Answer: 1/ 233856 chance changed to 233856 x 2 = 467712
= 1 / 467712 chance as there are 2 drawings
Workings;
1 and 65 = 64
1 and 65 - 1 ball drawn = 63
1 and 60 -1 = 58
1/64 x 1/63 x 1/58 = 233856
1/4032 x 1/58 and to make these the same we 4038/58 = 69.62
then convert properly = 1/4032 x 69.62/4032 4032 x 4032 = 69.62/16257024 then 16257024/69.62 =233510.83
= 233511 chance if rounding before
1/ (233511 x 2) = 1/467022
Then one part is our actual probability
P) = 1/233856
But as they specified a special drawing
you need to repeat this as 64 x 63 x 58 x 2 as the last one cannot be in 1 drawing it has to be in 2nd drawing
233856 x 2 = 467712
= 1 / 467712 chance not rounding down before hand.
Simplify the given expression below:
(4 + 21) – (1 – 71)
Hey there!
(4 + 21) - (1 - 71)
4 + 21 = 25
= 25 - (1 - 71)
1 - 71 = -70
= 25 - (-70)
= 25 + 70
= 95
Answer: 95
Good luck on your assignment and enjoy your day!
~Amphitrite1040:)
..................................................................
Answer:
Hello?
Step-by-step explanation:
A senior class of 420 students will rent buses and vans for a class trip. Each bus can transport 50 students and 3 chaperones and costs $1200 to rent. Each van can transport 10 students and 1 chaperone and costs $100 to rent. There are 36 chaperones available (so they can't all go in vans). How many vehicles of each type should be rented in order to minimize the cost
Answer:
37 buses and 1 van.
Step-by-step explanation:
The cost to rent a van is $1200 for 50 students and 3 chaperones, while a bus for 10 students and a chaperone is $100 .
The cost of renting buses for 50 students is $500
What we do is rent 37 buses and 1 van
37 buses will take in 370 students with empty 2 spaces in 2 buses for chaperones since the chaperones are 36.
Then rent 1 van to take in 50 students and 1 chaperone.
The total cost here will be
$3700 + $1200 = $ 4900
This will help to safe cost.
If the bearing of A from B is 125.Find the bearing of B from A
Answer:
305°
Step-by-step explanation:
The bearing in the reverse direction is 180° plus the bearing in the forward direction, that is
bearing of B from A = 180° + 125° = 305°
Last year, Manuel deposited $7000 into an account that paid 11% interest per year and $1000 into an account that paid 5% interest per year. No withdrawals were made from the accounts. Answer the questions below. Do not do any rounding. (a) What was the total interest earned at the end of year? (b) What was the percent interest for the total deposited?
Answer:
The total interest earned at the end of the year was $ 820, and the interest generated by the total deposited was 10.25%.
Step-by-step explanation:
Given that last year, Manuel deposited $ 7000 into an account that paid 11% interest per year and $ 1000 into an account that paid 5% interest per year, and no withdrawals were made from the accounts, to determine what was the total interest earned at the end of year and what was the percent interest for the total deposited, the following calculations must be performed:
7000 x 0.11 + 1000 x 0.05 = X
770 + 50 = X
820 = X
8000 = 100
820 = X
820 x 100/8000 = X
82,000 / 8,000 = X
10.25 = X
Therefore, the total interest earned at the end of the year was $ 820, and the interest generated by the total deposited was 10.25%.
Which point is part of the solution of the inequality y ≤ |x + 4| − 3?
Answer:
Step-by-step explanation:
Which of the following situations WOULD NOT represent a binomial application? A. Choosing a card randomly from a standard deck and noting its color (remember color has only two outcomes black or red) B. Choosing a card randomly from a standard deck and noting whether its a face card C. Choosing a card randomly from a standard deck and noting its suit D. Choosing a card randomly from a standard deck and noting whether or not it's an ace
Answer:
Choosing a card randomly and noting its suit
Step-by-step explanation:
Choosing a card randomly and noting its suit
This is because binomial distributions only work for bernoulli trials (a trail in which there are only two outcomes)
what is 221st number out of 5,6,7,8,9
Answer:
221
Step-by-step explanation:
Given sequence is ,
> 5 , 6 , 7 , 8 , 9.
