Answer:
Solution : 8i
Step-by-step explanation:
We can use the trivial identities cos(π / 2) = 0, and sin(π / 2) = 1 to solve this problem. Let's substitute,
[tex]8\left[cos\left(\frac{\pi }{2}\right)+isin\left(\frac{\pi \:}{2}\right)\right][/tex] = [tex]8\left(0+1i\right)[/tex]
And of course 1i = i, so we have the expression 8(0 + i ). Distributing the " 8, " 8( 0 ) = 0, and 8(i) = 8i, making the fourth answer the correct solution.
The graph of the function f(x) = (x − 3)(x + 1) is shown.
On a coordinate plane, a parabola opens up. It goes through (negative 1, 0), has a vertex at (1, negative 4), and goes through (3, 0).
Which describes all of the values for which the graph is positive and decreasing?
all real values of x where x < −1
all real values of x where x < 1
all real values of x where 1 < x < 3
all real values of x where x > 3
Answer:
x < -1
Step-by-step explanation:
Since the parabola opens upward, it is positive and decreasing where the left branch is above the x-axis: all points to the left of x=-1.
all real values of x where x < -1
Point E lies within rectangle ABCD. If AE = 6, BE = 7, and CE = 8, what is the length of DE?
Answer:
[tex]\sqrt{51}[/tex] units.
Step-by-step explanation:
Point E is inside a rectangle ABCD.
Please refer to the attached image for the given statement and dimensions.
Given that:
Sides AE = 6 units
BE = 7 units and
CE = 8 units
To find:
DE = ?
Solution:
For a point E inside the rectangle the following property hold true:
[tex]AE^2+CE^2=BE^2+DE^2[/tex]
Putting the given values to find the value of DE:
[tex]6^2+8^2=7^2+DE^2\\\Rightarrow 26+64=49+DE^2\\\Rightarrow DE^2=100-49\\\Rightarrow DE^2=51\\\Rightarrow \bold{DE = \sqrt{51}\ units}[/tex]
Please help me with this question
Answer:
0 ≤ x ≤ 10
Step-by-step explanation:
The domain of f(x) is the set of values of x for which the function is defined. Here, the square root function is only defined for non-negative arguments, so we require ...
-x^2 +10x ≥ 0
x(10 -x) ≥ 0
The two factors in this product will both be positive only for values ...
0 ≤ x ≤ 10 . . . . the domain of f(x)
Which of the following is the graph of the quadratic parent function
This is the graph of y = x^2. It is a parabola that opens upward and has its vertex at the origin. Applying various transformations to the parent function will allow us to produce any parabolic graph we want. In effect, the parent function is like the most basic building block.
Kent Co. manufactures a product that sells for $60.00. Fixed costs are $285,000 and variable costs are $35.00 per unit. Kent can buy a new production machine that will increase fixed costs by $15,900 per year, but will decrease variable costs by $4.50 per unit. What effect would the purchase of the new machine have on Kent's break-even point in units?
0riginal break even point:
285000/ 60/35 = $166,250
New break even point = new fixed costs / ( selling price - variable cost/ selling price)
New break even point = 285,000 + 15,900. / ( 60-( 35-4.50)/60
300,900 / 60-30.50/60 = $612,000
The new break even point increases.
Calculate, correct to one decimal plice
the acute angle between the lines
3x - 4y + 5 = 0 and 2x + 3y -1 = 0
A. 70.69
B. 50.2
C. 39.8
D. 19.4
Answer:
A. 70.69 is the correct answer.
Step-by-step explanation:
Given:
Two lines:
[tex]3x - 4y + 5 = 0 \\2x + 3y -1 = 0[/tex]
To find:
Angle between the two lines = ?
Solution:
Acute Angle between two lines can be found by using the below formula:
[tex]tan \theta = |\dfrac{(m_1 - m_2)}{ (1 + m_1m_2)}|[/tex]
Where [tex]\theta[/tex] is the acute angle between two lines.
