Answer:
y = sin(4(x+π/8)) + 1
Step-by-step explanation:
For a trigonometric equation of form
y = Asin(B(x+C)) + D,
the amplitude is A, the period is 2π/B, the phase shift is C, and the vertical shift is D (shifts are relative to sin(x) = y)
First, the amplitude is the distance from the center to a top/bottom point (also known as a peak/trough respectively). The center of the function given is at y=1, and the top is at y=2, Therefore, 2-1= 1 is our amplitude.
Next, the period is the distance between one peak to the next closest peak, or any matching point to the next matching point. One peak of this function is at x=0 and another is at x= π/2, so the period is (π/2 - 0) = π/2. The period is equal to 2π/B, so
2π/B = π/2
multiply both sides by b to remove a denominator
2π = π/2 * B
divide both sides by π
2 = 1/2 * B
multiply both sides by 2 to isolate b
4 = B
After that, the phase shift is the horizontal shift from sin(x). In the base function sin(x), one center is at x=0. However, on the graph, the closest centers to x=0 are at x=± π/8. Therefore, π/8 is the phase shift.
Finally, the vertical shift is how far the function is shifted vertically from sin(x). In sin(x), the centers are at y=0. In the function given, the centers are at y=1, symbolizing a vertical shift of 1.
Our function is therefore
y = Asin(B(x+C)) + D
A = 1
B = 4
C = π/8
D = 1
y = sin(4(x+π/8)) + 1
Answer(s):
[tex]\displaystyle y = sin\:(4x + \frac{\pi}{2}) + 1 \\ y = -cos\:(4x \pm \pi) + 1 \\ y = cos\:4x + 1[/tex]
Explanation:
[tex]\displaystyle y = Asin(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 1 \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \hookrightarrow \boxed{-\frac{\pi}{8}} \hookrightarrow \frac{-\frac{\pi}{2}}{4} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{\frac{\pi}{2}} \hookrightarrow \frac{2}{4}\pi \\ Amplitude \hookrightarrow 1[/tex]
OR
[tex]\displaystyle y = Acos(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 1 \\ Horisontal\:[Phase]\:Shift \hookrightarrow 0 \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{\frac{\pi}{2}} \hookrightarrow \frac{2}{4}\pi \\ Amplitude \hookrightarrow 1[/tex]
You will need the above information to help you interpret the graph. First off, keep in mind that although this looks EXACTLY like the cosine graph, if you plan on writing your equation as a function of sine, then there WILL be a horisontal shift, meaning that a C-term will be involved. As you can see, the photograph on the right displays the trigonometric graph of [tex]\displaystyle y = sin\:4x + 1,[/tex] in which you need to replase “cosine” with “sine”, then figure out the appropriate C-term that will make the graph horisontally shift and map onto the cosine graph [photograph on the left], accourding to the horisontal shift formula above. Also keep in mind that the −C gives you the OPPOCITE TERMS OF WHAT THEY REALLY ARE, so you must be careful with your calculations. So, between the two photographs, we can tell that the sine graph [photograph on the right] is shifted [tex]\displaystyle \frac{\pi}{8}\:unit[/tex] to the right, which means that in order to match the cosine graph [photograph on the left], we need to shift the graph BACK [tex]\displaystyle \frac{\pi}{8}\:unit,[/tex] which means the C-term will be negative, and perfourming your calculations, you will arrive at [tex]\displaystyle \boxed{-\frac{\pi}{8}} = \frac{-\frac{\pi}{2}}{4}.[/tex] So, the sine graph of the cosine graph, accourding to the horisontal shift, is [tex]\displaystyle y = sin\:(4x + \frac{\pi}{2}) + 1.[/tex] Now, with all that being said, in this case, sinse you ONLY have a graph to wourk with, you MUST figure the period out by using wavelengths. So, looking at where the graph hits [tex]\displaystyle [0, 2],[/tex] from there to [tex]\displaystyle [\frac{\pi}{2}, 2],[/tex] they are obviously [tex]\displaystyle \frac{\pi}{2}\:unit[/tex] apart, telling you that the period of the graph is [tex]\displaystyle \frac{\pi}{2}.[/tex] Now, the amplitude is obvious to figure out because it is the A-term, but of cource, if you want to be certain it is the amplitude, look at the graph to see how low and high each crest extends beyond the midline. The midline is the centre of your graph, also known as the vertical shift, which in this case the centre is at [tex]\displaystyle y = 1,[/tex] in which each crest is extended one unit beyond the midline, hence, your amplitude. So, no matter how far the graph shifts vertically, the midline will ALWAYS follow.
I am delighted to assist you at any time.
help with number 4 part a and b?
Part A
The vertex of a parabola is the lowest or highest point. The vertex in this graph is (2,-1).
Part B
You need to find the rate of change between the points when x=2 and x=3. When x=2, y=-1, and when x=3, y=0.5. You can find the average rate of change between these points by putting the difference of y over the difference of x. 0.5--1=1.5 and 3-2=1. The average rate of change is 1.5/1, or just 1.5.
work out the value of (4√2)^2
Answer:
32
Step-by-step explanation:
(4[tex]\sqrt{2}[/tex] )²
= 4[tex]\sqrt{2}[/tex] × 4[tex]\sqrt{2}[/tex]
= 4 × 4 × [tex]\sqrt{2}[/tex] × [tex]\sqrt{2}[/tex]
= 16 × 2
= 32
The measures of the exterior angles of a convex pentagon can be represented as follows: angle 1=X, angle 2= 2x+9, angle 3=3x+4, angle 4=4x+11, angle 5=5x+18
Find the measure of each angle
What is the solution to -41-2x + 6 = -24?
O x = 0
O x = 0 or x = -6
0 x = 0 or x = 6
Ono solution
Hello!
-41 - 2x + 6 = -24 <=>
<=> -35 - 2x = -24 <=>
<=> -2x = -24 + 35 <=>
<=> -2x = 11 <=>
<=> x = -11/2 or -5.5
Good luck! :)
The solution of the equation is only one solution.
What is Equation?Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides. LHS = RHS is a common mathematical formula.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.
We have,
-41 - 2x + 6 = -24
Now, solving for x we get
-41 + 6 -2x = -24
-35 - 2x = -24
-2x = -24 + 35
-2x = 11
x = -11/2
x= -5.5
As, the equation of linear and have x= -5.5.
Thus, the equation have only one solution.
Learn more about Equation here:
https://brainly.com/question/29538993
#SPJ7
There are 43 students in the orchestra and twice that number in the band. There are 31 boys and 10 girls in the choir. If each student only participates in one group, how many students total are there in the orchestra, the band, and the choir?
Answer:
170 students total
Step-by-step explanation:
43x2=86
86+43+31+10=170
What is the simplest form of
Picture!
Answer:
Step-by-step explanation:
Factor the radicand.
If m ∥ n and n ⊥ p, then _____
Answer:
If m is parallel to n and n is perpendicular to p, then m is perpendicular to p.
Step-by-step explanation:
If you draw m parallel to n and then you run a line p through n such that n and p are perpendicular. The line p will also cross over m since lines go on forever and it will be perpendicular to m as well.
What is the y-intercept of the line y+11= -2(x+5)?
Answer:
y-intercept is (0, -21)
Step-by-step explanation:
For y-intercept, x = 0:
[tex]{ \sf{y + 11 = - 2(0 + 5)}} \\ { \sf{y + 11 = - 10}} \\ { \sf{y = - 21}}[/tex]
Use the Empirical Rule to answer the questions below:
The distribution of weights for newborn babies is approximately normally distributed with a mean of 7.6 pounds and a standard deviation of 0.7 pounds.
1. What percent of newborn babies weigh more than 8.3 pounds? %
2. The middle 95% of newborn babies weigh between and pounds.
3. What percent of newborn babies weigh less than 6.2 pounds? %
4. Approximately 50% of newborn babies weigh more than pounds.
5. What percent of newborn babies weigh between 6.9 and 9.7 pounds? %
Answer:
1. 16%
2. The middle 95% of newborn babies weigh between 6.2 and 9 pounds.
3. 2.5%
4. Approximately 50% of newborn babies weigh more than 7.6 pounds.
5. 83.85%
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 7.6 pounds, standard deviation of 0.7 pounds
1. What percent of newborn babies weigh more than 8.3 pounds?
7.6 + 0.7 = 8.3.
So more than 1 standard deviation above the mean.
The normal distribution is symmetric, which means that 50% of the measures are below the mean and 50% are above.
Of those above the mean, 100 - 68 = 32% are more than one standard deviation above the mean. So
[tex]0.32*0.5 = 0.16[/tex]
16% of newborn babies weigh more than 8.3 pounds.
2. The middle 95% of newborn babies weigh between and pounds.
Within 2 standard deviations of the mean, so:
7.6 - 2*0.7 = 6.2 pounds
7.6 + 2*0.7 = 9 pounds.
The middle 95% of newborn babies weigh between 6.2 and 9 pounds.
3. What percent of newborn babies weigh less than 6.2 pounds?
More than 2 standard deviations below the mean, which is 5% of the 50% below the mean, so:
[tex]p = 0.05*0.5 = 0.025[/tex]
2.5% of newborn babies weigh less than 6.2 pounds.
4. Approximately 50% of newborn babies weigh more than pounds.
Due to the symmetry of the normal distribution, the mean, so 7.6 pounds.
Approximately 50% of newborn babies weigh more than 7.6 pounds.
5. What percent of newborn babies weigh between 6.9 and 9.7 pounds?
6.9 = 7.6 - 0.7
9.7 = 7.6 + 3*0.7
Within 1 standard deviation below the mean(68% of the 50% below) and 3 standard deviations above the mean(99.7% of the 50% above). So
[tex]p = 0.68*0.5 + 0.997*0.5 = 0.8385[/tex]
83.85% of newborn babies weigh between 6.9 and 9.7 pounds.
help pls!!!!!
What is the inequality for this verbal description?
The value of y is greater than or equal to the sum of five times the value of x
and negative three.
Answer:
y ≥ 5x+ (-3)
Step-by-step explanation:
greater than or equal to ≥
The sum means add
y ≥ 5x+ (-3)
Answer:
Option D, y ≥ 5x + (-3)
Step-by-step explanation:
Step 1: Make an expression
The value of y is greater than or equal to the sum of five times the value of x and negative three.
The value of y is greater than or equal to ← y ≥
The sum of five times the value of x and negative three ← 5x + (-3)
y ≥ 5x + (-3)
Answer: Option D, y ≥ 5x + (-3)
I need help!!
A B C D
Answer:
[tex]f(x) = \sqrt{x} - 2[/tex]
Step-by-step explanation:
The starting point of the graph starts in the negative y axis. This means we must have either a horinzontial reflection, a negative vertical stretch or compression, or a negative vertical shift.
The first option is the only sign of the starting point be negative so that is the answer.
You have one of each type of coin (pennies are not included) and one each of $5, $10, $20, and $50 bill. How many sums of money are there?
Answer:
$85.40
Step-by-step explanation:
All the US coin types, excluding pennies, are:
- nickels
- dimes
- quarters
Nickels are equal to 5 cents, or $0.05
Dimes are equal to 10 cents, or $0.10
Quarters are equal to 25 cents, or $0.25
Because there are only one of each coin (excluding pennies), we can just add the values written above:
$0.05 + $0.10 + $0.25 = $0.40
Next, let's add one of each bill listed in the question:
$5 + $10 + $20 + $50 = $85
Finally, let's add the value of the coins and the value of the bills to find the sum:
$85 + $0.40 = $85.40
The answer is $85.40
Hope it helps (●'◡'●)
Given the following linear function, sketch the graph of the function and find the domain and range.
f(x) = -5x+ 4
Answer:
There don't seem to be any limits/asymptotes to the function.
Domain = (-∞ , ∞ ), {x|x ∈ R }Range = (-∞ , ∞ ), {x|x ∈ R }The graph would look something similar to this:
A driveway is in the shape of a rectangle 20 feet wide by 25 feet long.
(a)
Find the perimeter in feet.
(b)
Find the area in square feet.
prove ||a+b|| ≤ ||a||+|b||
Step-by-step explanation:
|a+b|=✓(a²+b²)
|a|+|b|=a+b
||a+b|| ≤ ||a||+|b||
Think of a situation in the real world where a relationship occurs between two sets. For example, I could list several different people and then list their birthdays. I could then form a relationship between these sets. First, illustrate the relationship using arrows. Then determine if the relationship is a function or not. State why?
Answer:
See Explanation
Step-by-step explanation:
Required
Determine if a real life situation is a function or not
I will give 2 instances
(1) Students and their ID
The relationship is as follows:
Student 1 -----> ID-1
Student 2 -----> ID-2
Student 3 -----> ID-3
Student 4 -----> ID-4
---------
----
--
Student n -----> ID-n
The above is a function because every student has a unique student ID.
In fact, the relation is a one-on-one function because no two students will have the same ID
(2) People and their year of birth
The relationship is as follows:
Person 1 -----> 2000
Person 2 -----> 2001
Person 3 -----> 2002
Person 4 -----> 2001
---------
----
Person n -----> 2005
The above is not a function because there is a possibility that a more than one person will have the same year of birth.
f(x+h)-f(x)
Find the difference quotient
h
where h# 0, for the function below.
f(x) = 4x? -
-8
Simplify your answer as much as possible.
f(x + h) - f(x)
:
h
Х
Okay
9514 1404 393
Answer:
8x +4h
Step-by-step explanation:
[tex]\dfrac{f(x+h)-f(x)}{h}=\dfrac{(4(x+h)^2-8)-(4x^2-8)}{h}\\\\=\dfrac{(4x^2 +8xh+4h^2)-(4x^2-8)}{h}=\dfrac{8xh+4h^2}{h}\\\\=\boxed{8x+4h}[/tex]
Please help me…………….
9514 1404 393
Answer:
54.8 km
Step-by-step explanation:
The sketch and the applicable trig laws cannot be completed until we understand what the question is.
Given:
two boats travel for 3 hours at constant speeds of 22 and 29 km/h from a common point, their straight-line paths separated by an angle of 39°
Find:
the distance between the boats after 3 hours, to the nearest 10th km
Solution:
A diagram of the scenario is attached. The number next to each line is the distance it represents in km.
The distance (c) from B1 to B2 can be found using the law of cosines. We can use the formula ...
c² = a² +b² -2ab·cos(C)
where 'a' and 'b' are the distances from the dock to boat 1 and boat 2, respectively, and C is the angle between their paths as measured at the dock.
The distance of each boat from the dock is its speed in km/h multiplied by the travel time, 3 h.
c² = 66² +87² -2·66·87·cos(39°) ≈ 3000.2558
c ≈ √3000.2558 ≈ 54.77
The boats are about 54.8 km apart after 3 hours.
Can someone help me find the answer?
Answer: C. is the correct answer.
what are the solutions to the quadratic equation (5y + 6)² = 24
Answer:
no solution
Step-by-step explanation:
25y² +36 = 24
(5y + 6) (5y + 6)
roots -6/5, -6/5
solution is always a positive root
Math IIIB Performance Task: Piecewise-Defined Functions
Question Set 2
A parking garage charges the following amounts for cars parked in the garage:
For the first hour that a car is parked in the garage, there is no charge.
After the first hour, for the next two hours that a car is parked in the garage, there is a $5 charge.
After the third hour, the garage charges $2 for each additional hour that the car is parked in the garage. If a car is parked in the garage for a fraction of an hour, the garage will charge that fraction of the additional hourly rate.
Use the information provided about the parking garage to answer each of the following questions. Refer to the responses you submitted for Question Set 1 for support.
Sketch a graph to model the total cost of parking in the garage over the domain [0, 12]. (10 points)
Write the piecewise-defined function for the total cost of parking in the garage. That is, state the function C(x), where x is the number of hours a car is parked in the garage. (10 points)
The parking garage plans to change the structure of how much it charges for cars that park in it. A graph of the new total cost is shown below. Describe in detail the new structure. (10 points)
9514 1404 393
Explanation:
a) see the attachment for a graph (red curve)
__
b) The piecewise defined function can be ...
[tex]\displaystyle C(x)=\begin{cases}0&0\le x\le 1\\5&1<x\le 3\\2x-1&3<x\le12\end{cases}[/tex]
__
c) The new cost function is ...
[tex]\displaystyle C(x)=\begin{cases}10&0\le x\le5\\x+5&5<x\end{cases}[/tex]
The charge is a flat $10 for any period up to 5 hours, then $1 per additional hour after that, prorated for partial hours. There is apparently no upper limit on parking time as there was with the original function. (The graph shown goes beyond 15 hours; the domain of the original C(x) is 0 to 12 hours.) For reference, the new cost structure is shown in blue in the attachment.
_____
Additional comment
Under the new structure, costs are significantly higher for short-term parking, and lower once the term exceeds 6 hours.
What is the value if x
Answer:
Step-by-step explanation:
Which graph represents a function with direct variation? A coordinate plane with a U shaped line graphed with the minimum at (0, 0). A coordinate plane with a V shaped line graphed with the minimum at (0, 0). A coordinate plane with a line passing through (negative 4, 2), (0, 0) and (4, negative 2). A coordinate plane with a line passing through (negative 2, negative 3), (0, 1) and (1, 3).
left 3, up 4
right 3, down 4
left 3, down 4
right 3, up 4
Answer:
a line passing through (negative 4, 2), (0, 0) and (4, negative 2).
Step-by-step explanation:
A function exhibiting direct variation MUST pass through the origin, (0, 0), and the graph must be a straight line. The answer that satisfies these requirements is
a line passing through (negative 4, 2), (0, 0) and (4, negative 2).
100 Points + Brainliest Again. They deleted my other for being too easy :P
What is the circumference of a circle with a radius of 20 inches?
Answer:
125.66 inches
Step-by-step explanation:
Step 1: Calculate the circumference
The circumference formula is: C = πd
Another way of saying that is: C = 2πr
C = 2π(20)
C = 40π
C ≈ 125.66 inches
Answer: 125.66 inches
In ABC, M2A = 55°, c = 11, and m2B = 19º. Find the perimeter of the triangle.
9514 1404 393
Answer:
24.1
Step-by-step explanation:
The third angle is C = 180° -55° -19° = 106°. The law of sines can be used to find the other two sides:
a/sin(A) = c/sin(C) ⇒ a = c(sin(A)/sin(C))
b/sin(B) = c/sin(C) ⇒ b = c(sin(B)/sin(C))
Then the sum of the lengths of the sides is ...
P = a + b + c = c(sin(A)/sin(C)) +c(sin(B)/sin(C)) +c
= c(1 +(sin(A) +sin(B))/sin(C)) = 11(1 +(0.8192 +0.3256)/0.9613)
≈ 11(1 +1.1909) ≈ 24.0994
The perimeter of the triangle is about 24.1 units.
What is the volume of the cylinder shown below?
Answer:
c. 1500pi cubic units
Find the missing length indicated
Answer:
x = 15
Step-by-step explanation:
Mr. Olaffsen opened a sandwich shop and a smoothie stand in his neighborhood.
The following table and equation show function f, representing Mr. Olaffsen's profit, in dollars, x months since opening the sandwich shop.
x 1 2 3 4 5 6 7
f(x) 12,000 15,500 18,000 19,500 20,000 19,500 18,000
The following table and equation show function g, representing Mr. Olaffsen's profit, in dollars, x months since opening the smoothie stand.
x 1 2 3 4 5 6 7
g(x) 9,300 12,000 14,100 15,600 16,500 16,800 16,500
Select the true statement.
A.
The difference between the maximum profit earned by the sandwich shop and the smoothie stand is $3,200.
B.
The difference between the maximum profit earned by the sandwich shop and the smoothie stand is $3,500.
C.
The difference between the maximum profit earned by the sandwich shop and the smoothie stand is $3,000.
D.
The difference between the maximum profit earned by the sandwich shop and the smoothie stand is $2,700.
Answer: the difference between the max is 3,200.
Step-by-step explanation:
20,000-16,800= 3,200
Answer:
the difference between the max is 3,200.
Step-by-step explanation:
20,000-16,800= 3,200
Pls help me? I’m struggling
Answer: Number 1 is 150
Step-by-step explanation: If you put 72 / 48% in your calculator, you will get your answer.
Shelley sells 5 bone shaped treats for $3.50. How much should she charge for a package of 12 treats?
Which proportion is needed to solve the problem?