The common difference is 6-5 = 1 .
Therefore , the 221st number will be
> 221 st term = 221 × 1 = 221 .
Hence the 221 st term is 221 .
Answer:
225
Step-by-step explanation:
d = 6 - 5 = 1 (common differences)
a = 5 (first term)
221st term
a+(n-1)d
5 +(221 - 1) 1
5 + 220 =225
Therefore the answer is 225
Simplify the ratio.
2.25 to 0.5
Answer:
9:2
Step-by-step explanation:
The time for a professor to grade a student’s homework in statistics is normally distributed with a mean of 13.3 minutes and a standard deviation of 2.0 minutes. What is the probability that randomly selected homework will require less than 17 minutes to grade?
Answer:
0.96784
Step-by-step explanation:
17-13.3/2
=1.85
p(x<1.85)
=0.96784
The probability that randomly selected homework will require less than 17 minutes to grade is 0.9678.
Mean [tex]\mu[/tex]=13.3 minutes
Standard deviation[tex]\sigma[/tex]=2 minutes
What is a z-score?The value of the z-score tells you how many standard deviations you are away from the mean.
So, the z-score of the above data
[tex]z=\frac{x-\mu}{\sigma}[/tex]
[tex]z=\frac{17-13.3}{2}[/tex]
[tex]z=1.85[/tex]
From the standard normal table, the p-value corresponding to z=1.85
Or, p(x<1.85)=0.9678 or 96.78%
Hence, the probability that randomly selected homework will require less than 17 minutes to grade is 0.9678.
To get more about the z-score visit:
https://brainly.com/question/25638875
Solve the equation for x.
2/3x-1/9x+5=20
Answer:
x = 27
Step-by-step explanation:
I'm assuming the equation looks like this:
[tex]\frac{2}{3}x-\frac{1}{9}x+5=20[/tex]
Here's how to solve for x:
[tex]\frac{2}{3}x-\frac{1}{9}x+5=20[/tex]
(subtract 5 from both sides)
[tex]\frac{2}{3}x-\frac{1}{9}x=15[/tex]
(Find the GCF of 3 and 9, which is 3. Multiply 2/3 by 3/3. You get 6/9)
[tex]\frac{6}{9}x-\frac{1}{9}x=15[/tex]
(add like terms)
[tex]\frac{5}{9}x=15[/tex]
(multiply 9/5 to both sides, which is the same as dividing both sides by 5/9)
x = 27
Hope it helps (●'◡'●)
-moves "The string of a kite is perfectly taut" and always makes an angle of 35 degrees above horizontal. (a) If the kite flyer has let out 500 feet of string, how high is the kite? (b) If the string is let out at a rate of 10 feet per second, how fast is the kite's height increasing?
Answer:
a) [tex]h=286.8ft[/tex]
b) [tex]\frac{dh}{dt}=5.7ft/s[/tex]
Step-by-step explanation:
From the question we are told that:
Angle [tex]\theta=35[/tex]
a)
Slant height [tex]h_s=500ft[/tex]
Generally the trigonometric equation for Height is mathematically given by
[tex]h=h_ssin\theta[/tex]
[tex]h=500sin35[/tex]
[tex]h=286.8ft[/tex]
b)
Rate of release
[tex]\frac{dl}{dt}=10ft/sec[/tex]
Generally the trigonometric equation for Height is mathematically given by
[tex]h=lsin35[/tex]
Differentiate
[tex]\frac{dh}{dt}=\frac{dl}{dt}sin35[/tex]
[tex]\frac{dh}{dt}=10sin35[/tex]
[tex]\frac{dh}{dt}=5.7ft/s[/tex]
Find the value of x.
Answer:
the value of x is 29°
hope it helps
have a nice day
Factor 2x^2+15x+25. Rewrite the trinomial with the x-term expanded,using the two factors. Then, group the first two and last two terms together and find the GCF of each.
