Answer:
C
Step-by-step explanation:
The equation that represents the table is y=4x+1
The administration conducted a survey to determine the proportion of students who ride a bike to campus. Of the 123 students surveyed 5 ride a bike to campus. Which of the following is a reason the administration should not calculate a confidence interval to estimate the proportion of all students who ride a bike to campus. Which of the following is a reason the administration should not calculate a confidence interval to estimate the proportion of all students who ride a bike to campus? Check all that apply.
a. The sample needs to be random but we don’t know if it is.
b. The actual count of bike riders is too small.
c. The actual count of those who do not ride a bike to campus is too small.
d. n*^p is not greater than 10.
e. n*(1−^p)is not greater than 10.
Answer:
b. The actual count of bike riders is too small.
d. n*p is not greater than 10.
Step-by-step explanation:
Confidence interval for a proportion:
To be possible to build a confidence interval for a proportion, the sample needs to have at least 10 successes, that is, [tex]np \geq 10[/tex] and at least 10 failures, that is, [tex]n(1-p) \geq 10[/tex]
Of the 123 students surveyed 5 ride a bike to campus.
Less than 10 successes, that is:
The actual count of bike riders is too small, or [tex]np < 10[/tex], and thus, options b and d are correct.
Which of the following is a solution to 2sin2x+sinx-1=0?
Answer:
270 degrees
Step-by-step explanation:
If you plug in 270 in place of the x's, the function is true!
This is correct for Plate/Edmentum users!! Hope I could help :)
An isosceles right triangle has a hypotenuse that measures 4√2 cm. What is the area of the triangle?
PLEASE HELP
Answer:
8
Step-by-step explanation:
As it's an isosceles right triangle, it's sides are equal, say x. x^2+x^2=(4*sqrt(2))^2. x=4, Area is (4*4)/2=8
Please help
4. The equation of a curve is y = (3 - 2x)^3 + 24x.
(a) Find an expression for dy/dx
5. The equation of a curve is y = 54x - (2x - 7)^3.
(a) Find dy/dx
(4) y = (3 - 2x)³ + 24x
Use the power and chain rules:
dy/dx = 3 (3 - 2x)² d/dx [3 - 2x] + 24
dy/dx = 3 (3 - 2x)² (-2) + 24
dy/dx = -24x ² + 72x - 30
(5) y = 54x - (2x - 7)³
Same basic procedure:
dy/dx = 54 - 3 (2x - 7)² d/dx [2x - 7]
dy/dx = 54 - 3 (2x - 7)² (2)
dy/dx = -24x ² + 168x - 240
Determine the domain and range of the graph
Answer:
5 ≤ x ≤ 10 5 ≤ y ≥ -1
Step-by-step explanation:
khai niem hinh cat don gian ?
Answer:
khai niem hinh cat don gian?
Question 4 of 10
If A = (-1,-3) and B = (11,-8), what is the length of AB?
A. 12 units
B. 11 units
C. 14 units
D. 13 units
SUBMIT
Step-by-step explanation:
AB = square root of [(xA-xB)^2+(yA-yB)^2]
AB=Squarerootof(-1-11)^2 +(-3-(-8))^2=Squarerootof(-12)^2+(5)^2)
AB=Squarerootof((144)+25)= Squarerootof(169)=13 the answer is 13 units
The choice D is the right one
Answer theas question
(1) Both equations in (a) and (b) are separable.
(a)
[tex]\dfrac xy y' = \dfrac{2y^2+1}{x+1} \implies \dfrac{\mathrm dy}{y(2y^2+1)} = \dfrac{\mathrm dx}{x(x+1)}[/tex]
Expand both sides into partial fractions.
