-step explanation:
The vertex form of the equation of a parabola is y =
standard form of the equation?
Y=1/2(x - 4)^2 +13. What is the
O A. y-2x2-8x+29
O B. y=zx2 - 4x +21
O C. y=1* -8x+21
O D. y - 4x2 - 4x +29
Answer:
Step-by-step explanation:
y = ½(x-4)² + 13
y = ½(x² - 8x + 16) + 13
y = ½x² - 4x + 21
what is 5.5 feet in centimeters?
Answer:
167.64 cm
Step-by-step explanation:
I dont kno how to work it out
Geometry please help me!In the figure below, what value of x will satisfy the midsegment theorea? X=
Answer:
x=30.5
Step-by-step explanation:
Using midsegment 's theorea:
[tex]2=\dfrac{RG}{RS} =\dfrac{RH}{RQ} =\dfrac{GH}{SQ} \\\\4x-65=2x-4\\\\2x=61\\\\x=\dfrac{61}{2} \\\\x=30.5\\[/tex]
Which of the following functions has order 2 rotational symmetry about the same origin?
The answer is "Option B", and the further explanation can be defined as follows:
A rectangle is symmetrical in 2 ways. In particular, it has two-order rotational symmetry (RS2).If an object rotates 360 degrees, it's an ordering of symmetrical is the number of times it appears to be the same.There are three levels of matching: Order 2 if only two times, Order 3 if three matches are made, and so forth.The wrong choice can be defined as follows:
In option a and c, both are wrong because it has no rotational symmetry.In option d, it is wrong because it downs the diagram on the negative (x,y) axis.Therefore, "Option B" is correct and its diagram is defined in the attached file.
Learn more:
2 rotational symmetry: brainly.com/question/1531736
is y=x^2 a proportional relationship?
is y=2+x a proportional relationship?
is y=2/x a proportional relationship?
is y=2x a proportional relationship?
Answer:
is y=x^2 a proportional relationship?
[tex]{ \sf{yes. \: constant \: of \: proportionality = 1}}[/tex]
is y=2+x a proportional relationship?
[tex]{ \sf{no. \: unless \: y \: is \: proportinal \: to \: (2 + x)}}[/tex]
is y=2/x a proportional relationship?
[tex]{ \sf{yes. \: where \: proportianality \: constant \: is \: 2}}[/tex]
is y=2x a proportional relationship?
[tex]{ \sf{yeah. \: constant \: is \: 2}}[/tex]
Alex purchased
1/2
of a gallon of milk. He put
2/11
of the milk in a smoothie. How much of a gallon of milk did Alex put in his smoothie?
Answer:
1/11 of a gallon
Step-by-step explanation:
He used 2/11 of 1/2 gallon
2/11 * 1/2 = 1/11 of a gallon
Answer:
[tex]\frac{1}{11}[/tex]
Step-by-step explanation:
Step 1: Find how much of a gallon he used
[tex]\frac{2}{11} * \frac{1}{2} =\frac{2}{22}[/tex]
[tex]\frac{2}{22}=\frac{1}{11}[/tex]
Answer: [tex]\frac{1}{11}[/tex]
PLEASE ANSWER
For a parabola where p > 0, the curve will open
Options
To the left
Up
Down
To the right
Answer:
‼️D) To the right‼️
Explanation
There is an easy way to tell whether the graph of a quadratic function opens upward or downward: if the leading coefficient is greater than zero, the parabola opens upward, and if the leading coefficient is less than zero, the parabola opens downward.
Helppp!!!!!
Please!!!
{ is question #1 is right?? }
{ i need help with question #2 please }
Please!!
Helppp!!!!!
Answer:
fyi b's answer has imaginary numbers in it...
Imaginary: 1 +[tex]\frac{\sqrt{2i} }{2 }[/tex]
Imaginary: 1 - [tex]\frac{\sqrt{2i} }{2 }[/tex]
Step-by-step explanation:
[tex]2x^{2} - 4x -3 = 0[/tex]
[tex]\sqrt{-4^{2} -4(2)(3)}[/tex] = [tex]\sqrt{-8}[/tex] ... the negative root will produce imaginary solutions
9514 1404 393
Answer:
1a. -4, 3/4
1b. 1-0.71i, 1+0.71i
Step-by-step explanation:
The directions tell you to use the quadratic formula. Factoring may get you the solution somewhat more easily, but does not comply with the directions.