[tex]m_1, m_2[/tex] are the slopes of two lines.
Slope of a line represented by [tex]ax+by+c=0[/tex] is given as:
[tex]m = -\dfrac{a}{b }[/tex]
So,
[tex]m_1 = -\dfrac{3}{- 4} = \dfrac{3}{4}[/tex]
[tex]m_2 = -\dfrac{2}{ 3}[/tex]
Putting the values in the formula:
[tex]tan \theta = |\dfrac{(\dfrac{3}{4}- (-\dfrac{2}{3}))}{ (1 + \dfrac{3}{4}\times (-\dfrac{2}{3 }))}|\\\Rightarrow tan \theta = |\dfrac{\dfrac{3}{4}+\dfrac{2}{3}}{ (1 -\dfrac{1}{2})}|\\\Rightarrow tan \theta = |\dfrac{\dfrac{17}{12}}{ \dfrac{1}{2}}|\\\Rightarrow tan \theta = \dfrac{17}{6}\\\Rightarrow \theta = tan^{-1}(\frac{17}{6})\\\Rightarrow \theta = \bold{70.69^\circ}[/tex]
So, correct answer is A. 70.69
I NEED HELP WITH THESE 4 ASAP
Answer:
I'm confused by this. What do they mean by prove?
Step-by-step explanation:
log 7 (x^2 + 11) = log 7 15
Answer:
x = ±2
Step-by-step explanation:
log 7 (x^2 + 11) = log 7 15
We know that log a ( b) = log a(c) means b =c
x^2 + 11 = 15
Subtract 11 from each side
x^2 = 15-11
x^2 =4
Take the square root of each side
sqrt(x^2) =±sqrt(4)
x = ±2
Candice spent 5 1/4 hours doing her homework. Her brother, Ronald, spent 1/2 that number of hours doing his homework. How many hours did Ronald spend on his homework?
Answer:
Step-by-step explanation:
½ of 5¼
½×(21/4)
=21/8
=2⅝ hours
Answer:
2 5/8
Step-by-step explanation:
you would divide 5 1/4 by 2 :
5 divided by 2 =2 1/2
1/4 divided by 2=1/8
then make the numbers have the same denomanator
1/2, 2/4, 4/8
1/8,
then you add
2 4/8+1/8=2 5/8
5(y–3.8)=4.7(y–4) help help
Answer:
y = 2/3 or 0.667Step-by-step explanation:
5(y–3.8)=4.7(y–4)
Expand the terms in the bracket
That's
5y - 19 = 4.7y - 18.8
Group like terms
5y - 4.7y = 19 - 18.8
0.3y = 0.2
Divide both sides by 0.3
We have the final answer as
y = 2/3 or 0.667Hope this helps you
At Jefferson Middle School, eighty-two students were asked which sports they plan to participate in for the coming year. Twenty students plan to participate in track and cross country; six students in cross country and basketball; and eight students in track and basketball. Twelve students plan to participate in all three sports. A total of thirty students plan to participate in basketball, and a total of forty students plan to participate in cross country. Ten students don't plan to participate in any of the three sports. How many students plan to just participate in cross country? 2 4 40 30
Answer:
40
Step-by-step explanation:
In the question only lies the answer:
"and a total of forty students plan to participate in cross country."
Answer:
2
Step-by-step explanation:
2
Lisa built a rectangular flower garden that is 4 meters wide and has a perimeter of 26 meters.
What is the length of Lisa's flower garden?
Answer:
9 m
Step-by-step explanation:
Given that
Width of rectangular flower garden, w = 4 m
Perimeter of rectangular flower garden, p = 26 m
To find:
Length of Lisa's flower garden = ?
Solution:
First of all, let us understand perimeter, length and width of a rectangle.
Let ABCD be a rectangle. Please refer to the attached image.
Opposite sides of a rectangle are equal to each other.
