Answer:
4ft and 3ft
Step-by-step explanation:
Real mural: 8ft by 15ft
Scale: 2ft by 5ft
Length and width of scale drawing> 8t / 2ft= 4ft (length
>15ft/ 5ft= 3ft(width)
ANSWER 4FT BY 3FT
Which of the following images shows a scale copy of the trapezoid using a scale factor of 1/2
PLEASE HELP
Answer:
1
Step-by-step explanation:
split the shape to triangle and a rectangle
the rectangle at the original trapezoid has 2 squares in width and 3 squares for height multiply those numbers by 1/2 you will get 1 square for width and 1.5 squares for the height which is showen in option 1
How to do this question plz answer me step by step plzz plz plz plz plz plz plz plz
Answer:
288.4m
Step-by-step explanation:
This track is split into a rectangle and two semi-circles.
We can find the length of the semi-circles by finding its circumference with the formula [tex]2\pi r[/tex].
[tex]2\cdot3.14\cdot30\\188.4[/tex]
However this is half a circle, so:
[tex]188.4\div2=94.2[/tex].
There are two semi-circles.
[tex]94.2\cdot2=188.4[/tex]
Since there are two legs of 50m each, we add 100 to 188.4
[tex]188.4+100=288.4[/tex]m
Hope this helped!
Answer:
Step-by-step explanation:
To solve for the perimeter, we first look at the rectangle in the middle. the length is 50m, and there are two sides to it, so: 50 * 2 = 100m for the top and bottom of the track.
For the circle, we can see the diameter is 30m. To solve for the circumference, we need to use the formula 2πr.
15 * 2π ≈ 94.2477796077
We add that to 100m and get:
194.2477796077
Find the area of the following shape. Show all work
Best way to solve this is by using
[tex] \sqrt{s(s - a)(s - b)(s - c)} [/tex]
[tex]where \: s = \frac{a + b + c}{2} [/tex]
s=(12+8+17)/2
=18.5
using the formulae
area =43.5
A bag contains 2
2
blue marbles, 2
2
red marbles, and 2
2
yellow marbles.
If Jenna randomly draws a marble from the bag (and puts it back) 15
15
times, how many times should she expect to pull a yellow marble?
Answer:
5 times
Step-by-step explanation:
Jenna wil most likely pull a yellow marble 1/3 of the time, because the total number of marbles is 6, and there are 2 yellow marbles, 2/6 which is 1/3. 1/3 times 15 is 5. So Jenna will most likely pull a yellow marble 5 times.
what is the coefficient of the variable in the expression 4-3x
As per the question,
We have to find what's the coefficient.
Let's start to seperate the expression.
Here,
x is the variable,
4 is a number.
-3 is also a number.
4, -3x
The number with x here is -3 in (-3x) as the coefficient is (-3) in the given equation.
Answer:
Hey there!
Rearrange the expression to: -3x+4
The coefficient would be -3.
Let me know if this helps :)
PLEASE HELP ASAP!!
The image above shows two dilated figures with lines IJ and JK drawn. If the smaller figure was dilated by a scale factor of 2, what relationship do lines IJ and KL have?
Answer:
[tex] IJ = 2(KL) [/tex]
Step-by-step explanation:
From the information given, the smaller figure was dilated on a scale factor of 2, to produce the bigger figure. In essence, the bigger figure is times 2 of the smaller figure.
Therefore, line IJ would be twice the length of KL.
The relationship that both lines have can be represented as: [tex] IJ = 2(KL) [/tex]
The fuel efficiency of one type of car is recorded in a scatterplot where the amount of gas used, x (in gallons), is paired with the distance traveled, y (in miles), for various trips. The equation for the line of best fit for the data is y = 28x. How can the y-intercept and slope of this line be interpreted
Answer:
The answer can be interpreted by the distance moved by each gallon :))
Step-by-step explanation:
Answer:
D.