The quadratic formula tells you ...
[tex]\text{The solution to }ax^2+bx+c=0\text{ is given by }\\\\x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
__
1a. a=4, b=13, c=-12
[tex]x=\dfrac{-13\pm\sqrt{13^2-4(4)(-12)}}{2(4)}=\dfrac{-13\pm\sqrt{361}}{8}=\dfrac{-13\pm19}{8}\\\\x=\left\{-4,\dfrac{3}{4}\right\}[/tex]
__
1b. After adding 3 to both sides, a=2, b=-4, c=3
[tex]x=\dfrac{-(-4)\pm\sqrt{(-4)^2-4(2)(3)}}{2(2)}=\dfrac{4\pm\sqrt{-8}}{4}=1\pm\dfrac{\sqrt{2}}{2}i\\\\x=\left\{1-\dfrac{\sqrt{2}}{2}i,1+\dfrac{\sqrt{2}}{2}i\right\}\approx\{1-0.71i,1+0.71i\}[/tex]
2sin(2x) + 1 = 3sin(2x) Solve for x with exact answers. The domain is 0 ≤ x ≤ π
Answer:
x = π/4.
Step-by-step explanation:
3sin(2x) = 2sin(2x) + 1
3sin(2x) - 2sin(2x) = 1
1sin(2x) = 1
sin(2x) = 1
When a variable n = π/2, sin(π/2) = 1 [refer to the unit circle].
2x = π/2
x = π/4.
Hope this helps!
a test for diabetes results in a positive test in 95% of the cases where the disease is present and a negative test in 07% of the cases where the disease is absent. if 10% of the population has diabetes, what is the probability that a randomly selected person has diabetes, given that his test is positive
Answer:
0.9378 = 93.78% probability that a randomly selected person has diabetes, given that his test is positive.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Positive test
Event B: Person has diabetes.
Probability of a positive test:
0.95 out of 0.1(person has diabetes).
0.007 out of 1 - 0.1 = 0.9(person does not has diabetes). So
[tex]P(A) = 0.95*0.1 + 0.007*0.9 = 0.1013[/tex]
Probability of a positive test and having diabetes:
0.95 out of 0.1. So
[tex]P(A \cap B) = 0.95*0.1 = 0.095[/tex]
What is the probability that a randomly selected person has diabetes, given that his test is positive?
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.095}{0.1013} = 0.9378[/tex]
0.9378 = 93.78% probability that a randomly selected person has diabetes, given that his test is positive.
The table above shows some values of the functions f
and g. What is the value of f(g(1)) ?
A) 2
B) 3
C) 4
D) 5
Answer:
a
Step-by-step explanation:
g(1)=5
f(g(1))=f(5)
f(5)=2
51: Y = 3: 5 value of Y
Answer:Y=25:3
Step-by-step explanation:
Answer:
51 : 85 = 3 : 5Step-by-step explanation:
51 : Y = 3 : 551 ÷ 17 = 3•To find the Y we should multiply 5 by 17 5 × 17 = 8551 : 85 = 3 : 5•Checking51 ÷ 17 = 3 ; 85 ÷ 17 = 5[tex]\tt{ \green{P} \orange{s} \red{y} \blue{x} \pink{c} \purple{h} \green{i} e}[/tex]
Using only the digits 5, 6, 7, 8, how many different three digit numbers can beformed
Answer:
totally 16 numbers can be formed
It is hard and the condition of repeat of number should be clear if you have formula ( it is obvious to have) you can use that.
Find the distance between the two points (1.5,2.7) and (3.5,4.3) given in polar coordinates and using radians.