AB = CD = Length
Let the length be [tex]l[/tex] m.
BC = DA = Width = 4 m
Perimeter of a closed image is equal to the sum of all the sides of the image.
So, perimeter of ABCD:
[tex]p = AB + BC + CD + DA \\\Rightarrow \bold{ p = 2 \times (Length +Width)}[/tex]
[tex]26 = 2 \times (l +4)\\\Rightarrow 2l =26-8\\\Rightarrow \bold{l = 9 m}[/tex]
Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x) = 4x2 − 3x + 2, [0, 2]
Answer:
Yes , it satisfies the hypothesis and we can conclude that c = 1 is an element of [0,2]
c = 1 ∈ [0,2]
Step-by-step explanation:
Given that:
[tex]f(x) = 4x^2 -3x + 2, [0, 2][/tex]
which is read as the function of x = 4x² - 3x + 2 along the interval [0,2]
Differentiating the function with respect to x is;
f(x) = 8x - 3
Using the Mean value theorem to see if the function satisfies it, we have:
[tex]f'c = \dfrac{f(b)-f(a)}{b-a}[/tex]
[tex]8c -3 = \dfrac{f(2)-f(0)}{2-0}[/tex]
since the polynomial function is differentiated in [0,2]
[tex]8c -3 = \dfrac{(4(2)^2-3(2)+2)-(4(0)^2-3(0)+2)}{2-0}[/tex]
[tex]8c -3 = \dfrac{(4(4)-3(2)+2)-(4(0)-3(0)+2)}{2-0}[/tex]
[tex]8c -3 = \dfrac{(16-6+2)-(0-0+2)}{2-0}[/tex]
[tex]8c -3 = \dfrac{(12)-(2)}{2}[/tex]
[tex]8c -3 = \dfrac{10}{2}[/tex]
8c -3 = 5
8c = 5+3
8c = 8
c = 8/8
c = 1
Therefore, we can conclude that c = 1 is an element of [0,2]
c = 1 ∈ [0,2]
Cases Prudence has a special (cubic) die. The values on its face are the integers from 1 to 6, but they are not arranged ae in a normal die. When Prudence first tosses the die, the sum of the values on the four side faces is 15. In her second toss, the sum of these values is 12. Find what value appears in the face opposite 6 on Prudence’s special die. (Hint: what are possible values for the top and bottom face when the sum of the side faces is 12).
Answer: 3
Step-by-step explanation:
first, we know that:
1 + 2 + 3 + 4 +5 +6 = 21
Now, which two numbers we should take out in order to have 15?
we can remove the 2 and the 4, or the 1 and the 5.
so here we have two possibilities, 2 and 4 are opposite, or 1 and 5 are opposite (they are located in opposite faces of the die)
in the other arrange, we have that removing two numbers we should get 12.
in order to reach 12, we should remove two numbers that add 9 together.
those can be 4 and 5, or 6 and 3.
Now, notice that in the first restriction we have that:
Or 2 and 4 are opposite,
or 1 and 5 are opposite.
So 4 and 5 can never be opposite, so we should have that 6 and 3 are opposite.
Then we can affirm that the value that appears in the face opposite to the 6, is the 3.
What is the area of the house (including the drawing room, TV room, balcony, hallway, kitchen, and bedroom)?
Answer:
1256 i think
Step-by-step explanation:
To paint his apartment, Alex but 6 gallons of paint to cover 1440 ft.². What is the ratio of square feet to gallons of paint?
Answer & Step-by-step explanation:
The ratio of square feet to gallons of paint:
[tex]1440:6[/tex]
This can also be written as:
[tex]\frac{1440}{6}[/tex]
This fraction can be simplified by dividing the numerator and denominator by 6:
[tex]\frac{1440}{6}=\frac{240}{1}[/tex]
So, the ratio of square feet to gallons of paint is:
1 gallon for every 240 ft².
