Answer:
You should calculate 3² first.
Step-by-step explanation:
In PEMDAS, E (which stands for exponents) comes before A (which stands for addition) so therefore you should calculate 3² first.
Explanation:
The acronym PEMDAS helps determine the order of operations
P = parenthesis
E = exponents
M = multiplication
D = division
A = addition
S = subtraction
With the expression [tex]3^2+2[/tex] we have two operations going on here: exponents and addition.
Since exponents comes before addition (E comes before A in PEMDAS), this means we evaluate [tex]3^2[/tex] first, then add later.
A diameter that is perpendicular to a chord bisects the chord. True False
Answer:
[tex]\Large \boxed{\sf True}[/tex]
Step-by-step explanation:
[tex]\sf A \ diameter \ that \ is \ perpendicular \ to \ a \ chord \ bisects \ the \ chord.[/tex]
Answer:
True!!
I just did the assignment and got it right
The points (-6,-4) and (3,5) are the endpoints of the diameter of a circle. Find the length of the radius of the circle.
The length of the radius is a
(Round to the nearest hundredth as needed.)
Answer:
40.5
Step-by-step explanation:
diameter^2 = (3 +6)^2 + (5+4)^2
or, d^2 = 9^2 + 9^2
or, d^2 = 81 +81
or,d^2 =162
or d=√ 162
• d= 81
then radius = d/2
r = 81/2
•r= 40.5 ans
Find the length of a square with a perimeter of 48cmeter
Answer:
12
Step-by-step explanation:
Perimeter of a square:
4(L)
L = Length
=> 4(L) = 48
=> 4L = 48
=> 4L/4 = 48/4
=> L = 12
The length of the square is 12 cm.
Answer:
12
Step-by-step explanation:
Since the lengths of the sides of a square are equal, divide the perimeter by 4
70% of what number is 56
Answer:
the number is 80
Step-by-step explanation:
let x be an unknown number so from the above question we deduce that
(70/100)*x=56
70x/100=56
70x=56*100
70x=5600
70x/70=5600/70
x=80
A classroom has 35 students. If the ratio of boys to girls was 5:2, , how many girls were in the class
Answer:
35/14
Step-by-step explanation: 35/14
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
35/14 is your answer.
Answer:
10 girls.
Step-by-step explanation:
Boys: 5x
Girls: 2x
next... 5x + 2x = 35
7x= 35
x=5
Answer. 10 girls.
The residents of a city voted on whether to raise property taxes. The ratio of yes votes to no votes was 6 to 5 . If there were 4545 no votes, what was the total number of votes?
Answer:
The total number of votes= 9999
Step-by-step explanation:
The ratio of vote specifically the ratio of yes to no vote in a city vote is 6 to 5.
There is a total of 4545 no votes.
Yes/no = 6/5
Yes= no(6/5)
Yes= 4545(6/5)
Yes= 5454
The total number of yes votes are 5454.
The total number of votes= yes votes+ no votes
The total number of votes= 5454+4545
The total number of votes= 9999
Complete the square to make a perfect square trinomial. Then, write the result as a binomial squared. n^2+5/2n
Answer: [tex]\bigg(n+\dfrac{5}{4}\bigg)^2[/tex]
Step-by-step explanation:
[tex]n^2+\dfrac{5}{2}n+\underline{\qquad}\\\\\\n^2+\dfrac{5}{2}n+\bigg(\dfrac{5}{2\cdot 2}\bigg)^2\\\\\\n^2+\dfrac{5}{2}n+\bigg(\dfrac{5}{4}\bigg)^2\\\\\\=\bigg(n+\dfrac{5}{4}\bigg)^2[/tex]
Line MN passes through points M(4, 3) and N(7, 12). If the equation of the line is written in slope-intercept form, y = mx + b, what is the value of b? –15 –9 3 9
Answer:
b = -9.