Answer:
2.56
Step-by-step explanation:
√(x2 - x1)² + (y2 - y1)²
√(3.5 - 1.5)² + (4.3 - 2.7)²
√(2)² + (1.6)²
√(4) + (2.56)
√6.56
= 2.56
the x coordinates of the point 2y-x=10 intersect the line yaxis
Answer:
Point has co-ordinates, (0, 5)
Step-by-step explanation:
If they cut y-axis, then x = 0
[tex]2y - x = 10 \\ 2y - 0 = 10 \\ 2y = 10 \\ y = 5[/tex]
Sum of × +1 and × + 2
Step-by-step explanation:
X +1 + X + 2
X + X + 1 + 2
2x + 3
Therefore it's 2x + 3
PLS HELP I DONT KNOW THIS ONE
Answer:
x+3
---------------
(x-3)(x-2)(x-4)
Step-by-step explanation:
x+4 x^2 -16
---------------÷ -------------
x^2 - 5x+6 x+3
Copy dot flip
x+4 x+3
--------------- * -------------
x^2 - 5x+6 x^2 -16
Factor
x+4 x+3
--------------- * -------------
(x-3)(x-2) (x-4)(x+4)
Cancel like terms
1 x+3
--------------- * -------------
(x-3)(x-2) (x-4)1
x+3
--------------- x cannot equal 3,2,4 -4
(x-3)(x-2)(x-4)
In the figure, triangles ABC and DEF are congruent.
Find the measure of DF.
a. 13m
b. 13m
c. 7m
d. 13.928m
Please show work to help me understand.
since the two triangles are congruent..
AB=ED
AC=FD(side opposite to the right angle)
FD=AC
•°•FD=13m
A population of deer in Florida grows according to a logistic model, with r = 0.17 and K = 10,000. At what population size is the per capita population growth rate the highest? Group of answer choices N = 1000 N = 5000 N = 8000 N = 10000
Answer:
N = 1000
Step-by-step explanation:
The population growth of species per capita of any geographical can be computed by using the formula:
[tex]\dfrac{dN}{dT}=rN (1 - \dfrac{N}{K})[/tex]
here;
N = population chance
T = time taken
K = carrying capacity
r = the constant exponential growth rate
From the given equation, we can posit that the value of r will be the greatest at the time the value of dN is highest:
As such, when the population chance = 1000
[tex]\dfrac{dN}{dT}=0.17 * 1000 (1 - \dfrac{1000}{10000})[/tex]
[tex]\dfrac{dN}{dT}=0.17 * 1000 (0.9)[/tex]
[tex]\dfrac{dN}{dT}= 153[/tex]
At N = 5000;
[tex]\dfrac{dN}{dT}= 85[/tex]
At N= 8000;
[tex]\dfrac{dN}{dT}= 34[/tex]
At N = 10000
[tex]\dfrac{dN}{dT}= 0[/tex]
If x = 1, y = 7, and z = 15, determine a number that when added to x, y, and z yields
consecutive terms of a geometric sequence. What are the first three terms in the
geometric sequence?
Answer:
The first three terms in the geometric sequence are 18, 24, 32.
Step-by-step explanation:
A number when added to [tex]x,y,z[/tex] that yields consecutive terms of a geometric sequence is an unknown number [tex]t\in \mathbb{Z}[/tex]
Given
[tex]x = 1, y = 7, z = 15[/tex]
We know
[tex]\alpha _1 = 1+t[/tex]
[tex]\alpha _2 = 7+t[/tex]
[tex]\alpha _3 = 15+t[/tex]
Recall that a geometric sequence is in the form
[tex]\boxed{a_n = a_1 \cdot r^{n-1}}[/tex]
Therefore, once [tex]\alpha_1, \alpha_2, \alpha_1[/tex] are consecutive terms,
[tex]15+t = (1+t) r^{3-1} \implies 15+t = (1+t) r^2[/tex]
To find the ratio, for
[tex]\dots a_{k-1}, a_k, a_{k+1} \dots[/tex]
we know
[tex]\dfrac{a_k}{a_{k-1}} =\dfrac{a_k}{a_{k-1}} =r[/tex]
Therefore,
[tex]\dfrac{(7+t)}{(1+t)} =\dfrac{(15+t)}{(7+t)} \implies (7+t)^2 = (15+t)(1+t)[/tex]
[tex]\implies 49+14t+t^2=15+16t+t^2 \implies -2t=-34 \implies t=17[/tex]
The ratio is therefore
[tex]r=\dfrac{4}{3}[/tex]
Therefore, the first three terms in the geometric sequence are 18, 24, 32.