:Done
A caplet contains 325 mg of medication. How many caplets contain 975 mg of medication?
Answer:
3 capletsStep-by-step explanation:
Given 1 caplet = 325 mg of medication, to calculate the number of caplet 975mg of medication will contain, we will follow the steps below;
Let 1 caplet = 325 mg of medication
x caplet = 975 mg of medication
Cross multiply
325 * x = 1 * 975
325x = 975
Divide both sides by 325
325x/325 = 975/325
x = 3
Hence 3 caplets contains 975 mg of medication.
2/5(10c -35) (the 35 is negative)
Answer:
The simplified form is 2 (c - 7).
Step-by-step explanation:
The expression to be solved is:
[tex]f (c)=\frac{2}{5} (10c -35)[/tex]
Simplify the expression as follows:
[tex]f (c)=\frac{2}{5} (10c -35)[/tex]
[tex]=[\frac{2}{5}\times 10c]-[\frac{2}{5}\times 35]\\\\=[2\times 2c]-[2\times 7]\\\\=4c-14\\\\=2(c-7)[/tex]
Thus, the simplified form is 2 (c - 7).
A project has an initial cost of $40,000, expected net cash inflows of $10,000 per year for 8 years, and a cost of capital of 14%. What is the project's NPV? (Hint: Begin by constructing a time line.) Do not round intermediate calculations. Round your answer to the nearest cent.
Answer:
50k
Step-by-step explanation:
Billy has x marbles. Write an expression for the number of marbles the following have… a) Charlie has 5 more than Billy b) Danny has 8 fewer than Billy c) Eric has three times as many as Billy
Answer:
Charlie: 5 + xDanny: x - 8Eric: x × 3If the area of the square is A(s) = s², find the formula for the area as a function of time, and then determine A(s(3)).
A(t) = 100t^2 + 500t + 625
3,025 square pixels
Answer:
A(t) equals 100t²+ 500t + 625.
The area of the square image after 3 seconds is 3,025 square pixels.
Evaluate the expresión 6c-d when c=2 and d=10 I need help?
Answer:
the answer is 18
Step-by-step explanation:
8 is the answer
The algebraic expression for the product of five and the cube of a number decreased by 40
Answer:
5a³ - 40
Step-by-step:
The algebraic expression is:
5a³ - 40
PLEASE ANSWER ASAP!!!
Answer options given in picture
Michael can skateboard 100 feet in 5.4 seconds. Which choice below shows how fast Micheal is going miles per 1 hour? Remember that since you are using multiplication to make conversions, you need to set up the units diagonal from each other in order to cancel.
any unrelated answer will be reported
Answer:
A
Step-by-step explanation:
the box plots shows the price for two different brands of shoes
Answer:
A. The interquartile range (IQR) for brand A, $10, is less than the IQR for brand B, $25.
Step-by-step explanation:
The most appropriate measure that can be used to compare the SPREAD of the data of the 2 brands plotted on a box plot, is the Interquartile range (IQR).
Interquartile range is the difference between Q3 and Q1.
Q3 is the value which lies at the end of the rectangular box, while the Q1 lies at the beginning of the box.
From the box plot given,
IQR for brand A = 80 - 70 = $10
IQR for brand B = 50 - 25 = $25
Therefore, the correct option is "A. The interquartile range (IQR) for brand A, $10, is less than the IQR for brand B, $25."
Find the equation of the line passing through the pair points (-8,6) (-9,-9). The equation of the line in the form is Ax+By=C.
Answer:
15x - y = - 126
Step-by-step explanation:
will make it simple and short
first we need to find the slope (m) first in order to get the equation
given: (-8,6) (-9,-9)
y2 - y1 -9 - 6
Slope = m = ----------- = ------------------ = 15
-x2 - x1 -9 - (-8)
so the equation of the line using point (-8,6) and slope 15 is y - 6 = 15( x + 8)
y - 6 = 15x + 120
using the form equation Ax + By = C, 15x - y = -120-6
therefore... 15x - y = - 126 is the answer
find the value of X?
