Answer:
14 hours
Step-by-step explanation:
Take any two consecutive high tides and to find their x coordinatey and sub them..
please help, will give brainliest!!!!
Answer:
3
Step-by-step explanation:
3 - 3/x
----------------
1 - 1/x
Multiply the top and bottom by x
x(3 - 3/x)
----------------
x(1 - 1/x)
3x -3
------------
x-1
Factor the numerator
3(x-1)
-------
x-1
Cancel like terms
3
-----
1
3
ch of the following collections are w A collection of first six even number A collection of tall girls of class X. A collection of good football player A collection of wild animals. A collection of days of a week. he symbols e or €: {a, e, i, o, u}
Pls Tell question corretly
Find the missing side length in the image below
Answer:
? = 5
Step-by-step explanation:
Recall: when 2 transversal lines cuts across 3 parallel lines, the parallel lines are divided proportionally by the transversals.
Therefore:
?/10 = 3/6
Cross multiply
?*6 = 3*10
?*6 = 30
Divide both sides by 6
? = 30/6
? = 5
Determine the sum of the measures of the exterior angles of a convex hexagon (6-sided polygon).
A. 540
B. 720
C. 1,080
D. 360
9514 1404 393
Answer:
(d) 360°
Step-by-step explanation:
The sum of exterior angles of any convex polygon is 360°.
The least-squares regression equation
y = 968 – 3.34x can be used to predict the amount of monthly interest paid on a loan after x months. Suppose the amount of monthly interest after 30 months was $865.93.
What is the residual for the amount of monthly interest paid on a loan after 30 months?
–202.27
–1.87
1.87
202.27
Answer:
-1.87 (B)
865.93 - [968-3.34(30)] = -1.87
ED2021
In the arithmetic sequence -7, -6, -5 what term is 2?
The term 2 is the ___th term of the sequence
Answer:
10th term
Step-by-step explanation:
The equation of the arithmetic sequence is an=-7+(n-1)*1=-8+n, plugging in 2 and solving for n we have
2=-8+n, n=10
can someone help me, please?
Answer:
0
2
-1
Step-by-step explanation:
from f(0) we find that
y = mx - 1
from f(-1) we find that the equation is
y = -3x - 1
1)
inverse f(x) :
x = -3y - 1
y = -(x + 1) / 3 x = -1
y = -(-1 + 1) / 3
y = 0
2)
y also equal to 0 since x = -1
3)
f^-1(2) = -(2+1) / 3
= -3/3
= -1
f(-1) = 2
Assume that two marbles are drawn without replacement from a box with 1 blue, 3 white, 2 green, and 2 red marbles. Find the probability that the first marble is white and the second marble is blue.
Answer:
3/56
Step-by-step explanation:
Probability is the ratio of the number of possible outcome to the number of total outcome.
Given that two marbles are drawn without replacement from a box with 1 blue, 3 white, 2 green, and 2 red marbles.
The total number of marbles in the box
= 1 + 3 + 2 + 2
= 8 marbles
The probability that the first marble is white and the second marble is blue
= 3/8 * 1/7
= 3/56
Find an equation equivalent to r = 1 + 2 sin 0 in rectangular coordinates.
Answer:
C
Step-by-step explanation:
r=1+2sin(theta)
r^2=r+2*r*sin(theta)
x^2+y^2=±sqrt(x^2+y^2)+2y
What is the perimeter of CDE?
A. 37.8 units
B. 39 units
C. 32.5 units
D. 35.6 units
This value is approximate.
=============================================================
Explanation:
To find the perimeter, we simply add up the lengths of the three external sides.
The horizontal side from D to E is 16 units long since |-10-6| = 16. I subtracted the x coordinates of the points and applied absolute value. You could also count out the spaces and you should count 16 spaces from D to E.
Unfortunately, the diagonal lengths aren't as straight forward. We have two options here: The pythagorean theorem, or the distance formula.
I'll go with the distance formula.
Let's find the distance from C to D, aka the length of side CD
[tex]C = (x1,y1) = (-1,-2)\\\\D = (x2,y2) = (-10,0)\\\\d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\d = \sqrt{(-1-(-10))^2 + (-2-0)^2}\\\\d = \sqrt{(-1+10)^2 + (-2-0)^2}\\\\d = \sqrt{(9)^2 + (-2)^2}\\\\d = \sqrt{81 + 4}\\\\d = \sqrt{85}\\\\d \approx 9.2195\\\\[/tex]
Side CD is roughly 9.2195 units long.