Step-by-step explanation:
Just took it. Edg 2020. Hope this helps :)
3.03 times 10^-3 in scientific nation
Answer:
3.03 • 10⁻³ is scientific notation
0.00303 is decimal form
every rational number is a
a. whole number b. natural number c. integer d. real number
Greetings from Brasil...
a - whole number
FALSE
3/5, for example isnt a whole number
b. natural number
FALSE
0,457888..., for example isnt a natural number
c. integer
FALSE - like a
d. real number
TRUE
The set of real numbers contains the set of rational numbers
ℝ ⊃ ℚ
Which statement correctly compares
1–201 and
1512
ol-201 = 151
ol-201 < 51
l-201 > 151
Answer:
Option B.
Step-by-step explanation:
Consider the correct question is "Which statement correctly compares
1. -201 and 151
-201 = 151
-201 < 51
-201 > 151"
The given numbers are -201 and 151. We need to compare these numbers.
We know that all negative numbers are less than positive numbers.
So,
-201 < 151
If both numbers are negative, then the larger negative number is the smaller number.
Therefore, the correct option is B.
Bryan decides he wants to help pay for a birthday party for his little brother at the ice rink. It cost $50 to rent the party room and then $4 for each person attending. Bryan only has $100 to spend at the party. a) What are the constraints for this situation? b) Find the domain and range for this situation. Make sure you include all values for each using correct notation.
Answer:
a) 4*x + 50 ≤ 100
b) Domain x (0 ; 12 ) Range f(x) ( 50 ; 98 )
Step-by-step explanation:
The constraint is:
4*x + 50 ≤ 100 where "x" is the number of persons
b) Domain for x
x = 0 up to x = 12 x (0 ; 12 )
c) Range for f(x)
f(x) = 4*x + 50
f(0) = 4*0 + 50 f(0) = 50
f(12) = 4*12 + 50 f (12) = 98
f(x) ( 50 ; 98 )
Peter attempted to use the divide-center method to find the line of best fit on a scatterplot.
What was his mistake?
He had a different number of points to the left of the vertical line than to the right of the vertical line.
He had a different number of points above the line of best fit than below the line of best fit.
He didn’t approximate the center of the cluster located on the left side of the vertical line and of the cluster located on the right side of the vertical line.
He didn’t connect the centers of the clusters on the left side and right side of the vertical line to produce the line of best fit.
Answer:
He had a different number of points to the left of the vertical line than to the right of the vertical line.
Step-by-step explanation:
Divide-center method is the method which involves dividing the data on the graph into two equal parts and then fin the line of best fit. The center of each group is approximated and then a line is constructed between two centers which is estimated as line of best fit.
La fuerza necesaria para evitar que un auto derrape en una curva varía inversamente al radio de la curva y conjuntamente con el peso del auto y el cuadrado de la velocidad del mismo. Supongamos que 400 libras de fuerza evitan que un auto que pesa 1600 libras derrape en una curva cuyo radio mide 800 si viaja a 50mph. ¿Cuánta fuerza evitaría que el mismo auto derrapara en una curva cuyo radio mide 600 si viaja a 60mph ?
Answer:
768 libras de fuerza
Step-by-step explanation:
Tenemos que encontrar la ecuación que los relacione.
F = Fuerza necesaria para evitar que el automóvil patine
r = radio de la curva
w = peso del coche
s = velocidad de los coches
En la pregunta se nos dice:
La fuerza requerida para evitar que un automóvil patine alrededor de una curva varía inversamente con el radio de la curva.
F ∝ 1 / r
Y luego con el peso del auto
F ∝ w
Y el cuadrado de la velocidad del coche
F ∝ s²
Combinando las tres variaciones juntas,
F ∝ 1 / r ∝ w ∝ s²
k = constante de proporcionalidad, por tanto:
F = k × w × s² / r
F = kws² / r
Paso 1
Encuentra k
En la pregunta, se nos dice:
Suponga que 400 libras de fuerza evitan que un automóvil de 1600 libras patine alrededor de una curva con un radio de 800 si viaja a 50 mph.