Answer:
[tex][x + 5][2x+ 5][/tex]
Step-by-step explanation:
Given
[tex]2x^2 + 15x + 25[/tex]
Required
Factorize
Expand the x term
[tex]2x^2 + 5x + 10x+ 25[/tex]
Group into 2
[tex][2x^2 + 5x] + [10x+ 25][/tex]
Take the GCF of each group
[tex]x[2x + 5] + 5[2x+ 5][/tex]
Factor out 2x + 5
[tex][x + 5][2x+ 5][/tex]
r=4+7x-sx
I need help so any one can help with this
Use the values in 9 = 2.2 and In 200 – 5.3 to find the approximate value of log, 200.
Answer:
2.409
Step-by-step explanation:
㏑ 9 = 2.2
ln 200 = 5.3
[tex]ln 9 = log_{e}9\\ln 200 = log_{e}200[/tex]
[tex]log_{9}200 = \frac{log_{e}200}{log_{e}9}[/tex]
= [tex]\frac{ln 200}{ln 9}[/tex]= [tex]\frac{5.3}{2.2}[/tex]
= 2.409
The approximate value of log 200 would be; 2.409
What is a logarithm?When we raise a number with an exponent, there comes a result.
Let's say you get a^b = c Then, you can write 'b' in terms of 'a' and 'c' using logarithm as follows [tex]b = \log_a(c)[/tex]'a' is called the base of this log function. We say that 'b' is the logarithm of 'c' to base 'a'
We have given the values in 9 = 2.2 and 200 – 5.3
We need to find the approximate value of log, 200.
Therefore,
㏑ 9 = 2.2
ln 200 = 5.3
[tex]ln 9 = log_{e}9\\\\ln 200 = log_{e}200[/tex]
Using the logarithm property;
[tex]log_{9}200 = \dfrac{log_{e}200}{log_{e}9}\\ = \dfrac{ln 200}{ln 9}\\ = \dfrac{5.3}{2.2}[/tex]
= 2.409
Hence, the approximate value of log, 200 would be; 2.409
Learn more about logarithm here:
https://brainly.com/question/20835449
#SPJ2
There are 100 sheets of paper on table. It takes 10 seconds to count 10 sheets. How many seconds will you need to count 80 sheets?
Answer:
80 seconds
Step-by-step explanation:
10/10 = 1
now it takes 1 seconds to count 1 sheet
80 x 1 = 80 seconds to count 80 sheets
Step-by-step explanation:
10sheets=10seconds
1sheet=1sheet÷10sheets x 10seconds
=1second
80sheets=80sheets÷1sheet x 1second
80seconds
hope this is helpful
1,620 to the nearest ten ? Please don't answer if you know your wrong !
Answer:
I will say 2,000 yes so that is what I am putting
A large container holds 4 gallons of chocolate milk that has to be poured into bottles. Each bottle holds 2 pints.
If the ratio of gallons to pints is 1: 8,
bottles are required to hold the 4 gallons of milk.
Answer:
64 Bottles
Step-by-step explanation:
that is the procedure above
the volume of a rectangular pyramid with a length of 7 feet, a width of 6 feet, and a height of 4.5 feet.
Answer:
Volume = 63 feet
Step-by-step explanation:
To find the volume of a cube or a rectangular prism, the formula is
(L x W x H)/3. In other words, it is the length of the prism, times the width of the prism, times the height of the prism, whole divided by three, since it has a "triangular shape."
Let's substitute in values for these letters, L, W, and H. You said the length was 7, the width was 6, and the height was 4.5. Therefore, it will result in
(7 x 6 x 4.5)/3. That results in 189/3, which is 63.
Hope this helped!!!
"If a = − 9 and b = − 6, show that (a−b) ≠ (b−a)."
Answer:
Step-by-step explanation:
LHS a - b = -9 - (-6) = -9 +6 = -3
RHS b-a = -6 - (- 9) = -6 +9 = 3
as LHS not equal to RHS
a-b not equal to b-a
Thus proven
help me plz----------------------------
9514 1404 393
Answer:
A. 5 should have been subtracted in step 4
Step-by-step explanation:
No question is stated, so there is no "answer."
__
If we assume the question is, "What error did Keith make?" then choice A properly describes it.