[tex]\left(\dfrac1y - \dfrac{2y}{2y^2+1}\right)\,\mathrm dy = \left(\dfrac1x - \dfrac1{x+1}\right)\,\mathrm dx[/tex]
Integrate both sides:
[tex]\ln|y| - \dfrac12 \ln\left(2y^2+1\right) = \ln|x| - \ln|x+1| + C[/tex]
[tex]\ln\left|\dfrac y{\sqrt{2y^2+1}}\right| = \ln\left|\dfrac x{x+1}\right| + C[/tex]
[tex]\dfrac y{\sqrt{2y^2+1}} = \dfrac{Cx}{x+1}[/tex]
[tex]\boxed{\dfrac{y^2}{2y^2+1} = \dfrac{Cx^2}{(x+1)^2}}[/tex]
(You could solve for y explicitly, but that's just more work.)
(b)
[tex]e^{x+y}y' = 3x \implies e^y\,\mathrm dy = 3xe^{-x}\,\mathrm dx[/tex]
Integrate both sides:
[tex]e^y = -3e^{-x}(x+1) + C[/tex]
[tex]\ln(e^y) = \ln\left(C - 3e^{-x}(x+1)\right)[/tex]
[tex]\boxed{y = \ln\left(C - 3e^{-x}(x+1)\right)}[/tex]
(2)
(a)
[tex]y' + \sec(x)y = \cos(x)[/tex]
Multiply both sides by an integrating factor, sec(x) + tan(x) :
[tex](\sec(x)+\tan(x))y' + \sec(x) (\sec(x) + \tan(x)) y = \cos(x) (\sec(x) + \tan(x))[/tex]
[tex](\sec(x)+\tan(x))y' + (\sec^2(x) + \sec(x)\tan(x)) y = 1 + \sin(x)[/tex]
[tex]\bigg((\sec(x)+\tan(x))y\bigg)' = 1 + \sin(x)[/tex]
Integrate both sides and solve for y :
[tex](\sec(x)+\tan(x))y = x - \cos(x) + C[/tex]
[tex]y=\dfrac{x-\cos(x) + C}{\sec(x) + \tan(x)}[/tex]
[tex]\boxed{y=\dfrac{(x+C)\cos(x) - \cos^2(x)}{1+\sin(x)}}[/tex]
(b)
[tex]y' + y = \dfrac{e^x-e^{-x}}2[/tex]
(Note that the right side is also written as sinh(x).)
Multiply both sides by e ˣ :
[tex]e^x y' + e^x y = \dfrac{e^{2x}-1}2[/tex]
[tex]\left(e^xy\right)' = \dfrac{e^{2x}-1}2[/tex]
Integrate both sides and solve for y :
[tex]e^xy = \dfrac{e^{2x}-2x}4 + C[/tex]
[tex]\boxed{y=\dfrac{e^x-2xe^{-x}}4 + Ce^{-x}}[/tex]
(c) I've covered this in an earlier question of yours.
(d)
[tex]y'=\dfrac y{x+y}[/tex]
Multiply through the right side by x/x :
[tex]y' = \dfrac{\dfrac yx}{1+\dfrac yx}[/tex]
Substitute y(x) = x v(x), so that y' = xv' + v, and the DE becomes separable:
[tex]xv' + v = \dfrac{v}{1+v}[/tex]
[tex]xv' = -\dfrac{v^2}{1+v}[/tex]
[tex]\dfrac{1+v}{v^2}\,\mathrm dv = -\dfrac{\mathrm dx}x[/tex]
[tex]-\dfrac1v + \ln|v| = -\ln|x| + C[/tex]
[tex]\ln\left|\dfrac yx\right| -\dfrac xy = C - \ln|x|[/tex]
[tex]\ln|y| - \ln|x| -\dfrac xy = C - \ln|x|[/tex]
[tex]\boxed{\ln|y| -\dfrac xy = C}[/tex]
Bob's truck averages 23 miles per gallon. If Bob is driving to his mother's house, 72 miles away, how many gallons of gas are needed? Round to the nearest tenth.
