Answer:
The first graph
Step-by-step explanation:
6. Aerial photography is to be taken of a tract of land that is 8 x 8 mi2. Flying height will be 4000 ft above average terrain, and the camera has focal length of 6 inches. If the focal plane opening is 9 x 9 in., and minimum side overlap is 30%, how many flight lines will be needed to cover the tract for the given data
Answer:
the number of flight lines needed is approximately 72
Step-by-step explanation:
Given the data in the question;
Aerial photography is to be taken of a tract of land that is 8 x 8 mi²
L × B = 8 x 8 mi²
Flying height H = 4000 ft = ( 4000 × 12 )inches = 48000 in
focal length f = 6 in
[tex]l[/tex] × b = 9 × 9 in²
side overlap = 30% = 0.3
meaning remaining side overlap = 100% - 30% = 70% = 0.7
{ not end to end overlap }
we take 100% { remaining overlap }
[tex]l[/tex]' = 9 × 100% = 9 in
b' = 9 × 70% = 6.3 in
Now the scale will be;
Scale = f/H
we substitute
Scale = 6 in / 48000 in = 1 / 8000
so our scale is; 1 : 8000
⇒ 1 in = 8000 in
⇒ 1 in = (8000 / 63360)mi
⇒ 1 in = 0.126 mi
so since
L × B = 8 x 8 mi²
[tex]l[/tex]' = ( 9 × 0.126 mi ) = 1.134 mi
b' = ( 6.3 × 0.126 mi ) = 0.7938 mi
Now we get the flight lines;
N = ( L × B ) / ( [tex]l[/tex]' × b' )
we substitute
N = ( 8 mi × 8 mi ) / ( 1.134 mi × 0.7938 mi )
N = 64 / 0.9001692
N = 71.0977 ≈ 72
Therefore, the number of flight lines needed is approximately 72
The chance of winning the race of the horse A is 1/15 and that of horse B is 1/6. What is
the probability that the race will be won by A or B.
Answer:
7/30
Step-by-step explanation:
P = 1/15 + 1/6 = (2+5)/30 = 7/30
QUICKKKKKKKKKKKKKKKKKKKKKKK
Answer:
Step-by-step explanation:
It’s G
A display case of toy rings are marked 5 for $1. If Zach wants to buy 50 toy rings, how much will Zach spend (not including tax)
9514 1404 393
Answer:
$10
Step-by-step explanation:
Price is proportional to the number of rings, so Zack will spend D dollars, where ...
dollars/rings = D/50 = 1/5
D = 50/5 = 10
Zack will spend $10 to buy 50 toy rings.
calculate the cost of 4 liters of gasoline if 10 Liters of gasoline cost $8.20 (using proportional relationship).
A . $3.28
B. $4.20
C. $8.20
D.$10
Given points A(-1, -2) and B(2, 4) where AP: BP=1:2, find the locus of point P.
Answer:
[tex]x^2 + 4x + y^2 +8y = 0[/tex]
Step-by-step explanation:
Given
[tex]A = (-1,-2)[/tex]
[tex]B = (2,4)[/tex]
[tex]AP:BP = 1 : 2[/tex]
Required
The locus of P
[tex]AP:BP = 1 : 2[/tex]
Express as fraction
[tex]\frac{AP}{BP} = \frac{1}{2}[/tex]
Cross multiply
[tex]2AP = BP[/tex]
Calculate AP and BP using the following distance formula:
[tex]d = \sqrt{(x - x_1)^2 + (y - y_1)^2}[/tex]
So, we have:
[tex]2 * \sqrt{(x - -1)^2 + (y - -2)^2} = \sqrt{(x - 2)^2 + (y - 4)^2}[/tex]
[tex]2 * \sqrt{(x +1)^2 + (y +2)^2} = \sqrt{(x - 2)^2 + (y - 4)^2}[/tex]
Take square of both sides
[tex]4 * [(x +1)^2 + (y +2)^2] = (x - 2)^2 + (y - 4)^2[/tex]
Evaluate all squares
[tex]4 * [x^2 + 2x + 1 + y^2 +4y + 4] = x^2 - 4x + 4 + y^2 - 8y + 16[/tex]
Collect and evaluate like terms
[tex]4 * [x^2 + 2x + y^2 +4y + 5] = x^2 - 4x + y^2 - 8y + 20[/tex]
Open brackets
[tex]4x^2 + 8x + 4y^2 +16y + 20 = x^2 - 4x + y^2 - 8y + 20[/tex]
Collect like terms
[tex]4x^2 - x^2 + 8x + 4x + 4y^2 -y^2 +16y + 8y + 20 - 20 = 0[/tex]
[tex]3x^2 + 12x + 3y^2 +24y = 0[/tex]
Divide through by 3
[tex]x^2 + 4x + y^2 +8y = 0[/tex]
find the degree of polynomial of the following
[tex]3x^{3} - x ^{5} [/tex]
Answer:
the degree is the value of the biggest exponent = 5 (fifth degree)
Step-by-step explanation:
Answer:
5
Step-by-step explanation:
Since the highest power of x is 5, the degree of the polynomial x
3
−9x+3x
5
is 5.