Repeat this idea to find the length of CE
[tex]C = (x1,y1) = (-1,-2)\\\\E = (x2,y2) = (6,0)\\\\d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\d = \sqrt{(-1-6)^2 + (-2-0)^2}\\\\d = \sqrt{(-7)^2 + (-2)^2}\\\\d = \sqrt{49 + 4}\\\\d = \sqrt{53}\\\\d \approx 7.2801\\\\[/tex]
Side CE is roughly 7.2801 units long
The perimeter of triangle CDE is approximately...
P = DE+CD+CE
P = 16 + 9.2195 + 7.2801
P = 32.4996
This then rounds to 32.5 units. The answer is choice C.
Find the difference: -18 - (-18)
Answer:
0
Step-by-step explanation:
-18-(-18)
= -18+18 [(+) + (+)=(+)]
=0 [(-) + (-)=(-)]
Find the missing side length image below
Answer:
40
Step-by-step explanation:
Based on the Proportional Transversal Theorem, the three parallel lines hat intersects the two transversals, divides the transversal lines proportionally.
Therefore, we would have the following ratio:
28/35 = ?/50
Cross multiply
35*? = 50*28
35*? = 1,400
Divide both sides by 35
? = 1400/35
? = 40
is f(x)=sqrt{x}+3x an exponential function?
Regina has 3 bags of marbles. There are 25 marbles in each bag. She wants to put an equal number of marbles into 5 bags. Which expression would show how many marbles can go in each bag?
Answer:
(3 × 25)/5 marbles can go in each bag
Explanation:
Number of bags Regina has = 3
Number of marbles in each bag = 25
So, total number of marbles = 3 × 25
Number of marbles in each bag, if divided equally into 5 bags = (3 × 25)/5
Further:
Solving the expression,
(3 × 25)/5
= 75/5
= 15
So, the each bag has 15 marbles if they are equally divided into 5 bags.
Answer:
(25 x 3) / 5
Step-by-step explanation:
you have to do 25 x 3 to get the total amount of marbles. Then you have to divide that by the amount of bags.
At the beginning of a basketball season, the Spartans won 35 games out of 98 games. At this rate, how many games will they win in a normal 116 game season?
Instructions: Find the area of the trapezoid
and round to the nearest tenth.
10.2 mi.
7 mi.
4.2 mi.
Area:
mi?
Answer:
299.88 mi. !!!!!
you just multiple all of them together to get the area!!!
e/22 = 6/15, What does e equal? Please answer with work!
Answer:
e = 44/5 = 8.800
Step-by-step explanation:
Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :
e/22-(6/15)=0
Step by step solution :
STEP
1
:
2
Simplify —
5
Equation at the end of step
1
:
e 2
—— - — = 0
22 5
STEP
2
:
e
Simplify ——
22
Equation at the end of step
2
:
e 2
—— - — = 0
22 5
STEP
3
:
Calculating the Least Common Multiple :
3.1 Find the Least Common Multiple
The left denominator is : 22
The right denominator is : 5
Number of times each prime factor
appears in the factorization of:
Prime
Factor Left
Denominator Right
Denominator L.C.M = Max
{Left,Right}
2 1 0 1
11 1 0 1
5 0 1 1
Product of all
Prime Factors 22 5 110
Least Common Multiple:
110
Calculating Multipliers :
3.2 Calculate multipliers for the two fractions
Denote the Least Common Multiple by L.C.M
Denote the Left Multiplier by Left_M
Denote the Right Multiplier by Right_M
Denote the Left Deniminator by L_Deno
Denote the Right Multiplier by R_Deno
Left_M = L.C.M / L_Deno = 5
Right_M = L.C.M / R_Deno = 22
Making Equivalent Fractions :
3.3 Rewrite the two fractions into equivalent fractions
Two fractions are called equivalent if they have the same numeric value.
For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well.
To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.