Answer:
3.1 gallons
Step-by-step explanation:
To solve this, we need to figure out how many gallons of gas go into 72 miles. We know 23 miles is equal to one gallon of gas, and given that the ratio of miles to gas stays the same, we can say that
miles of gas / gallons = miles of gas / gallons
23 miles / 1 gallon = 72 miles / gallons needed to go to Bob's mother's house
If we write the gallons needed to go to Bob's mother's house as g, we can say
23 miles / 1 gallon = 72 miles/g
multiply both sides by 1 gallon to remove a denominator
23 miles = 72 miles * 1 gallon /g
multiply both sides by g to remove the other denominator
23 miles * g = 72 miles * 1 gallon
divide both sides by 23 miles to isolate the g
g = 72 miles * 1 gallon/23 miles
= 72 / 23 gallons
≈ 3.1 gallons
Which point is a solution to y equal greater than or less too
4x + 5?
Answer:
4x+ 4
Step-by-step explanation:
Prove the following identities : i) tan a + cot a = cosec a sec a
Step-by-step explanation:
[tex]\tan \alpha + \cot\alpha = \dfrac{\sin \alpha}{\cos \alpha} +\dfrac{\cos \alpha}{\sin \alpha}[/tex]
[tex]=\dfrac{\sin^2\alpha + \cos^2\alpha}{\sin\alpha\cos\alpha}=\dfrac{1}{\sin\alpha\cos\alpha}[/tex]
[tex]=\left(\dfrac{1}{\sin\alpha}\right)\!\left(\dfrac{1}{\cos\alpha}\right)=\csc \alpha \sec\alpha[/tex]
Question :
tan alpha + cot Alpha = cosec alpha. sec alphaRequired solution :
Here we would be considering L.H.S. and solving.
Identities as we know that,
[tex] \red{\boxed{\sf{tan \: \alpha \: = \: \dfrac{sin \: \alpha }{cos \: \alpha} }}}[/tex][tex] \red{\boxed{\sf{cot \: \alpha \: = \: \dfrac{cos \: \alpha }{sin \: \alpha} }}}[/tex]By using the identities we gets,
[tex] : \: \implies \: \sf{ \dfrac{sin \: \alpha }{cos \: \alpha} \: + \: \dfrac{cos \: \alpha }{sin \: \alpha} }[/tex]
[tex]: \: \implies \: \sf{ \dfrac{sin \: \alpha \times sin \: \alpha }{cos \: \alpha \times sin \: \alpha} \: + \: \dfrac{cos \: \alpha \times cos \: \alpha }{sin \: \alpha \times \: cos \: \alpha } } [/tex]
[tex] : \: \implies \: \sf{ \dfrac{sin {}^{2} \: \alpha }{cos \: \alpha \times sin \alpha} \: + \: \dfrac{cos {}^{2} \: \alpha }{sin \: \alpha \times \: cos \: \alpha } } [/tex]
[tex]: \: \implies \: \sf{ \dfrac{sin {}^{2} \: \alpha }{cos \: \alpha \: sin \alpha} \: + \: \dfrac{cos {}^{2} \: \alpha }{sin \: \alpha \: cos \: \alpha } } [/tex]
[tex]: \: \implies \: \sf{ \dfrac{sin {}^{2} \: \alpha \: + \: cos {}^{2} \alpha}{cos \: \alpha \: sin \alpha} } [/tex]
Now, here we would be using the identity of square relations.