Step-by-step explanation:
The line passes through (4, 3) and (7, 12). First, we need to find the slope: the rise over the run.
(12 - 3) / (7 - 4) = 9 / 3 = 3.
Now that we have the slope, we can say that m = 3. So, we have an equation of y = 3x + b. To find b, we can use M(4, 3) and say that y = 3 and x = 4.
3 = 3 * 4 + b
b + 12 = 3
b = -9.
Hope this helps!
The value of b in the equation is -9
How to determine the value of b?The points are given as:
M(4, 3) and N(7, 12)
The equation is then calculated using:
[tex]y = \frac{y_2 -y_1}{x_2 -x_1} * (x - x_1) + y_1[/tex]
This gives
[tex]y = \frac{12 -3}{7 -4} * (x - 4) + 3[/tex]
Evaluate the quotient
y = 3 * (x - 4) + 3
Open the bracket
y = 3x - 12 + 3
Evaluate the difference
y = 3x - 9
Hence, the value of b is -9
Read more about linear equations at:
https://brainly.com/question/14323743
#SPJ9
F
13
5
H
12
G
se
Find mZH to the nearest degree.
67
O 18
O 45
O 23
Answer:
∠ H ≈ 23°
Step-by-step explanation:
Using the tangent ratio in the right triangle
tan H = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{FG}{HG}[/tex] = [tex]\frac{5}{12}[/tex] , thus
∠ H = [tex]tan^{-1}[/tex] ( [tex]\frac{5}{12}[/tex] ) ≈ 23° ( to the nearest degree )
area to the right of z=0.72
I don’t have a graphing calculator and I couldn’t find one online. I’m completely clueless on this one.
Answer:
Desmos could come in handy
During the school year, there were 315 total points scored between basketball, soccer, baseball, and football. The baseball team scored 55 points. The soccer team scored twice as much as the baseball team. The football team scored 0.5 more than 1.5 times as much as the baseball team. How many points did the basketball team score?
Answer:
67.5p.
Step-by-step explanation:
315p in total.
- Baseball has 55p.
- Soccer teams points = 55x2 = 110p.
- Football team points = 110 x 0.5 = 55 x 1.5 = 82.5p.
So then you just do 315p - 82.5p - 55p - 110p = 67.5p
There are $400$ pages in Sheila's favorite book. The average number of words per page in the book is $300$. If she types at an average rate of $40$ words per minute, how many hours will it take to type the $400$ pages of the book?
Answer:
50hours
Step-by-step explanation:
Given that there are 400 pages in Sheila's favorite book.
The average number of words per page in the book is 300
She types an average rate of 40words per minute.
So to type 400pages of the book
Total number of words in the pages = 400×300 = 120000 words
Typing rate : 40words ------- 1minute
120000 words ----------- x minutes
Hence we have 40 × X mins = 120000 × 1min
Make X the subject
40X = 120000minutes
X = 120000/40
X = 3000minutes
Since 60minutes = 1hour
3000minutes = 3000minutes/60
= 50hours
Hence it took her 50hours to type 400pages
Solution:
The total number of words in the book is 400 x 300. Sheila types at a rate of 40 words per minute, or 40 x 60 words per hour. The number of hours it takes her is equal to the number of words divided by her rate of typing, or 400x300/40x60 = 50 hours.
Suppose that prices of a certain model of new homes are normally distributed with a mean of $150,000. Use the 68-95-99.7 rule to find the percentage of buyers who paid: between $150,000 and $152,400 if the standard deviation is $1200.
A. 68%
B. 99.7%
C. 47.5%
D. 34%
Answer:
C. 47.5%
Step-by-step explanation:
The summary of the given statistics include:
mean =150000
standard deviation: 1200
The objective is to use tributed with a mean of $150,000. Use the 68-95-99.7 rule to find the percentage of buyers who paid: between $150,000 and $152,400
The z score formula can be use to calculate the percentage of the buyer who paid.