Answer:
x = 58
Step-by-step explanation:
The exterior angle is equal to the sum of the opposite interior angles
90 = 32+x
Subtract 32 from each side
90-32 = x
58 =x
Write an equation showing the relationship between the lengths of the three sides of a right triangle.
Answer:
Below
Step-by-step explanation:
First triangle)
This triangle is a right one so we will apply the pythagorian theorem.
● 25 is the hypotenus
● 25^2 = b^2 + 24^2
■■■■■■■■■■■■■■■■■■■■■■■■■■
Seconde triangle)
Again it's a right triangle
x is the hypotenus.
● x^2 = 12^2 +5^2
● 12^2 = x^2-5^2
■■■■■■■■■■■■■■■■■■■■■■■■■■
This is a right triangle
AC is the hypotenus.
● AC^2 = BC^2 + BA^2
Notice that: BC = BE+EC and BA=BD+DA
● AC^2 = (BE+EC)^2 + (BD+DA)^2
Answer: 2) b = 7 3) x = [tex]\sqrt{119}[/tex]
Step-by-step explanation:
Use Pythagorean Theorem: (leg₁)² + (leg₂)² = hypotenuse²
2) b² + 24² = 25²
b² + 576 = 625
b² = 49
[tex]\sqrt{b^2}=\sqrt{49}[/tex]
b = 7
3) 5² + x² = 12²
25 + x² = 144
x² = 119
[tex]\sqrt{x^2}=\sqrt{119}[/tex]
[tex]x=\sqrt{119}[/tex]
Quadrilateral RSTV is dilated with respect to the origin by a scale factor of 1.5 to produce quadrilateral R'S'T'V' . Vertex R is located at (6, -9). Which ordered pair represents R' after the dilation?
Answer:
(9, -13.5)
Step-by-step explanation:
It's given in the question that a quadrilateral RSTV is dilated with a scale factor of 1.5 with respect to the origin to form R'S'T'V'.
Rule for dilation is,
(x, y) → (kx, ky)
where 'k' is the scale factor.
If vertex R of the quadrilateral is (6, -9),
By the given rule of dilation,
R(6, 9) → R'[(1.5 × 6), -(1.5 × 9)]
→ R'(9, -13.5)
Therefore, Option given in bottom right (9, -13.5) will be the answer.
Starting at point A, a ship sails 18.9 km on a bearing of 190 degrees and then turns and sails 47.2km on a bearing of 318 degrees. Find the distance of the ship from point A. (Use trigonometry)
Answer:
Approximately 38.56 kilometers
Step-by-step explanation:
So, from the picture, we want to find x.
To do this, we can use the Law of Cosines. We simply need to find the angle between the two sides and then plug them into the Law of Cosines. First, the Law of Cosines is:
[tex]c^2=a^2+b^2-2ab\cos(C)\\[/tex]
The c in this equation is our x, and the C is the angle we need to find.
From the picture, you can see that angle C is the sum of the red and blue angles.
From a bearing of 190 degrees, we can determine that the red angle measures 10 degrees. Then by alternate interior angles, the other red angle must also measure 10 degrees.
From a bearing of 318 degrees, the remaining 48 degrees is outside the triangle. However, we have a complementary angle, so we can find the angle inside the triangle by subtracting in into 90. Therefore, the blue angle inside is 90-48=42 degrees.
Therefore, angle C is 42+10 which equals 52 degrees. Now we can plug this into our formula:
[tex]x^2=a^2+b^2-2ab\cos(C)\\\\x^2=(18.9)^2+(47.2)^2-2(18.9)(47.2)\cos(52)\\x=\sqrt{(18.9)^2+(47.2)^2-2(18.9)(47.2)\cos(52)}\\\text{Use a Calculator}\\x\approx38.5566 \text{ km}[/tex]