Are the triangles similar ? If they are identify the similarity ratio.
Answer:
C
Step-by-step explanation:
The triangles are similar and the scale factor can be find out by computing 18/6=15/5=9/3=3
Warren drives his car 330 miles and has an average of a certain speed. If the average speed had been 3 mph more. he could have traveled 352 miles in the same length
of time. What was his average speed?
Keypad
Answer:
45 miles per hour
Step-by-step explanation:
d=distance in miles
r=rate miles/hr
t = time in hours
t = 352/(r+3)
330/r = 352/(r+3)
352r = 330r + 990
22r = 990
r = 45
Is x-3 a factor of x- 9x² - 14x + 24?
9514 1404 393
Answer:
no
Step-by-step explanation:
We assume you are concerned with the cubic
x³ -9x² -14x +24
Its factors are all irrational, as shown in the attached graph. x-3 is not a factor.
__
x-3 is a factor if the expression evaluates to zero when x=3. Here, it does not.
((x -9)x -14)x +24 for x=3 is ...
((3 -9)(3) -14)(3) +24 = (-18 -14)(3) +24 = -96 +24 = -72
The remainder from division by x-3 is not zero, so x-3 is not a factor.
Suppose the mean income of firms in the industry for a year is 95 million dollars with a standard deviation of 11 million dollars. If incomes for the industry are distributed normally, what is the probability that a randomly selected firm will earn less than 114 million dollars
Answer:
95.73%
Step-by-step explanation:
Given data:
mean μ= 95
standard deviation, σ = 11
to calculate, the probability that a randomly selected firm will earn less than 114 million dollars;
Use normal distribution formula
[tex]P(X<114)=P(Z<\frac{X-\mu}{\sigma} )[/tex]
Substitute the required values in the above equation;
[tex]P(X<114)=P(Z<\frac{114-95}{11} )\\P(X<114)=P(Z<1.7272)\\P(X<114)=0.9573[/tex]
Therefore, the probability that a randomly selected firm will earn less than 114 million dollars = 95.73%
"1. A z-score of zero always means
a.
the raw score does not exist.
b.
the raw score exists, but is negligible.
c.
the raw score almost never occurs.
d.
the raw score is equal to the mean."
Answer:
d.
Step-by-step explanation:
Here is an answer I found on the internet (kudos to investopedia.com)
If a Z-score is 0, it indicates that the data point's score is identical to the mean score.
In other words, it's saying that a z-score of zero has a standard deviation of zero.
Cathy is planning to take the Certified Public Accountant Examination (CPA exam). Records kept by the college of business from which she graduated indicate that 73% of students who graduated pass the CPA exam. Assume that the exam is changed each time it is given. Let n = 1, 2, 3, ... represent the number of times a person takes the CPA test until the first pass. (Assume the trials are independent).
(a) What is the probability that Cathy passes the CPA test on the first try?
(b) What is the probability that Cathy passes the CPA test on the second or third try?
Answer:
The responses to these question can be defined as follows:
Step-by-step explanation:
For point a:
[tex]\to P(1) = 0.73[/tex]
For point b:
[tex]\to P(2\ or\ 3) = P(2) + P(3)[/tex]
[tex]= 0.27 \times 0.73 + 0.27\times 0.27\times0.73\\\\=0.1971+0.1971\times 0.27\\\\=0.1971+0.053217\\\\=0.250317[/tex]
Help please asap!!! Thank you!
Answer:
Here's your answer.
Step-by-step explanation:
Just multiply in
Instructions: Solve the following literal
equation.
Solve 4x – 2y = 18 for y.
y =
Answer:
[tex]y = - 9 + 2x[/tex]
Step-by-step explanation:
Objective: Use the rules of Algebra to isolate y.