[tex]z = \dfrac{X - \mu}{\sigma}[/tex]
For the sample mean x = 150000
[tex]z = \dfrac{150000 - 150000}{1200}[/tex]
[tex]z = \dfrac{0}{1200}[/tex]
z = 0
For the sample mean x = 152400
[tex]z = \dfrac{152400 - 150000}{1200}[/tex]
[tex]z = \dfrac{2400 }{1200}[/tex]
z = 2
From the standard normal distribution tables
P(150000 < X < 152400) = P(0 < z < 2 )
P(150000 < X < 152400) =P(z<2) -P(z<0)
P(150000 < X < 152400) =0.9772 -0.5
P(150000 < X < 152400) = 0.4772
P(150000 < X < 152400) = 47.7% which is close to 47.5% therefore option C is correct
This question is based on concept of statistics. Therefore, correct option is C i.e. 47.5% of buyers who paid: between $150,000 and $152,400 if the standard deviation is $1200.
Given:
Mean is $150,000, and
Standard deviation is $1200.
We need to determined the percentage of buyers who paid: between $150,000 and $152,400 as per given mean and standard deviation.
By using z score formula can be use to calculate the percentage of the buyer who paid,
[tex]\bold{z=\dfrac{x-\mu }{\sigma}}[/tex]
As given in question sample mean i.e. X= 150,000
[tex]z=\dfrac{150000-150000}{1200} \\\\z= \dfrac{0}{1200}\\\\z=0[/tex]
Now for the sample mean X = 152,400 ,
[tex]z=\dfrac{152400-150000}{1200} \\\\\\z= \dfrac{24000}{1200}\\\\\\z=2[/tex]
By using standard normal distribution table,
P(150000 < X < 152400) = P(0 < z < 2 )
P(150000 < X < 152400) =P(z<2) -P(z<0)
P(150000 < X < 152400) =0.9772 -0.5
P(150000 < X < 152400) = 0.4772
P(150000 < X < 152400) = 47.7% which is close to 47.5%
Therefore, correct option is C that is 47.5%.
For further details, please prefer this link:
https://brainly.com/question/23907081
Use the gradient to find the directional derivative of the function at P in the direction of Q. g(x, y, z) = xye^z, P(2, 4, 0), Q(0, 0, 0)
Answer: Find answer in the attached files
Step-by-step explanation:
In training to run a half marathon, Jenny ran 2/5 hours on Tuesday, 11/6 hours on
Thursday, and 21/15 hours on Saturday. What is the total amount of hours that Jenny
ran this week? (Simplify your answer and state it as a mixed number.)
I
Answer:
Total hours that Jenny ran = 3.63 hours.
Step-by-step explanation:
Jenny ran on Tuesday for = 2/5 hours or 0.4 hours.
Time consumed to run on Thursday = 11/6 hours or 1.83 hours.
Time consumed to run on Saturday = 21/ 15 hours or 1.4 hours.
Here, the total hours can be calculated by just adding all the running hours. So the running hours of Tuesday, Thursday, and Saturday will be added to find the total hours.
Total hours that Jenny ran = 0.4 + 1.83 + 1.4 = 3.63 hours.
What value does the 2 in the number 0.826?
Answer:
.02
Step-by-step explanation:
2 is in "Hundredths' place in .826
So, the number is multiplied with 1/100 or .01
=> 2 x 1/100
=> 2/100
=> .02
=> 2 x .01
=> .02
The value of 2 in .826 is .02
What are the solution(s) of the quadratic equation 98 - x2 = 0?
