Answer:
A) K / K₀ = 4 b) v / v₀ = 4
Explanation:
A) For this exercise we can use the conservation of mechanical energy
in the problem it indicates that the displacement was doubled (x = 2xo)
starting point. At the position of maximum displacement
Em₀ = Ke = ½ k (2x₀)²
final point. In the equilibrium position
[tex]Em_{f}[/tex] = K = ½ m v²
Em₀ = Em_{f}
½ k 4 x₀² = K
(½ K x₀²) = K₀
K = 4 K₀
K / K₀ = 4
B) the speed value
½ k 4 x₀² = ½ m v²
v = 4 (k / m) x₀
if we call
v₀ = k / m x₀
v = 4 v₀
v / v₀ = 4
Please help!
Much appreciated!
Answer:
your question answer is 22°
A 70 kg man floats in freshwater with 3.2% of his volume above water when his lungs are empty, and 4.85% of his volume above water when his lungs are full.
Required:
a. Calculate the volume of air he inhales - called his lung capacity - in liters.
b. Does this lung volume seem reasonable?
Answer:
Explanation:
A) Vair = 1.3 L
B) Volume is not reasonable
Explanation:
A)
Assume
m to be total mass of the man
mp be the mass of the man that pulled out of the water
m1 be the mass above the water with the empty lung
m2 be the mass above the water with full lung
wp be the weight that the buoyant force opposes as a result of the air.
Va be the volume of air inside man's lungs
Fb be the buoyant force due to the air in the lung
given;
m = 78.5 kg
m1 = 3.2% × 78.5 = 2.5 kg
m2 = 4.85% × 78.5 = 3.8kg
But, mp = m2- m1
mp = 3.8 - 2.5
mp = 1.3kg
So using
Archimedes principle, the relation for formula for buoyant force as;
Fb = (m_displaced water)g = (ρ_water × V_air × g)
Where ρ_water is density of water = 1000 kg/m³
Thus;
Fb = wp = 1.3× 9.81
Fb = 12.7N
But
Fb = (ρ_water × V_air × g)
So
Vair = Fb/(ρ_water × × g)
Vair = 12.7/(1000 × 9.81)
V_air = 1.3 × 10^(-3) m³
convert to litres
1 m³ = 1000 L
Thus;
V_air = 1.3× 10^(-3) × 1000
V_air = 1.3 L
But since the average lung capacity of an adult human being is about 6-7litres of air.
Thus, the calculated lung volume is not reasonable
Explanation:
Water pressurized to 3.5 x 105 Pa is flowing at 5.0 m/s in a horizontal pipe which contracts to 1/2 its former radius. a. What are the pressure and velocity of the water after the contraction
Answer:
Explanation:
Using the Continuity equation
v X A = v' xA'
so if A is 1/2of A' then A velocity must be 2 times the A'
after-contraction v = 2 x 5.0m/s = 10m/s
Using the Bernoulli equation
p₁ + ½ρv₁² + ρgh₁ = p₂ + ½ρv₂² + ρgh₂
, the "h" terms cancel
3.5 x 10^ 5Pa + ½ x 1000kg/m³x (5.0m/s)² = p₂ + ½ x 1000kg/m³ x (10m/s)²
p₂ = 342500pa
A 2.0 m × 4.0 m flat carpet acquires a uniformly distributed charge of −10 μC after you and your friends walk across it several times. A 5.0 μg dust particle is suspended in midair just above the center of the carpet.
Required:
What is the charge on the dust particle?
Answer:
The charge on the dust particle is [tex]q_d = 6.94 *10^{-13} \ C[/tex]
Explanation:
From the question we are told that
The length is [tex]l = 2.0 \ m[/tex]
The width is [tex]w = 4.0 \ m[/tex]
The charge is [tex]q = -10\mu C= -10*10^{-6} \ C[/tex]
The mass suspended in mid-air is [tex]m_a = 5.0 \mu g = 5.0 *10^{-6} \ g = 5.0 *10^{-9} \ kg[/tex]
Generally the electric field on the carpet is mathematically represented as
[tex]E = \frac{q}{ 2 * A * \epsilon _o}[/tex]
Where [tex]\epsilon _o[/tex] is the permittivity of free space with value [tex]\epsilon_o = 8.85*10^{-12} \ \ m^{-3} \cdot kg^{-1}\cdot s^4 \cdot A^2[/tex]
substituting values
[tex]E = \frac{-10*10^{-6}}{ 2 * (2 * 4 ) * 8.85*10^{-12}}[/tex]
[tex]E = -70621.5 \ N/C[/tex]
Generally the electric force keeping the dust particle on the air equal to the force of gravity acting on the particles
[tex]F__{E}} = F__{G}}[/tex]
=> [tex]q_d * E = m * g[/tex]
=> [tex]q_d = \frac{m * g}{E}[/tex]
=> [tex]q_d = \frac{5.0 *10^{-9} * 9.8}{70621.5}[/tex]
=> [tex]q_d = 6.94 *10^{-13} \ C[/tex]
A load of 1 kW takes a current of 5 A from a 230 V supply. Calculate the power factor.
Answer:
Power factor = 0.87 (Approx)
Explanation:
Given:
Load = 1 Kw = 1000 watt
Current (I) = 5 A
Supply (V) = 230 V
Find:
Power factor.
Computation:
Power factor = watts / (V)(I)
Power factor = 1,000 / (230)(5)
Power factor = 1,000 / (1,150)
Power factor = 0.8695
Power factor = 0.87 (Approx)