Step 4 should look like ...
x -5 = 7y . . . . . . . 5 should be subtracted from both sides
and the final result should be ...
g(x) = (x -5)/7
What’s this answer help please
B is the answer for this question hope it helps
2498x2364
explaine how to solve
Answer:
5 905 272
Step-by-step explanation:
you can refer to this lattice multiplication or u can search you tube for the examples of lattice multiplication
A philosophy professor assigns letter grades on a test according to the following scheme. A: Top 12% of scores B: Scores below the top 12% and above the bottom 57% C: Scores below the top 43% and above the bottom 19% D: Scores below the top 81% and above the bottom 5% F: Bottom 5% of scores Scores on the test are normally distributed with a mean of 66.5 and a standard deviation of 9.9. Find the minimum score required for an A grade. Round your answer to the nearest whole number, if necessary.
Answer:
The minimum score required for an A grade is 80.
Step-by-step explanation:
According to the Question,
Given That, A philosophy professor assigns letter grades on a test according to the following scheme.A: Top 12% of scores
B: Scores below the top 12% and above the bottom 57%
C: Scores below the top 43% and above the bottom 19%
D: Scores below the top 81% and above the bottom 5%
F: Bottom 5% of scores Scores on the test
And The normally distributed with a mean of 66.5 and a standard deviation of 9.9.
Now,
In a set with mean and standard deviation, the Z score of a measure X is given by Z = (X-μ)/σwe have μ=66.5 , σ=9.9
Find the minimum score required for an A grade.Top 12%, so at least the 100-12 = 88th percentile, which is the value of X when Z has a p-value of 0.88. So it is X when Z = 1.175.
⇒ Z = (X-μ)/σ
⇒ 1.175×9.9 = X-66.5
⇒ X=78.132
Rounding to the nearest whole number, the answer is 80.
The minimum score required for an A grade is 80.
A batch consists of 12 defective coils and 88 good ones. Find the probability of getting two good coils when two coils are randomly selected (without replacement).
Answer:
The probability of getting two good coils is 77.33%.
Step-by-step explanation:
Since a batch consists of 12 defective coils and 88 good ones, to determine the probability of getting two good coils when two coils are randomly selected (without replacement), the following calculation must be performed:
88/100 x 87/99 = X
0.88 x 0.878787 = X
0.77333 = X
Therefore, the probability of getting two good coils is 77.33%.
Which choice is equivalent to(√6)( √8). How do you solve
A. 4√6
B. 4√3
C. 16√3
D. 3√16
Answer:
B
Step-by-step explanation:
(6)^1/2 × (8)^1/2
6^1/2 × 2 (2)^1/2
4 (3)^1/2
Bryan and his wife, Jane, can afford $2,273 a month for a monthly mortgage payment.
How much money would they be able to borrow for a 30-year fixed mortgage if the APR is 3.8%.
How much money would they make in payments over the life-time of the mortgage?
How much money would they pay in interest over the life-time of the mortgage if they borrowed as much money as they could on the mortgage?
Round your answer to the nearest cent.
9514 1404 393
Answer:
borrowed amount: $487,812.89total of payments: $818,280.00paid in interest: $380,467.11Step-by-step explanation:
The formula for figuring the amount that can be borrowed (P) is shown on the first line of the attachment. (The second line rounds it to the nearest cent.) In this formula, ...
a = monthly payment, r = annual interest rate, t = number of years
The amounts requested by the problem statement are shown in the attachment, and above. b is the amount that can be borrowed, p is the total of payments, and i is the interest paid. There are 360 monthly payments in 30 years, so the total paid is 360 times the monthly payment amount.
a, b, c are prime numbers and 5≤a
Answer:
a=5
Step-by-step explanation:
A wheelchair ramp with a length of 61 inches has a horizontal distance of 60 inches. What is the ramp’s vertical distance
Answer:
Step-by-step explanation:
The solution triangle attached below :
Since we have a right angled triangle, we can make use of Pythagoras rule to obtain the vertical distance, x
Recall :
Hypotenus² = opposite² + adjacent²
Hence,
x² = 61² - 60²
x² = 3721 - 3600
x² = 121
x = √121
x = 11
Vertical distance equals 11 inches