L. Mult. • L. Num. e • 5
—————————————————— = —————
L.C.M 110
R. Mult. • R. Num. 2 • 22
—————————————————— = ——————
L.C.M 110
Adding fractions that have a common denominator :
3.4 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
e • 5 - (2 • 22) 5e - 44
———————————————— = ———————
110 110
Equation at the end of step
3
:
5e - 44
——————— = 0
110
STEP
4
:
When a fraction equals zero :
4.1 When a fraction equals zero ...
Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.
Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.
Here's how:
5e-44
————— • 110 = 0 • 110
110
Now, on the left hand side, the 110 cancels out the denominator, while, on the right hand side, zero times anything is still zero.
The equation now takes the shape :
5e-44 = 0
Solving a Single Variable Equation:
4.2 Solve : 5e-44 = 0
Add 44 to both sides of the equation :
5e = 44
Divide both sides of the equation by 5:
e = 44/5 = 8.800
One solution was found :
e = 44/5 = 8.800
Answer:
e =44/5
Step-by-step explanation:
e 6
----- = --------
22 15
Using cross products
e * 15 = 6 *22
15e = 132
Divide by 15
15e/15 = 132/15
e =44/5
Solve the equation. If there is no solution, select no solution.
Answer:
no solution to the question
Answer:
4 2/3
Step-by-step explanation:
The two-step equation is solved regularly. The answer is 4 2/3.
Compare the functions shown below:
f(x) = 7x + 3 g(x) tangent function with y intercept at 0, 2 h(x) = 2 sin(3x + π) − 1
These two cones are similar. What is the value of x?
Answer:
A
Step-by-step explanation:
Given that the cones are similar then corresponding dimensions are in proportion, that is
[tex]\frac{12}{2}[/tex] = [tex]\frac{3}{x}[/tex] ( cross- multiply )
12x = 6 ( divide both sides by 12 )
x = 0.5 → A
Step by step explanation need it
Answer:
8/17
Step-by-step explanation:
The sine of an angle is defined as the opposite side to the reference angle divided by the hypotenuse.
The side opposite the angle is always the side not connected to the reference angle. In this case the opposite side = ZY
The hypotenuse = XZ
Sin(X) = ZY/XZ
Sin(X) = 1634 = 8 / 17
According to Fidelity Investment Vision Magazine, the average weekly allowance of children varies directly as their grade level. In a recent year, the average allowance of a 9th-grade student was 9.66 dollars per week. What was the average weekly allowance of a 5 th-grade student?
The average weekly allowance of a 5th grade student as calculated using direct variation with the information provided by Fidelity Investment Vision Magazine is 5.367 dollars per week.
The question given is a direct variation problem:
Let:
• Average weekly allowance = [tex]a[/tex]
• Grade level = [tex]g[/tex]
If Average weekly allowance varies directly as grade level , then , then the direct variation between the variables can be expressed as :
[tex]a = k * g[/tex]
Where , [tex]k[/tex] = constant of proportionality
We can obtain the value of k from the given values of a and g
[tex]9.66 = k * 9\\9.66 = 9k\\k = 9.66/9[/tex]
Our equation becomes:
[tex]a = (9.66/9) * g[/tex]
[tex]a = (9.66/9) * 5\\a = 5.367[/tex] (rounded to 3 decimal places)
Hence, using proportional relationship, the average weekly allowance for a 5th grade student is [tex]5.367[/tex] per week
Learn more about direct variation here:
https://brainly.com/question/17257139
FX) is defined by the equation f(x) = 4x2 - 2x +17. What effect will multiplying
f(x) by 0.5 have on the graph?
A. The graph will be stretched horizontally.
B. The graph will be compressed horizontally.
C. The graph will be stretched vertically.
D. The graph will be compressed vertically.
Step-by-step explanation:
the graph will be compressed vertically
point k is between j and l. if jk = x^2 - 4x , kl = 3x - 2 and jl = 28 write and solve an equation to find the lengths of jk and kl
Answer:
JK=12
KI=16
Step-by-step explanation:
[tex]K\in\ [JI]\ \Rightarrow\ |JK|+| KI |=|KI|\\\\x^2-4x+3x-2=28\\\\\Longleftrightarrow\ x^2-x-30=0\\\\\\\Longleftrightarrow\ x^2+5x-6x-30=0\\\\\\\Longleftrightarrow\ x(x+5)-6(x+5)=0\\\\\\\Longleftrightarrow\ (x+5)(x-6)=0\\\\x=-5\ (excluded)\ or\x=6\\\\\\\Longleftrightarrow\ \\|JK|=x^2-4x=6^2-4*6=36-24=12\\|KI|=3x-2=3*6-2=18-2=16\\\\Proof: 12+16=28\\[/tex]
what is the sum of √-2and√-18
For this question, we need to simplify some radicals and combine like terms. One thing for sure that should be noticed is the fact that both of these radicals are going to be imaginary, as they both have negatives inside of them.