[tex]\red{\boxed{ \sf{sin {}^{2} \alpha \: + \: cos {}^{2} \alpha \: = \: 1}}}[/tex]By using the identity we gets,
[tex] : \: \implies \: \sf{ \dfrac{1}{cos \: \alpha \: sin \alpha} }[/tex]
[tex]: \: \implies \: \sf{ \dfrac{1}{cos \: \alpha } \: + \: \dfrac{1}{sin\: \alpha} }[/tex]
[tex]: \: \implies \: \bf{sec \alpha \: cosec \: \alpha}[/tex]
Hence proved..!!Help please guys thanks
Answer:
5
Step-by-step explanation:
(625 ^2)^(1/8)
Rewriting 625 as 5^4
(5^4 ^2)^(1/8)
We know that a^b^c = a^(b*c)
5^(4*2)^1/8
5^8 ^1/8
5^(8*1/8)
5^1
5
Answer:
[tex]5[/tex]
Step-by-step explanation:
[tex] { {(625}^{2} )}^{ \frac{1}{8} } \\ { ({25}^{2 \times 2} )}^{ \frac{1}{8} } \\ {25}^{4 \times \frac{1}{8} } \\ {5}^{2 \times 4 \times \frac{1}{8} } \\ {5}^{ \frac{8}{8} } \\ {5}^{1} \\ = 5[/tex]
PLEASE HELPPPPP ASAPPPPPPPPPPPPP PLEASEEEE
Answer:
0.5679
Step-by-step explanation:
From. The table Given above :
The probability of female Given an advanced degree ;
P(F|A) = p(FnA) / p(A)
From the table, p(FnA) = 322
P(Advanced degree), P(A) = (245 + 322) = 567
Hence,
P(F|A) = p(FnA) / p(A) = 322 / 567 = 0.5679
Simplificar expresiones algebraicas
Which of the following exponential equations is equivalent to the logarithmic
equation below?
log 970 = x
A.x^10-970
B. 10^x- 970
C. 970^x- 10
D. 970^10- X
Given:
The logarithmic equation is:
[tex]\log 970=x[/tex]
To find:
The exponential equations that is equivalent to the given logarithmic equation.
Solution:
Property of logarithm:
If [tex]\log_b a=x[/tex], then [tex]a=b^x[/tex]
We know that the base log is always 10 if it is not mentioned.
If [tex]\log a=x[/tex], then [tex]a=10^x[/tex]
We have,
[tex]\log 970=x[/tex]
Here, base is 10 and the value of a is 970. By using the properties of exponents, we get
[tex]970=10^x[/tex]
Interchange the sides, we get
[tex]10^x=970[/tex]
Therefore, the correct option is B, i.e., [tex]10^x=970[/tex].
Note: It should be "=" instead of "-" in option B.
find and sketch the domain of the function. f(x,y)=√(4-x^2-y^2) +√(1-x^2)
Answer:
Hello
Step-by-step explanation:
The domain is limited with 2 lines parallel: -1 ≤ x ≤ 1
and the disk ? (inside of a circle) of center (0,0) and radius 2
[tex]dom\ f(x,y)=\{(x,y) \in \mathbb{R} ^2 | \ -1\leq x \leq -1\ and \ ( -\sqrt{4-x^2} \leq \ y \leq \sqrt{4-x^2}\ ) \ \}\\[/tex]
When a fridge is imported, a customs value of 10% must be paid for its value. If the value of the fridge after paying the customs value is rs. 55,000/-. What is the value before paying customs duty?
Answer:
55000×100/90
61,111.111
Which of the following displays cannot be used to compare data from two different sets?
Answer:
Scatter plot charts are good for relationships and distributions, but pie charts should be used only for simple compositions — never for comparisons or distributions.
help please! i'm in class and i have 10 mins left. :)
Answer:
3:8
Step-by-step explanation:
i will gadit
that only
Complete the sentence that explains why Write an Equation is a reasonable strategy for solving this problem. Because the answer may be _________ the numbers in the problem.
Answer:
4 e
Step-by-step explanation:
dz6dxrx xrrx6 xz33x4xr4x xrx
What is the chance of getting 3 of the same cards in a row in a 52 cards deck?
Answer:
1/425
Step-by-step explanation:
The first card can be any card, so we don’t have to evaluate the probability.