Cho hệ vectơ:
X1=(2;1;0;1); X2=(1;1;0;-1); X3=(0;-1;2;2); X4=(1;0;2;1)
a) Xét xem hệ vectơ trên độc lập tuyến tính hay phụ thuộc tuyến tính.
b) Biểu diễn vectơ X 4 qua các vectơ còn lại.
Answer:
i dont no the ans
Step-by-step explanation:
look at the image below
A computer system uses passwords that are exactly six characters and each character is one of the 26 letters (a–z) or 10 integers (0–9). Suppose that 10,000 users of the system have unique passwords. A hacker randomly selects (with replace- ment) one billion passwords from the potential set, and a match to a user’s password is called a hit. (a) What is the distribution of the number of hits? (b) What is the probability of no hits? (c) What are the mean and variance of the number of hits?
Answer:
The number of hits would follow a binomial distribution with [tex]n =10,\!000[/tex] and [tex]p \approx 4.59 \times 10^{-6}[/tex].
The probability of finding [tex]0[/tex] hits is approximately [tex]0.955[/tex] (or equivalently, approximately [tex]95.5\%[/tex].)
The mean of the number of hits is approximately [tex]0.0459[/tex]. The variance of the number of hits is approximately [tex]0.0459\![/tex] (not the same number as the mean.)
Step-by-step explanation:
There are [tex](26 + 10)^{6} \approx 2.18 \times 10^{9}[/tex] possible passwords in this set. (Approximately two billion possible passwords.)
Each one of the [tex]10^{9}[/tex] randomly-selected passwords would have an approximately [tex]\displaystyle \frac{10,\!000}{2.18 \times 10^{9}}[/tex] chance of matching one of the users' password.
Denote that probability as [tex]p[/tex]:
[tex]p := \displaystyle \frac{10,\!000}{2.18 \times 10^{9}} \approx 4.59 \times 10^{-6}[/tex].
For any one of the [tex]10^{9}[/tex] randomly-selected passwords, let [tex]1[/tex] denote a hit and [tex]0[/tex] denote no hits. Using that notation, whether a selected password hits would follow a bernoulli distribution with [tex]p \approx 4.59 \times 10^{-6}[/tex] as the likelihood of success.
Sum these [tex]0[/tex]'s and [tex]1[/tex]'s over the set of the [tex]10^{9}[/tex] randomly-selected passwords, and the result would represent the total number of hits.
Assume that these [tex]10^{9}[/tex] randomly-selected passwords are sampled independently with repetition. Whether each selected password hits would be independent from one another.
Hence, the total number of hits would follow a binomial distribution with [tex]n = 10^{9}[/tex] trials (a billion trials) and [tex]p \approx 4.59 \times 10^{-6}[/tex] as the chance of success on any given trial.
The probability of getting no hit would be:
[tex](1 - p)^{n} \approx 7 \times 10^{-1996} \approx 0[/tex].
(Since [tex](1 - p)[/tex] is between [tex]0[/tex] and [tex]1[/tex], the value of [tex](1 - p)^{n}[/tex] would approach [tex]0\![/tex] as the value of [tex]n[/tex] approaches infinity.)
The mean of this binomial distribution would be:[tex]n\cdot p \approx (10^{9}) \times (4.59 \times 10^{-6}) \approx 0.0459[/tex].
The variance of this binomial distribution would be:
[tex]\begin{aligned}& n \cdot p \cdot (1 - p)\\ & \approx(10^{9}) \times (4.59 \times 10^{-6}) \times (1- 4.59 \times 10^{-6})\\ &\approx 4.59 \times 10^{-6}\end{aligned}[/tex].
The humidity is currently 56% and falling at a rate of 4 percentage points per hour. (a) Estimate the change in humidity over the next 20 minutes. (Round your answer to one decimal place.) -1.4 Incorrect: Your answer is incorrect. percentage points
Answer:
The change is of -1.3 percentage points.