[tex]4x - 2y = 18[/tex]
[tex] - 2y = 18 - 4x[/tex]
[tex]y = \frac{18 - 4x}{ - 2} [/tex]
[tex]y = - 9 + 2x[/tex]
What is the factored form of 125a^6-64?
Answer:
(5 a^2 - 4) (25 a^4 + 20 a^2 + 16)
Step-by-step explanation:
Since both terms are perfect cubes, factor using the difference of cubes formula,
a^3 − b^ 3 = (a − b) (a^2 + a b + b^2) where a = 5a^2 and b = 4 .
Please help me >_< will give out brainliest
====================================================
Explanation:
We have an octagon because there are n = 8 sides. The diagram below shows one way to number the sides so you can count them efficiently (without missing any or double counting any).
----------------
Plug n = 8 into the formula below
S = 180(n-2)
S = 180(8-2)
S = 180(6)
S = 1080
The 8 interior angles add up to 1080 degrees.
23 greater than b is at least -276
Answer:
23 + b ≤ -276
Step-by-step explanation:
In this exercise, you're required to write an algebraic expression for the word problem. Thus, you'll write out a mathematical equation using the given values and unknown variable.
Translating the word problem into an algebraic expression, we have;
23 + b ≤ -276
Simplifying further, we have;
b ≤ -276 - 23
b ≤ -299
I litterally don't understand how to do this-
Answer:
Consider points (-1, 0) and (0, 1) :
[tex]{ \tt{slope = \frac{y _{2} - y _{1} }{x _{2} - x _{1} } }} \\ { \tt{slope = \frac{1 - 0}{0 - ( - 1)} }} \\ { \boxed{ \bf{slope = 1}}}[/tex]
Answer:
slope 1
Step-by-step explanation:
above ANS is correct mark it as branliest ANS
We have just performed a one-way ANOVA on a given set of data and rejected the null hypothesis for the ANOVA F test. Assume that we are able to perform a randomized block design ANOVA on the same data. For the randomized block design ANOVA, the null hypothesis for equal treatments will ________ be rejected.
Answer:
The answer is "sometimes".
Step-by-step explanation:
A one-way ANOVA was merely performed on one collected data and the null hypothesis was rejected after an ANOVA F test. Assume we could randomize ANOVA block design with the same information. This null hypothesis for full equality is sometimes rejected for the randomized complete block design ANOVA. Therefore we understand the use of randomized ANOVA block if the null hypothesis is denied of a one-way ANOVA but the rejection of a null RBD ANOVA hypothesis isn't conditional mostly on denial of the yet another ANOVA null.
What transformation to the linear parent function, f(x) = x, gives the function
g(x) = x + 7?
O
A. Shift 7 units down.
B. Vertically stretch by a factor of 7.
C. Shift 7 units right.
D. Shift 7 units left.
Helping my home girls for the future
HELP ASAP please and thanks !!!
Answer:
t = 1
Step-by-step explanation:
16 - 2t = 5t + 9
7 = 7t
t = 1
Question 8
Points 3
Identify the functions whose lines are parallel.
0 3x + 2y = 45 and 8x + 4y = 135
x + y = 25 and 2x + y = 15
O 2x + 2y = 50 and 4x + 2y = 90
O 2x + 2y = 4 and 4x + 4y = 16
Answer:
2x + 2y = 4 and 4x + 4y = 16
Step-by-step explanation:
For two lines to be parallel, they must have the same slope.
To determine the correct answer to the question, we shall determine the slope of each equation in the given options to see which have the same slope. This can be obtained as follow:
1st option:
3x + 2y = 45 and 8x + 4y = 135
We shall rearrange the above equations to look like y = mx + c
NOTE: m is the slope.
3x + 2y = 45
rearrange
2y = –3x + 45
Divide both side by 2
y = –3x/2 + 45/2
Slope (m) = –3/2
8x + 4y = 135
Rearrange
4y = –8x + 135
Divide both side by 4
y = –8x/4 + 135/4
Slope (m) = –8/4 = –2
The two equation has different slopes. Thus, they are not parallel.
2nd option:
x + y = 25 and 2x + y = 15
x + y = 25
Rearrange
y = –x + 25
Slope (m) = –1
2x + y = 15
Rearrange
y = –2x + 15
Slope (m) = –2
The two equations has different slopes. Thus, they are not parallel.