x = +27
Ox= +63
x = +7/2
no real solution
Answer:
±7 sqrt(2) = x
Step-by-step explanation:
98 - x^2 = 0
Add x^2 to each side
98 =x^2
Take the square root of each side
±sqrt(98) = sqrt(x^2)
±sqrt(49*2) = x
±7 sqrt(2) = x
Answer:
[tex]\huge \boxed{{x = \pm 7\sqrt{2} }}[/tex]
Step-by-step explanation:
[tex]98-x^2 =0[/tex]
[tex]\sf Add \ x^2 \ to \ both \ sides.[/tex]
[tex]98=x^2[/tex]
[tex]\sf Take \ the \ square \ root \ of \ both \ sides.[/tex]
[tex]\pm \sqrt{98} =x[/tex]
[tex]\sf Simplify \ radical.[/tex]
[tex]\pm \sqrt{49} \sqrt{2} =x[/tex]
[tex]\pm 7\sqrt{2} =x[/tex]
[tex]\sf Switch \ sides.[/tex]
[tex]x= \pm 7\sqrt{2}[/tex]
A football team starts on the 10 yard line moving toward the 50 yard line so they can score on the other side of the field. In three plays they gain 14 yards, lose 12 yards, and gain 4 more yards. What yard line do they start their fourth play?
Answer:
16 yard line
Step-by-step explanation:
The football team is starting on the 10 yard line. In the first play, they move up to the 24 yard line. Then in the second play, they go back to the 12 yard line since they lost 12 yards. Then in the third play, they gain 4 yards so you add 4 to 12. They end up at the 16 yard line after the third play. This means that they're going to start their fourth play at the 16 yard line.
Answer:
16 yards.
Step-by-step explanation:
They start at 10 yards. They are moving towards the 50 yard line, so gaining yards will add to the 10 yards instead of subtract from the 10 yards.
In the first play, they gain 14 yards. 10 + 14 = 24 yards.
In the second play, they lose 12 yards. 24 - 12 = 12 yards.
In the third play, they gain 4 yards. 12 + 4 = 16 yards, which is where they start their fourth play.
Hope this helps!
Construct a polynomial function with the following properties: fifth degree, 2 is a zero of multiplicity 2, −5 is the only other zero, leading coefficient is 3.
Answer:
Step-by-step explanation:
Hello, just apply the instructions as below.
[tex]3(x-2)^2(x+5)^3[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Write a rational number in fraction form that is equivalent to -1.\overline{5}
Answer:
[tex]\dfrac{-14}{9}[/tex].
Step-by-step explanation:
The given number is [tex]-1.\overline{5}[/tex].
We need to find a rational number in fraction form that is equivalent to given number.
Let [tex]x=-1.\overline{5}[/tex]
[tex]x=-1.555...[/tex] ...(1)
Multiply both sides by 10.
[tex]10x=-15.555...[/tex] ...(2)
Subtracting (1) from (2), we get
[tex]10x-x=-15.555...-(-1.555...)[/tex]
[tex]9x=-14[/tex]
Divide both sides by 9.
[tex]x=\dfrac{-14}{9}[/tex]
Therefore, the required rational number is [tex]\dfrac{-14}{9}[/tex].
What is the answer and how is this solved?
Answer:
Sum : 65
Step-by-step explanation:
In this notation, n is our starting value, and hence we start at 3 and go to 7. Given the set of values : { 3, 4, 5, 6, 7 }, we can substitute in our expression " 4n - 7 " for n and solve. The sum of these values is our solution.
4( 3 ) - 7 = 12 - 7 = 5,
4( 4 ) - 7 = 16 - 7 = 9,
4( 5 ) - 7 = 20 - 7 = 13,
Our remaining values for n = 6 and n = 7 must then be 17 and 21. This is predictable as we have an arithmetic series here, the common difference being 4. As you can see 9 - 5 = 4, 13 - 9 = 4, 17 - 13 = 4, 21 - 17 = 4.
Therefore we have the series { 5, 9, 13, 17, 21 }. This adds to an answer of 65.
8. When dividing polynomials using factorization, cancelling identical factors in the denominator and the numerator will give the _______.
A. remainder
B. dividend
C. quotient
D. divisor
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
When dividing polynomials using factorization, cancelling identical factors in the denominator and the numerator will give the remainder.