Let's simplify the radicals:
√-2 = ← Note the negative
i√2
√-18 = ← Note the negative here as well
i√18 =
i√2·3·3 =
i√2·3² =
3i√2
Now, all we have to do is combine like terms:
i√2 + 3i√2 = 4i√2
At basketball practice, you made 59 out of 80 shots.
Which choice is closest to the percentage of shots you mad
Answer:
73.5 Percent ...........
Answer:
The closest percentage of shots you made is 75%. Please mark brainliest.
I believe the choices are:
60%
70%
75%
80%
Therefore the answer 75%
Step-by-step explanation:
59/80 = 0.7375
Rounded up is 0.75
0.75 x 100 = 75%
Hope this helps.
Have a nice day amazing person there.
MAY GOD RICHLY BLESS YOU!!
Which of the following is a quadratic function
A quadratic a function has a form of,
[tex]f(x)=ax^2+bx+c,a\neq0[/tex]
The first function has a term [tex]x^3[/tex] which doesn't fit the profile of a quadratic function. The highest exponent on x inside a quadratic function can be 2, but here we have 3 so this is not a quadratic function, but rather a cubic function.
The second function fits the form of a quadratic function perfectly.
The third function is a bit tricky. While technically the third function could be considered quadratic if the leading term would be something like [tex]0x^2[/tex] and we did't even see it written out because multiplying with 0. But when we specified the form of a quadratic function, we strictly said that the number before [tex]x^2[/tex] aka [tex]a[/tex] cannot equal to zero. So the last function is not a quadratic function but rather a linear function.
Hope this helps :)
Step-by-step explanation:
f(x) = 4x² + x - 3
[tex]f(x) = 4x {}^{2} + 3 - 2[/tex]
r3t40 is correct
Algebra II Part 1
On your paper, graph these coordinates:
(-1, 1), (-5, 2)
Type the correct equation of the line.
Note: Do not use fractions in your answer.
Answer:
4y+x-3=0
Step-by-step explanation:
The equation is y=mx+b
1) Use the coordinates from the first point
(-1,1)
1= -m+b
2) Use the coordinates frm the second point
(-5,2) (y=mx+b, use x=-5, y=2)
2=-5m+b
You have the system of equations
1=-m+b (multiply by -1) -1= m-b
2=-5m+b
Add the first equation (multiplied by -1) and the second one
-1+2= m-b-5m+b
1= -4m
m=-0.25
2=1.25+b
b=0.75
y=-0.25x+0.75
4y= -x+3
4y+x-3=0
A large soda-pop manufacturer wants to introduce a new design for the label on one of its signature soda-pop drinks. The manufacturer selects a random sample of 150 customers from people who purchase the drink at a large sporting event. Each selected customer is asked whether or not he or she prefers the new design. If the manufacturer were to take a second random sample of 150 customers at the sporting event, the two samples would give somewhat different results in the proportion who prefer the new design. This variation is a source of
Answer:
This variation is a source of
response error.
Step-by-step explanation:
A response error shows the lack of accuracy in the customer responses to the survey questions. A response error can be caused by a questionnaire that requires framing improvements, misinterpretation of questions by interviewers or respondents, and errors in respondents' statements. Some responses are influenced by the answers provided to previous questions, which introduces response bias.
Find the equation (in terms of x) of the line through the points (-2,-3) and (4,-1)
Answer:
y = 1/3x - 7/3
Step-by-step explanation:
y2 - y1 / x2 - x1
-1 - (-3) / 4 - (-2)
2/6
= 1/3
y = 1/3x + b
-1 = 1/3(4) + b
-1 = 4/3 + b
-7/3 = b