F = 400 libras
w = 1600 libras
r = 800
s = 50 mph
Tenga en cuenta que desde el
F = kws² / r
400 = k × 1600 × 50² / 800
400 = k × 5000
k = 400/5000
k = 2/25
Paso 2
¿Cuánta fuerza evitaría que el mismo automóvil patinara en una curva con un radio de 600 si viaja a 60 mph?
F = ?? libras
w = ya que es el mismo carro = 1600 libras
r = 600
s = 60 mph
F = kws² / r
k = 2/25
F = 2/25 × 1600 × 60² / 600
F = 768 libras
Por lo tanto, la cantidad de fuerza que evitaría que el mismo automóvil patine en una curva con un radio de 600 si viaja a 60 mph es de 768 libras.
Please help,thanks!(:
Answer:
<4=<2
x+30=2x+15
x=15
therefore <4=(15)+30
=45°
I NEED HELP PLEASE I GIVE 5 STARS !
Answer:
C. 2[tex]\sqrt{29}[/tex]
Step-by-step explanation:
Square root of 116 is 10.7703296
Square root of 29 is 5.38516481, but as it is multiplied by 2, it becomes 10.7703296
-2x-7+9-2= Please can i have an answer
Answer:
-2x
Step-by-step explanation:
-2x-7+9-2
Combine like terms
-2x +0
-2x
Answer:
-2x
Step-by-step explanation:
from the question
-2x-7+9-2=
step 1
collect the like terms
we have,
-2x-7+9-2
-2x + 2 -2
-2x + 0
-2x
therefore the answer to the question -2x-7+9-2 is equal to -2x
ALGEBRAIC EXPRESSION 11. Subtract the sum of 13x – 4y + 7z and – 6z + 6x + 3y from the sum of 6x – 4y – 4z and 2x + 4y – 7. 12. From the sum of x 2+ 3y 2 − 6xy, 2x 2 − y 2 + 8xy, y 2 + 8 and x 2 − 3xy subtract −3x 2 + 4y 2 – xy + x – y + 3. 13. What should be subtracted from x 2 – xy + y 2 – x + y + 3 to obtain −x 2+ 3y 2− 4xy + 1? 14. What should be added to xy – 3yz + 4zx to get 4xy – 3zx + 4yz + 7? 15. How much is x 2 − 2xy + 3y 2 less than 2x 2 − 3y 2 + xy?
Answer:
Explained below.
Step-by-step explanation:
(11)
Subtract the sum of (13x - 4y + 7z) and (- 6z + 6x + 3y) from the sum of (6x - 4y - 4z) and (2x + 4y - 7z).
[tex][(6x - 4y - 4z) +(2x + 4y - 7z)]-[(13x - 4y + 7z) + (- 6z + 6x + 3y) ]\\=[6x-4y-4z+2x+4y-7z]-[13x-4y+7z-6z+6x+3y]\\=6x-4y-4z+2x+4y-7z-13x+4y-7z+6z-6x-3y\\=(6x+2x-13x-6x)+(4y-4y+4y-3y)-(4z+7z+7z-6z)\\=-11x+y-12z[/tex]
Thus, the final expression is (-11x + y - 12z).
(12)
From the sum of (x² + 3y² - 6xy), (2x² - y² + 8xy), (y² + 8) and (x² - 3xy) subtract (-3x² + 4y² - xy + x - y + 3).
[tex][(x^{2} + 3y^{2} - 6xy)+(2x^{2} - y^{2} + 8xy)+(y^{2} + 8)+(x^{2} - 3xy)] - [-3x^{2} + 4y^{2} - xy + x - y + 3]\\=[x^{2} + 3y^{2} - 6xy+2x^{2} - y^{2} + 8xy+y^{2} + 8+x^{2} - 3xy]- [-3x^{2} + 4y^{2} - xy + x - y + 3]\\=[4x^{2}+3y^{2}-xy+8]-[-3x^{2} + 4y^{2} - xy + x - y + 3]\\=4x^{2}+3y^{2}-xy+8+3x^{2}-4y^{2}+xy-x+y-3\\=7x^{2}-y^{2}-x+y+5[/tex]
Thus, the final expression is (7x² - y² - x + y + 5).
(13)
What should be subtracted from (x² – xy + y² – x + y + 3) to obtain (-x²+ 3y²- 4xy + 1)?
[tex]A=(x^{2} - xy + y^{2} - x + y + 3) - (-x^{2}+ 3y^{2}- 4xy + 1)\\=x^{2} - xy + y^{2} - x + y + 3 +x^{2}- 3y^{2}+ 4xy -1\\=2x^{2}-2y^{2}+3xy-x+y+2[/tex]
Thus, the expression is (2x² - 2y² + 3xy - x + y + 2).
(14)
What should be added to (xy – 3yz + 4zx) to get (4xy – 3zx + 4yz + 7)?
[tex]A=(4xy-3zx + 4yz + 7)-(xy - 3yz + 4zx) \\=4xy-3zx + 4yz + 7 -xy + 3yz - 4zx\\=3xy-7zx+7yz+7[/tex]
Thus, the expression is (3xy - 7zx + 7yz + 7).
(15)
How much is (x² − 2xy + 3y²) less than (2x² − 3y² + xy)?
[tex]A=(2x^{2} - 3y^{2} + xy)-(x^{2} - 2xy + 3y^{2})\\=2x^{2} - 3y^{2} + xy-x^{2} + 2xy - 3y^{2}\\=x^{2}-6y^{2}+3xy[/tex]
Thus, the expression is (x² - 6y² + 3xy).
The sum of the ages of Noi's and Noy's is 26 years. The different between four times Noi's age and two times Noy's age is 28 years. Find the age of Noi and Noy.
WRITE AS AN EQUATION
Answer:
The age of Noi is 13.333 Years and the age of Noy is 12.67 years
Step-by-step explanation:
The given information are;
The sum of the ages of Noi and Noy = 26 years
Four times Noi's age - Two times Noy's age = 28
Let the age of Noi = X and let the age of Noy = Y
We have;
X + Y = 26 years.................(1)
4X - 2Y = 28 years.............(2)
Divide equation (2) by 2 to get;
(4X - 2Y)/2 = (28 years)/2 which gives;
2X - Y = 14 years.................(3)
Add equation (3) to equation (1), to get;
X + Y + 2X - Y = 26 years + 14 years
3X = 40 years
X = 40/3 = 13.333 Years
From equation (1), X + Y = 26 years, therefore;
Y = 26 - X = 26 - 13.33 = 12.67 years
Therefore, the age of Noi = 13.333 Years and the age of Noy = 12.67 years.
Find the amplitude of y = -2 sin x
Answer:
Amplitude = 2
Step-by-step explanation:
The amplitude of this sine wave is 2 denoted by the coefficient -2 in front of the sin(x). The negative of the coefficient denotes that the sine wave is the opposite of the standard sine wave.
Cheers.
When computing the standard deviation, does it matter whether the data are sample data or data comprising the entire population? Explain. Yes. The formula for s is divided by n, while the formula for σ is divided by N − 1. Yes. The formula for s is divided by n − 1, while the formula for σ is divided by N. No. The formula for both s and σ is divided by n − 1. No. The formula for both s and σ is divided by N.
Answer:
Yes. When computing the sample standard deviation, divide by n −1. When computing the population standard deviation, divide by N
Step-by-step explanation:
Weather balloons burst at an altitude of 27.5 km. What is the altitude in meters?
Answer:
27500
Step-by-step explanation:
meters are 100 times more than kilometers hope this helps:)
Jonah will cover a cube in wrapping paper. Each edge of the cube is 25 cm long. What is the least amount of
wrapping paper he needs to cover the cube?
15 625 square centimeters
25 square centimeters
37.5 square centimeters
42 25 square centimeters
Save and Exit
Next
Subm
MO
Answer:
3750 cm²
Step-by-step explanation:
To find the answer, we need to find the surface area of the cube. The surface area formula for a cube is 6a² where a = the length of an edge. We know that a = 25 so the surface area is 6 * 25² = 6 * 625 = 3750 cm².
Answer:
37.5 hopefully this is the answer you were looking for!
Step-by-step explanation:
Scouts of ABC school made to run around a regular hexagonal ground fig 9, of perimeter 270 m .If they started running from point X and covered two fifth (2/5th) of the total distance.Which side of the ground will they reach?
Answer:
Scouts are on the third side in the sense they are running
Step-by-step explanation:
A regular hexagonal shape of perimeter 270 has each side of 270/6 = 45
Let´s call d the run distance then
d = 2/5 * 270 d = 108 m
We don´t have fig 9 available therefore if X is a vertex in the hexagon or at the middle point of one side, scouts are 108 m from the starting point which means they had run 2,4 sides of the hexagon. If X is not either a vertex or a middle point of a side then, we have two solutions for the question depending on the sense the scouts took when began the run (clockwise or counterclockwise)
What is the reason: if a+c=b+c then a=b
Step-by-step explanation:
Example 1:
a+c=b+c then a=b
First let the value of a and b be different (not equal)
a=5
b=7
c=10
a+c=b+c
5+10=7+10
15≠17
Example 2:
Let the value a and b be equal (the same)
a=5
b=5
c=10
a+c=b+c
5+10=5+10
15=15
So when,
a+c and b+c is equal, a and b are always equal.
Hope this helps ;) ❤❤❤
Answer:
a=b
Step-by-step explanation:
Reason:
a+c=b+c
a-b=c-c
c-c would be 0
if a-b=c-c=0
a-b=0
Only if a=b can a-b=0
You can also take it as:
b-a=c-c (a+c=b+c)
b-a=0=c-c
Therefore b=a
By the way even I am a BTS army
Black Diamond Ski Resort charges $25 for ski rental and $10 an hour to ski. Bunny Hill Ski Resort charges $50 for ski rental and $5 an hour to ski. Create an equation to determine at what point the cost of both ski slopes is the same.
Answer:
25 + 10h = 50+5h
Step-by-step explanation:
Black Diamond Ski Resort
25 + 10h
Bunny Hill Ski Resort
50+5h
We want when they are equal
25 + 10h = 50+5h
Answer:
10x + 25 = 5x + 50
Step-by-step explanation:
HELP ASAP
[tex]Given that $33^{-1} \equiv 77 \pmod{508}$, find $11^{-1} \pmod{508}$ as a residue modulo 508. (Give an answer between 0 and 507, inclusive.)[/tex]
===================================================
Work Shown:
[tex]33^{-1} \equiv 77 \text{ (mod 508)}\\\\(3*11)^{-1} \equiv 77 \text{ (mod 508)}\\\\3^{-1}*11^{-1} \equiv 77 \text{ (mod 508)}\\\\3*3^{-1}*11^{-1} \equiv 3*77 \text{ (mod 508)}\\\\11^{-1} \equiv 231 \text{ (mod 508)}\\\\[/tex]
Notice how 33*77 = 2541 and 11*231 = 2541
[tex]2541 \equiv 1 \text{ (mod 508)}[/tex] since 2541/508 has a remainder of 1.
So effectively [tex]33*77 \equiv 1 \text{ (mod 508)}[/tex] and [tex]11*231 \equiv 1 \text{ (mod 508)}[/tex]
5
What is the equation, in point-slope form, of the line that
is parallel to the given line and passes through the point
(-3, 1)?
4
3
2
(-3, 1)
42.27
1
5 4 3 2 1
2 3 4 5 x
y-1=-{(x+3)
y-1=-{(x + 3)
y-1= {(x + 3)
y-1= {(x + 3)
(-2, 4)
Answer: [tex]y-1=\dfrac32(x+3)[/tex]
Step-by-step explanation:
Slope of a line passes through (a,b) and (c,d) = [tex]\dfrac{d-b}{c-a}[/tex]
In graph(below) given line is passing through (-2,-4) and (2,2) .
Slope of the given line passing through (-2,-4) and (2,2) =[tex]\dfrac{-4-2}{-2-2}=\dfrac{-6}{-4}=\dfrac{3}{2}[/tex]
Since parallel lines have equal slope . That means slope of the required line would be .
Equation of a line passing through (a,b) and has slope m is given by :_
(y-b)=m(x-a)
Then, Equation of a line passing through(-3, 1) and has slope = is given by
[tex](y-1)=\dfrac32(x-(-3))\\\\\Rightarrow\ y-1=\dfrac32(x+3)[/tex]
Required equation: [tex]y-1=\dfrac32(x+3)[/tex]
Solve for h. 3/7=h/14-2/7
Answer:
h = 10
Step-by-step explanation:
Given
[tex]\frac{3}{7}[/tex] = [tex]\frac{h}{14}[/tex] - [tex]\frac{2}{7}[/tex]
Multiply through by 14 to clear the fractions
6 = h - 4 ( add 4 to both sides )
10 = h
Answer:
10
Step-by-step explanation:
We start out with 3/7 = h/14 - 2/7
add 2/7 to both sides:
(5/7) = h/14
Multiply both sides by 14 to get rid of the fraction:
h = 10
The diagonal of rhombus measure 16 cm and 30 cm. Find it's perimeter
Answer:
P = 68 cmStep-by-step explanation:
The diagonals of the rhombus divide it into 4 congruent right triangles.
So we can use Pythagorean theorem to calculate side of a rhombus.
[tex](\frac e2)^2+(\frac f2)^2=s^2\\\\e=30\,cm\quad\implies\quad\frac e2=15\,cm\\\\f=16\,cm\quad\implies\quad\frac f2=8\,cm\\\\15^2+8^2=s^2\\\\s^2=225+64\\\\s^2=289\\\\s=17[/tex]
Perimeter:
P = 4s = 4•17 = 68 cm
please help me i offered all my points and this is really important!!! The question is attached.
Answer:
25[tex]\sqrt{3}[/tex] +60
Step-by-step explanation: The first thing you need to do is realize that, this figure is a isosceles trapezoid due to the markings on each side.
So now we know both sides are 10.
We also know the the top two angles are congruent to each other and so are the bottom two angles due to the trapezoid being isosceles.
So the top two angles are 120 degrees and bottom two angles are 60 degrees.
It seems like we can't find the sides, let's try drawing two lines from each top angle all the way down to form two right triangles.
Wow, these two triangles are special right triangles in the form of
30 - 60 - 90 degrees.
shorter side = n
longer side = n[tex]\sqrt{3}[/tex]
hypotenuse = 2n
So, 2n = 10
n = 5 for the short side
The bottom base is 4[tex]\sqrt{3}[/tex] + 5 + 5 = 10 + 4[tex]\sqrt{3}[/tex]
The longer side is 5[tex]\sqrt{3}[/tex].
The area of trapezoid = (base1 + base2)/2 * height
= (4[tex]\sqrt{3}[/tex] + 10 + 4[tex]\sqrt{3}[/tex])/2 * 5[tex]\sqrt{3}[/tex] = (10 + 8[tex]\sqrt{3}[/tex])/2 * 5[tex]\sqrt{3}[/tex] = (5+4[tex]\sqrt{3}[/tex])*5[tex]\sqrt{3}[/tex] = 25[tex]\sqrt{3}[/tex] +60
So, 25[tex]\sqrt{3}[/tex] + 60 is our answer.
Answer:
60 +25√3
Step-by-step explanation:
In the figure of the isosceles trapezoid below, the angles at C and D are supplementary to the given angle, so are 60°. That makes triangle BDE a 30°-60°-90° right triangle, which has side length ratios ...
DE : BE : BD = 1 : √3 : 2 = 5 : 5√3 : 10
Triangle BDE can be relocated to the other end of the figure to become triangle CAD'. Then the area of concern is that of the rectangle with height 5√3 and length 5+4√3. The area is then ...
Area = lh = (5√3)(5 +4√3) = 5·5√3 +5·4·3
Area = 60 +25√3 . . . square units
_____
In the figure, 6.93 = 4√3, and 8.66 = 5√3, 16.93 = 10+4√3.