Now we can suppose that the exit card is a two
- For the second card we have 3/51 of possibilities that is a 2 = 1/17
- For the third card we have 2/50 of possibilities that is a 2 = 1/25
1/17 * 1/25 = 1/425
Pleaseee Help. What is the value of x in this simplified expression?
(-1) =
(-j)*
1
X
What is the value of y in this simplified expression?
1 1
ky
y =
-10
K+m
+
.10
m т
9514 1404 393
Answer:
x = 7
y = 5
Step-by-step explanation:
The applicable rule of exponents is ...
a^-b = 1/a^b
__
For a=-j and b=7,
(-j)^-7 = 1/(-j)^7 ⇒ x = 7
For a=k and b=-5,
k^-5 = 1/k^5 ⇒ y = 5
The cost of producing a custom-made clock includes an initial set-up fee of $1,200 plus an additional $20 per unit made. Each clock sells for $60. Find the number of clocks that must be produced and sold for the costs to equal the revenue generated. (Enter a numerical value.)
Answer:
30 clocks
Step-by-step explanation:
Set up an equation:
Variable x = number of clocks
1200 + 20x = 60x
Isolate variable x:
1200 = 60x - 20x
1200 = 40x
Divide both sides by 40:
30 = x
Check your work:
1200 + 20(30) = 60(30)
1200 + 600 = 1800
1800 = 1800
Correct!
What is the explicit formula for the sequence ? -1,0,1,2,3
Answer:
B
Step-by-step explanation:
substitute the values in the eq. Ot is also arithmetic progression.
A rope is 56 in length and must be cut into two pieces. If one piece must be six times as long as the other, find the length of each piece. Round your answers to the nearest inch, if necessary.
Answer:
48, 6
Step-by-step explanation:
The ratio of the pieces is 6 to 1
Add them together to get the total
6+1 = 7
Divide the total length by 7
56/7 = 8
Multiply the ratios by 8
6*8 = 48
1*8 = 6
The peices are 48 and 6
(4-1) + (6 + 5) = help plz
a triangle has sides of 6 m 8 m and 11 m is it a right-angled triangle?
Answer:
No
Step-by-step explanation:
If we use the Pythagorean theorem, we can find if it is a right triangle. To do that, set up an equation.
[tex]6^{2}+8^{2}=c^2[/tex]
If the triangle is a right triangle, c would equal 11
Solve.
[tex]36+64=100[/tex]
Then find the square root of 100.
The square root of 100 is 10, not 11.
So this is not a right triangle.
I hope this helps!
If $6^x = 5,$ find $6^{3x+2}$.
If 6ˣ = 5, then
(6ˣ)³ = 6³ˣ = 5³ = 125,
and
6³ˣ⁺² = 6³ˣ × 6² = 125 × 6² = 125 × 36 = 4500
A recipe calls for 2 1/2 tablespoons of oil and 3/4 tablespoons of vinegar. What is the ratio of oil to vinegar in this recipe?
Answer:
10:3
Step-by-step explanation:
Make 2 1/2 an improper fraction, you will get 5/2. You dont have to do anything to the 3/4.
For you to find the ratio of an fraction, you have to take the numerator but the denominator has to be the same.
So make 5/2 to a 10/4.
Take the numerator 10 & 3.
Your answer will be 10:3
No problem.
Chang has 2 shirts: a white one and a black one. He also has 2 pairs of pants, one blue and one tan. What is the probability, if Chang gets dressed in the dark, that
he winds up wearing the white shirt and tan pants? Show your work.
Answer:
1/4
Step-by-step explanation:
White = w
Black = B
Blue = b1
Tan = t
Wb1
Wt
Bbi
Bt
The answer will be 1/4, because there are 4 ways it can work and only 1 way it can be white shirt and tan pants.
Answer:
1/4
Step-by-step explanation:
it would be 1/4 because there are 4 different clothing pieces in total and there is only one way it would work the way the problem says.