Step-by-step explanation:
The humidity is currently 56% and falling at a rate of 4 percentage points per hour.
This means that after n hours the humidity is of:
[tex]H(n) = 56 - 4n[/tex]
Estimate the change in humidity over the next 20 minutes.
It currently is 56%.
20 minutes is 20/60 = 1/3 of an hours, so:
[tex]H(\frac{1}{3}) = 56 - 4\frac{1}{3} = 54.7[/tex]
Change:
54.7 - 56 = -1.3
The change is of -1.3 percentage points.
The change in humidity over the next 20 minutes falling at a rate of 4 percentage points per hour is -1.3.
The humidity is currently 56% and falling at a rate of 4 percentage points per hour.
What is the formula used to determine the change in humidity?The change is determined by the small about of humidity changes x to x+h, so the output of x+h is the value of f at x plus the approximate change in f, that is
[tex]\rm f(x+h) =f(x) + f'(x) \times h[/tex]
f(x)= 56%
20 minutes is 20/60 = 1/3 of an hours
So, The change in humidity is
[tex]f'(x) = 4 \times 1/3[/tex]
f'(x) = 1.3
Here, it is falling at the rate of 4% point per hour so we will take it as negative as -1.3.
Learn more about changes in humidity;
https://brainly.com/question/14363655
Given the recursive formula shown, what are the first 4 terms of the sequence?
Answer:
5,20,80,320
Step-by-step explanation:
a1 = 5
an = 4 an-1
Let n = 2
a2 = 4 * a1 = 4*5 = 20
Let n = 3
a3 = 4 * a2 = 4*20 = 80
Let n = 4
a4 = 4 * a3 = 4*80 = 320
sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0
Recall the angle sum identity for cosine:
cos(x + y) = cos(x) cos(y) - sin(x) sin(y)
cos(x - y) = cos(x) cos(y) + sin(x) sin(y)
==> sin(x) sin(y) = 1/2 (cos(x - y) - cos(x + y))
Then rewrite the equation as
sin(4x) sin(5x) + sin(4x) sin(3x) - sin(2x) sin(x) = 0
1/2 (cos(-x) - cos(9x)) + 1/2 (cos(x) - cos(7x)) - 1/2 (cos(x) - cos(3x)) = 0
1/2 (cos(9x) - cos(x)) + 1/2 (cos(7x) - cos(3x)) = 0
sin(5x) sin(-4x) + sin(5x) sin(-2x) = 0
-sin(5x) (sin(4x) + sin(2x)) = 0
sin(5x) (sin(4x) + sin(2x)) = 0
Recall the double angle identity for sine:
sin(2x) = 2 sin(x) cos(x)
Rewrite the equation again as
sin(5x) (2 sin(2x) cos(2x) + sin(2x)) = 0
sin(5x) sin(2x) (2 cos(2x) + 1) = 0
sin(5x) = 0 or sin(2x) = 0 or 2 cos(2x) + 1 = 0
sin(5x) = 0 or sin(2x) = 0 or cos(2x) = -1/2
sin(5x) = 0 ==> 5x = arcsin(0) + 2nπ or 5x = arcsin(0) + π + 2nπ
… … … … … ==> 5x = 2nπ or 5x = (2n + 1)π
… … … … … ==> x = 2nπ/5 or x = (2n + 1)π/5
sin(2x) = 0 ==> 2x = arcsin(0) + 2nπ or 2x = arcsin(0) + π + 2nπ
… … … … … ==> 2x = 2nπ or 2x = (2n + 1)π
… … … … … ==> x = nπ or x = (2n + 1)π/2
cos(2x) = -1/2 ==> 2x = arccos(-1/2) + 2nπ or 2x = -arccos(-1/2) + 2nπ
… … … … … … ==> 2x = 2π/3 + 2nπ or 2x = -2π/3 + 2nπ
… … … … … … ==> x = π/3 + nπ or x = -π/3 + nπ
(where n is any integer)
(x - 7)2 = x2 - 49
O True
O False
Answer:
False
Step-by-step explanation: