9514 1404 393
Answer:
|x| = 1/2
Step-by-step explanation:
Perhaps the simplest equation is ...
|x| = 1/2
__
You could get more elaborate:
|2x| = 1
3 -|6x| = 0
what equation shows a slope of 2/3 and a white intercept of 0, -2
y = 2/3 x - 2
Or
y + 2 = 2/3 ( x )
Answer:
y= 2/3x - 2
hope this helps :)
To study the mean respiratory rate of all people in his state, Frank samples the population by dividing the residents by towns and randomly selecting 12 of the towns. He then collects data from all the residents in the selected towns. Which type of sampling is used
Answer:
Cluster Sampling
Step-by-step explanation:
Cluster Sampling involves the random sampling of observation or subjects, which are subsets of a population. Cluster analysis involves the initial division of population subjects into a number of groups called clusters . From the divided groups or clusters , a number of groups is then selected and it's elements sampled randomly. In the scenario above, the divison of the population into towns where each town is a cluster. Then, the selected clusters (12) which are randomly chosen are analysed.
Please answer ASAP will be greatly appreciated!!
Both before and after a recent earthquake, surveys were conducted asking voters which of the three candidates they planned on voting for in the upcoming city council election. Has there been a change since the earthquake? Use a level of significance of 0.05. Table shows the results of the survey. Has there been a change in the distribution of voter preferences since the earthquake?
Peter Alan Sui
Before 1838 418 1475
After 1420 329 1140
What is the chi-square test-statistic for this data?
χ2=_____.
Answer:
0.05547
Step-by-step explanation:
Given :
_____Peter __ Alan __ Sui__total
Before 1838 __ 418 ___1475 _3731
After _ 1420 __ 329 ___1140_2889
Total _3258 __ 747 __ 2615 _6620
The expected frequency = (Row total * column total) / N
N = grand total = 6620
Using calculator :
Expected values are :
1836.19 __ 421.006 __ 1473.8
1421.81 ___325.994__ 1141.2
χ² = Σ(Observed - Expected)² / Expected
χ² = (0.00177817 + 0.0214571 + 0.000974852 + 0.00229642 + 0.0277108 + 0.00125897)
χ² = 0.05547
n a history class there are 88 history majors and 88 non-history majors. 44 students are randomly selected to present a topic. What is the probability that at least 22 of the 44 students selected are non-history majors
Answer:
0.5675 = 56.75% probability that at least 22 of the 44 students selected are non-history majors.
Step-by-step explanation:
The students are chosen without replacement from the sample, which means that the hypergeometric distribution is used to solve this question. We are working also with a sample with more than 10 history majors and 10 non-history majors, which mean that the normal approximation can be used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Approximation:
We have to use the mean and the standard deviation of the hypergeometric distribution, that is:
[tex]\mu = \frac{nk}{N}[/tex]
[tex]\sigma = \sqrt{\frac{nk(N-k)(N-n)}{N^2(N-1)}}[/tex]
In this question:
88 + 88 = 176 students, which means that [tex]N = 176[/tex]
88 non-history majors, which means that [tex]k = 88[/tex]
44 students are selected, which means that [tex]n = 44[/tex]
Mean and standard deviation:
[tex]\mu = \frac{44*88}{176} = 22[/tex]
[tex]\sigma = \sqrt{\frac{44*88*(176-88)*(176-44)}{176^2(175-1)}} = 2.88[/tex]
What is the probability that at least 22 of the 44 students selected are non-history majors?
Using continuity correction, as the hypergeometric distribution is discrete and the normal is continuous, this is [tex]P(X \geq 22 - 0.5) = P(X \geq 21.5)[/tex], which is 1 subtracted by the p-value of Z when X = 21.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{21.5 - 22}{2.88}[/tex]
[tex]Z = -0.17[/tex]
[tex]Z = -0.17[/tex] has a p-value of 0.4325
1 - 0.4325 = 0.5675
0.5675 = 56.75% probability that at least 22 of the 44 students selected are non-history majors.
What is the slope, m, and the y-intercept of the line that is graphed below?
On a coordinate plane, a line goes through points (negative 3, 0) and (0, 3).
Answer:
Slope: 1
Y-intercept: (0,3)
Step-by-step explanation:
The y intercept is when the slope reaches the y-axis line. In this case, it is given to us. Anything that is formed like this: (0, y) is the y-intercept.
Y intercept: (0, 3)
For slope, you can use the formula rise over run. [tex]\frac{Rise}{Run}[/tex]
From the picture, I have drawn the rise over run, which is [tex]\frac{3}{3}[/tex], which is also 1.
Slope: 1
Hope this helped.
Answer: 1
Step-by-step explanation: got it right on edge
the recipe for pumpking pie instructs you to bake the pie at 425∘F, for 15 minutes and then reduce the oven temperature to 350∘F. What is the change in temperature in degrees Celsius?
Answer:
ΔT = -75°F
Step-by-step explanation:
ΔT = T₁ - T₀ = 350 - 425 = -75°F
A sequence is defined by the recursive function f(n + 1) = f(n) – 2.
If f(1) = 10, what is f(3)?
1
6
8
30
Answer:
f(3) = 6
Step-by-step explanation:
If f(1)=10, then f(1+1)=f(1)-2
f (2) = 10 - 2 = 8
Therefore f(3) = f(2) - 2 = 8 - 2 = 6
A worker in the automobile industry works an average of 43.7 hours per week. Assume the distribution is normal with a standard deviation of 1.6 hours.
(i) What is the probability that a randomly selected automobile worker works less than 40 hours per week?
(ii) If 15 automobile workers are randomly selected, what is the probability that the sample mean of working time is more than 45 hours per week?
Answer:
The solution is:
(1) 0.0104
(2) 0.0008
Step-by-step explanation:
Given:
Mean,
[tex]\mu = 43.7[/tex]
Standard deviation,
[tex]\sigma = 1.6[/tex]
(1)
⇒ [tex]P(X<40) = P(\frac{x-\mu}{\sigma}<\frac{40-43.7}{1.6} )[/tex]
[tex]=P(z< - 2.3125)[/tex]
[tex]=P(z<-2.31)[/tex]
[tex]=0.0104[/tex]
(2)
As we know,
n = 15
⇒ [tex]P(\bar X > 45)= P(\frac{\bar x - \mu}{\frac{\sigma}{\sqrt{n} } } >\frac{45-43.7}{\frac{1.6}{\sqrt{15} } } )[/tex]
[tex]=P(z> 3.15)[/tex]
[tex]=1-P(z<3.15)[/tex]
[tex]=1-0.9992[/tex]
[tex]=0.0008[/tex]
What is the point-slope form of a line with slope -4 that contains the point
(-2, 3)?
A. y + 3 = 4(x + 2)
B. y - 3 = -4(x + 2)
c. y + 3 = -4(x - 2)
D. y - 3 = 4(x + 2)
Answer:
y-3 = -4(x+2)
Step-by-step explanation:
Point slope form is
y-y1 = m(x-x1) where m is the slope and (x1,y1) is a point on the line
y-3 = -4(x --2)
y-3 = -4(x+2)
What is the volume of a cone with a height of 6m and a diameter of 12m? Nearest meter.
Answer:
0.0005m^3
Step-by-step explanation:
V=1/3hπr²
h=6m
d=12m
r=12÷2=6m
V=1/3×6×(3.14)×36
V=1/2034.72
V=0.0005m^3
If the volume of the expanding cube is increasing at the rate 24 cm3 / min , how fast is its surface area increasing when the surface area is 216 cm2 ?
Answer:
16 cm^2/min
Step-by-step explanation:
dV/dt=24
V=a^3, differentiate with respect to t
dV/dt=3a^2*da/dt, a^2*da/dt=8
S=6a^2, 216=6a^2. a=6. da/dt=(8/36)
dS/dt=12*a*da/dt=12*(8/6)=16 cm^2/min
Which graph represents the equation x2 = 8y? On a coordinate plane, a parabola opens up. It has a vertex at (0, 0), a focus at (0, 8), and a directrix at y = negative 8. On a coordinate plane, a parabola opens up. It has a vertex at (0, 0), a focus at (0, 2), and a directrix at y = negative 2. On a coordinate plane, a parabola opens to the right. It has a vertex at (0, 0), a focus at (2, 0), and a directrix at x = negative 2. On a coordinate plane, a parabola opens to the right. It has a vertex at (0, 0), a focus at (8, 0), and a directrix at x = negative 8.
Answer:
The parabola x²=8y has,
vertex: (0,0)
focus: (0,2)
directrix: y=-2
so that option is the answer,
btw, the parabola opens up to the top and axis of symmetry is x=0
Answer:
It's A!
Step-by-step explanation:
Got it correct on my test! :)
Graphs of the following equations are straight lines except :
A. 3x+2y=8
B. y=x/2-5
C. x=4y
D. y=x^2+3
Answer:
D.
Step-by-step explanation:
D. This contains an x^2 and is called a parabola ( curved line like a U).
Answer:D
Step-by-step explanation: d is the correct answer
equation that passes 1,3 and slope of 2 in point slope form
Answer:
y-3 = 2(x-1)
Step-by-step explanation:
Point slope form is
y-y1 = m(x-x1)
where m is the slope and (x1,y1) is a point on the line
y-3 = 2(x-1)
Answer:
3=2x+1
Step-by-step explanation:
Use the equation y=mx+b
where y is the y component, x is the variable and b is the x intercept
how many 50 cents coins are there in $10:50
Answer:
21
Step-by-step explanation:
you divide 10.50 by 50
Devy likes to learn! Could someone please tell me how to answer this question?
If f(x) and g(x) are inverse functions of each other, which of the following shows the graph of f(g(x))?
On a coordinate plane, a straight line has a positive slope and goes through (negative 2, negative 1), (0, 0), and (4, 2).
On a coordinate plane, a straight line has a positive slope and goes through (negative 3, negative 3), (0, 0), and (3, 3).
On a coordinate plane, a straight line has a negative slope and goes through (negative 4, 2), (0, 0), and (4, negative 2).
On a coordinate plane, a straight line has a negative slope and goes through (negative 3, 3), (0, 0), (3, negative 3).
Answer:
B
Step-by-step explanation:
Recall that if two functions, f and g, are inverses, then by definition:
[tex]\displaystyle f(g(x)) = g(f(x)) = x[/tex]
Hence, the graph of f(g(x)) should be simply y = x.
Therefore, our answer is B, as both coordinates are equivalent for all three points.
A triangle is rotated 90° about the origin. Which rule describes the transformation?
(x, y) (-x, -y)
O(x,y) (-y, x)
(x, y) (-), -x)
(x,y) →ly, -x)
Answer:
(x,y) -> (-y,x), second option.
Step-by-step explanation:
Rotation of 90 degrees about the origin:
The rule for a rotation of a point (x,y) 90 degrees about the origin is given by:
(x,y) -> (-y,x)
This is that the question asks, and so, this is the answer, which is the second option.
Many freeways have service (or logo) signs that give information on attractions, camping, lodging, food, and gas services prior to off-ramps. These signs typically do not provide information on distances. An article reported that in one investigation, six sites along interstate highways where service signs are posted were selected. For each site, crash data was obtained for a three-year period before distance information was added to the service signs and for a one-year period afterward. The number of crashes per year before and after the sign changes were as follows.
Before 13 22 65 123 56 63
After 14 21 43 84 75 72
1. The article included the statement "A paired t-test was performed to determine whether there was any change in the mean number of crashes before and after the addition of distance information on the signs." Carry out such a test. (Note: The relevant normal probability plot shows a substantial linear pattern.)
a. State and test the appropriate hypotheses. (Use α = 0.05.)
b. Calculate the test statistic and P-value. (Round your test statistic to two decimal places and your P-value to three decimal places.)
t = _____
p-value = _____
c. State the conclusion in the problem context.
A. Fail to reject H0. The data does not suggest a significant mean difference in the average number of accidents after information was added to road signs.
B. Reject H0. The data suggests a significant mean difference in the average number of accidents after information was added to road signs.
C. Fail to reject H0. The data suggests a significant mean difference in the average number of accidents after information was added to road signs.
D. Reject H0. The data does not suggest a significant mean difference in the average number of accidents after information was added to road signs.
2. If a seventh site were to be randomly selected among locations bearing service signs, between what values would you predict the difference in the number of crashes to lie? (Use a 95% prediction interval. Round your answers to two decimal places.)
Answer:
Test statistic = 0.63
Pvalue = 0.555
A. Fail to reject H0. The data does not suggest a significant mean difference in the average number of accidents after information was added to road signs.
Step-by-step explanation:
Given :
Before 13 22 65 123 56 63
After_ 14 21 43 84 75 72
To perform a paired t test :
H0 : μd = 0
H1 : μd ≠ 0
We obtain the difference between the two dependent sample readings ;
Difference, d = -1, 1, 22, 39, -19, -9
The mean of difference, Xd = Σd/ n = 33/6 = 5.5
The standard deviation, Sd = 21.296 (calculator).
The test statistic :
T = Xd ÷ (Sd/√n) ; where n = 6
T = 5.5 ÷ (21.296/√6)
T = 5.5 ÷ 8.6940555
T = 0.6326
The Pvalue : Using a Pvalue calculator ;
df = n - 1 = 6 - 1 = 5
Pvalue(0.6326, 5) = 0.5548
Decision region :
Reject H0 ; If Pvalue < α; α = 0.05
Since 0.5548 > 0.05 ; we fail to reject the Null and conclude that the data does not suggest a significant mean difference in the average number of accidents after information was added to road signs.
What are the factors of 60 ???
Answer:
Factors are 1,2,3,4,5,6,10,12,15,20,30,60
Step-by-step explanation:
Hope this helps
Factors refers to those numbers which muntiplied that no.here, numbers that muntiply 60 are 1,2,3,4,5,6,10,12,15,20,30,60.
thus these numbers are factors of 60.
A certificate of deposit offers a nominal interest rate of 2.5 percent annually.
If inflation is 1 percent, what is the real rate of return?
To solve this question, the real rate of return formula is used, and we apply the data given in the exercise into the formula to find the real rate of return.
Formula for the real rate of return:
[tex]R = \frac{1 + N}{1 + i} - 1[/tex]
In which N is the nomial rate and i is the inflation rate, as decimals.
A certificate of deposit offers a nominal interest rate of 2.5 percent annually.
This means that [tex]N = 0.025[/tex]
Inflation is 1 percent
This means that [tex]i = 0.01[/tex]
What is the real rate of return:
Now we apply the formula:
[tex]R = \frac{1 + 0.025}{1 + 0.01} - 1[/tex]
[tex]R = 1.0149 - 1[/tex]
[tex]R = 0.0149[/tex]
0.0149*100% = 1.49%
Thus, the real rate of return is of 1.49%.
For another example of a similar problem, you can check https://brainly.com/question/20164190
find the supplement of 158 degrees and 17 minutes
Answer:
supplement of 158 degree
x+158=180
x=180-158
x=22 degree.
Step-by-step explanation:
Solve each system by graphing.
Answer:
(2,-1)
Step-by-step explanation:
Solved using math.
Answer:
The solution is (2, -1) to show this by graphing do y = -1 by making a straight horizontal line at (0,-1) . And then for the other equation make a line where it starts at (0,4) and passes point (2,-1). Just plot those two points and connect them and you'll have made the line.
Step-by-step explanation:
Please answer! These r my last questions
Answer:
8. -2a+14
9. w=3/2
Step-by-step explanation:
8.
The distributive property states that we can multiply each component in the parenthesis separately by the number on the outside, and then add that up to get our final answer.
For -2(a-7), this means that we can multiply -2 by a and then -2 by -7 (as 2 is the number on the outside, and a and -7 are the components in the parenthesis), add them up, and get our answer. This can be expressed as
-2 * a + (-2) * (-7) = final answer
= -2 * a + 14
We know that -2 * -7 = 14 because 2 * 7 = 14, and the two negatives in multiplication cancel each other out
9.
Using the subtraction property of equality, we can isolate the variable (w) and its coefficient (-2/3) by subtracting 5, resulting in
(-2/3)w = 4-5 = -1
Next, we can use the multiplication property of equality to isolate the w. To isolate the w, we can multiply its coefficient by its reciprocal. The reciprocal is the fraction flipped over. For (-2/3), its reciprocal is (-3/2), flipping the 2 and 3. We can multiply both sides by (-3/2) to get
w = (-3/2)
To check this, we can plug (-3/2) for w in our original equation, so
(-2/3) * (-3/2) + 5 = 4
-1 + 5 = 4
4 = 4
This works!
Devaughn is 6 years older than Sydney. The sum of their ages is 56 . What is Sydney's age?
Answer:
Devaughn = 31, Sydney = 25
Step-by-step explanation:
(56-6)÷2= 25
So they would both be 25 if they were the same age but Devaughn is 6 years older so 25+6=31
ATQ
[tex]\\ \sf\longmapsto x+x+6=56[/tex]
[tex]\\ \sf\longmapsto 2x+6=56[/tex]
[tex]\\ \sf\longmapsto 2x=56-6[/tex]
[tex]\\ \sf\longmapsto 2x=50[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{50}{2}[/tex]
[tex]\\ \sf\longmapsto x=25[/tex]
An adult can lose or gain two pounds of water ina course of a day. Assume that the changes in water weight isuniformly distributed between minus two and plus two pounds in aday. What is the standard deviation of your weight over a day?
Answer:
The standard deviation of your weight over a day is of 1.1547 pounds.
Step-by-step explanation:
Uniform probability distribution:
An uniform distribution has two bounds, a and b, and the standard deviation is:
[tex]S = \sqrt{\frac{(b-a)^2}{12}}[/tex]
Assume that the changes in water weight is uniformly distributed between minus two and plus two pounds in a day.
This means that [tex]a = -2, b = 2[/tex]
What is the standard deviation of your weight over a day?
[tex]S = \sqrt{\frac{(2 - (-2))^2}{12}} = \sqrt{\frac{4^2}{12}} = \sqrt{\frac{16}{12}} = 1.1547[/tex]
The standard deviation of your weight over a day is of 1.1547 pounds.
I are these orders pairs a function
х,у
0,9
2,8.
4,7
6,6
8,5
10,4
9514 1404 393
Answer:
yes
Step-by-step explanation:
No x-value is repeated, so these ordered pairs do represent a function.
You can run at a speed of 4 mph and swim at a speed of 2 mph and are located on the shore, 6 miles east of an island that is 1 mile north of the shoreline. How far (in mi) should you run west to minimize the time needed to reach the island
9514 1404 393
Answer:
5.423 miles
Step-by-step explanation:
Let x represent the distance to run. Then the remaining distance to the point that is closest to the island is (6-x) miles. The straight-line distance (d) to the point x from the island is given by the Pythagorean theorem:
d² = 1² +(6 -x)² = x² -12x +37
d = √(x² -12x +37)
The total travel time is the sum of times running and swimming. Each time is found from ...
time = distance/speed
total time = x/4 + d/2 = x/4 +(1/2)√(x² -12x +37)
__
The total time will be minimized when its derivative with respect to x is zero.
t' = 1/4 +(1/4)(2x -12)/√(x² -12x +37) = 0
Multiplying by 4 and combining fractions, we can see the numerator will be ...
√(x² -12x +37) +2x -12 = 0
Subtracting the radical term and squaring both sides, we get ...
4x² -48x +144 = x² -12x +37
3x² -36x +107 = 0
The quadratic formula tells us the smaller of the two roots is ...
x = (36 -√(36² -4(3)(107)))/(2(3)) = (36 -√12)/6 ≈ 5.423 . . . mi
You should run 5.423 miles west to minimize the time needed to reach the island.
__
A graphing calculator solves this nicely. The attached graph shows the time is a minimum when you run 5.423 miles.
find the LCM of 210, 280, 360 by prime factorisation
Answer:
Step-by-step explanation:
210=2x3x5x7
280=2x2x2x5x7
360=2x2x2x3x3x5
Answer:
210= 2×3×5×7
280=2×2×2×5×7
360=2×2×2×3×3×5
common factors=2×2×2×3×5×7=840
uncommon factors=3
L.C.M=Common factors× uncommon factors
L.C.M=840×3
L.C.M=2520
Step-by-step explanation:
i hope it will be helpful
plzz mark as brainliest
a game is played with a fishpond containing 100 fish; 90 white, 9 red, and 1 blue. a contestant randomly catches a fish and receives payments as follows: $0.30 for white, $1.00 for red, and $10.00 for blue. If it cists $0.60 to play this game, how much (on average) does a contestant win on each play
Answer:
loses 14 cents
- $0.14
Step-by-step explanation:
90% $0.30 $(0.30) $(0.27)
9% $1.00 $0.40 $0.04
1% $10.00 $9.40 $0.09
$(0.14)