3rd option:
2x + 2y = 50 and 4x + 2y = 90
2x + 2y = 50
Rearrange
2y = –2x + 50
Divide both side by 2
y = –2x/2 + 50/2
Slope (m) = –2/2 = –1
4x + 2y = 90
Rearrange
2y = –4x + 90
Divide both side by 2
y = –4x/2 + 90/2
Slope (m) = –4/2 = –2
The two equations has different slopes. Thus, they are not parallel.
4th option:
2x + 2y = 4 and 4x + 4y = 16
2x + 2y = 4
Rearrange
2y = –2x + 4
Divide both side by 2
y = –2x/2 + 4/2
Slope (m) = –2/2 = –1
4x + 4y = 16
Rearrange
4y = –4x + 16
Divide both side by 4
y = –4x/4 + 16/4
Slope (m) = –4/4 = –1
The two equations have the same slopes. Thus, they are parallel.
Restaurants sales totaled $38,676 for the week your customer count was $7,325 what did the average customer spend for the week
Which are correct representations of the inequality -3(2x - 5) <5(2 - x)? Select two options.
Ox45)
0 - 6x - 5 < 10 - x
0 -6x + 15 < 10 - 5
E
우
-
3
5
2
-1
0
1
2
3
Answer:
45.9
Step-by-step explanation:
Help please
The cost, c(x), for parking in a hospital lot is given by c(x) = 5x + 3.00, where x is the number of hours. What does the slope mean in this situation?
Answer:
The slope is the cost per hour.
$5 per hour
If the profits in your consulting business increase by 8% one year and decrease by 2% the following year, your profits are up by 6% over two years.
Answer:
not true....
assume $100 start.
in year 1 you are at $108 (up 8%)
in year 2 $108(.98) ... that is 2% down = 105.84...
thus your profit is up only 5.84% over the two years
Step-by-step explanation:
What is the average rate of increase in enrollment
per
decade between 1950 and 2000?
Given:
The graph that represents the enrollment for college R between 1950 and 2000.
To find:
The average rate of increase in enrollment per decade between 1950 and 2000?
Solution:
The average rate of change of function f(x) over the interval [a,b] is:
[tex]m=\dfrac{f(b)-f(a)}{b-a}[/tex]
So, the average rate of increase in enrollment per year between 1950 and 2000 is:
[tex]m=\dfrac{f(2000)-f(1950)}{2000-1950}[/tex]
[tex]m=\dfrac{7-4}{50}[/tex]
[tex]m=\dfrac{3}{50}[/tex]
[tex]m=0.06[/tex]
It is given average rate of increase in enrollment per year between 1950 and 2000 is 0.06.
We need to find the average rate of increase in enrollment per decade between 1950 and 2000, So, multiply the average rate of increase in enrollment per year by 10.
[tex]0.06\times 10=0.6[/tex]
Therefore, the average rate of increase in enrollment per decade between 1950 and 2000 is 0.6.
f(x)=3x-7 and g(x)=(1/3)x+7 are inverses of each other.
.True
.False
Answer:
False
Step-by-step explanation:
Sorry for the lat reply hopefully you still have that question ready. But basically in order for these equations to be considered inverses of one another it has to map its domain value and switch it to the range value and in this case it does not match the inverse when graphed.
It takes Caroline 1 hr to ride the train to some place and 1.5 hr to ride the bus. Every week, she must make at least 8 trips to the place, and she plans to spend no more than 9 hr in travel time. If a train trip costs $6 and a bus trip costs $5, how many times per week should she ride each in order to minimize her cost?
She should ride the train for ___ trips and the bus for ___ trips in order to minimize her cost.
Answer:
She should ride the train for 6 trips and the bus for 2 trips in order to minimize her cost.
Step-by-step explanation:
Let x represent the number of times that she travels using the train and let y represent the number of times she travels using the bus. Since she makes at least 8 trips to the place, hence:
x + y ≥ 8
Also, she plans to spend no more than 9 hr in travel time. Hence:
x + 1.5y ≤ 9
x ≥ 0, y ≥ 0.
Plotting the above equations on geogebra online graphing tool, the solution is (6, 2), (8, 0) and (9, 0).
If a train trip costs $6 and a bus trip costs $5, The cost equation (C) is:
C = 6x + 5y
At point (6, 2): C = 6(6) + 5(2) = $46
At point (8, 0): C = 6(8) + 5(0) = $48
At point (9, 0): C = 6(9) + 5(0) = $54
Therefore the minimum cost is at (6, 2). She should ride the train for 6 trips and the bus for 2 trips in order to minimize her cost.