A. remainder
B. dividend
C. quotient
D. divisor
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀
Answer:
a. remainder
Step-by-step explanation:
took the test
dont leave your house without a vest
or you will get hit in the vital organs in your chest
Un taxímetro inicia con 50 unidades y el banderazo o arranque es de $4500, las unidades comienzan a cambiar p0r cada kilometros recorrido. La función lineal que representa esta situación es y = 50x +4500 donde y representa el precio que cuesta la carrera y x la distancia recorrida en kilómetros. a) ¿ Cuanto cuesta una carrera si la distancia recorrida fue de 23 kilómetros?
Answer: $5650
Step-by-step explanation:
El precio de la carrera es:
y = ($50/km)*x + $4500.
Donde x representa la cantidad recorrida en Km.
Ahora se nos pregunta:
¿ Cuanto cuesta una carrera si la distancia recorrida fue de 23 kilómetros?
Para esto, debemos reemplazar la variable en la equacion por 23km:
x = 23km
y = ($50/km)*23km + $4500 = $5650
Find the mean, variance, and standard deviation of the binomial distribution with the given values of n and p. n = 50 p = 0.2
Answer:
The mean, variance, and standard deviation of the binomial distribution are 10, 8, and 2.83 respectively.
Step-by-step explanation:
We have to find the mean, variance, and standard deviation of the binomial distribution with the given values of n and p, i.e; n = 50 p = 0.2.
Let X = binomial random variable
So, X ~ Binom(n = 50, p = 0.2)
Now, the mean of the binomial distribution is given by;
Mean of X, E(X) = n [tex]\times[/tex] p
= 50 [tex]\times[/tex] 0.2 = 10
Now, the variance of the binomial distribution is given by;
Variance of X, V(X) = n [tex]\times[/tex] p [tex]\times[/tex] (1 - p)
= 50 [tex]\times[/tex] 0.2 [tex]\times[/tex] (1 - 0.2)
= 10 [tex]\times[/tex] 0.8 = 8
Also, the standard deviation of the binomial distribution is given by;
Standard deviation of X, S.D.(X) = [tex]\sqrt{\text{n} \times \text{p} \times (1 - \text{p})}[/tex]
= [tex]\sqrt{\text{50} \times \text{0.2} \times (1 - \text{0.2})}[/tex]
= [tex]\sqrt{8}[/tex] = 2.83
1+3^2⋅2−5 order of operations
Answer:
Below
Step-by-step explanation:
● 1 + 3^2 × 2 -5
Start by calculating 3^2 wich is 9
● 1 + 9 × 2 -5
Multiply 2 by 9 (9×2=18)
● 1 + 18 -5
Add 1 to 18 (1+18 = 19)
● 19 -5
Substract 5 from 19 (19-5 = 14 )
● 14
Factor.
x2 – 5x - 36
(x - 9)(x + 4)
(x - 12)(x + 3)
(x + 9)(x - 4)
(x + 12)(x - 3)
Answer:
The answer is option AStep-by-step explanation:
x² - 5x - 36
To factor the expression rewrite -5x as a difference
That's
x² + 4x - 9x - 36
Factor out x from the expression
x( x + 4) - 9x - 36
Factor out -9 from the expression
x( x + 4) - 9( x+ 4)
Factor out x + 4 from the expression
The final answer is
( x - 9)( x + 4)Hope this helps you
Answer:
[tex] \boxed{(x - 9) \: (x + 4) }[/tex]
Option A is the correct option.-
Step-by-step explanation:
( See the attached picture )
Hope I helped!
Best regards!
cherry pies ratio is 240 to 3 pies.how many Cherry's to make 9 pies
Answer:
720
Step-by-step explanation:
It takes 240 cherries to make 3 pies.
9 pies are 3 times 3 pies, so it takes 3 times as many cherries.
3 * 240 cherries = 720 cherries.
[tex]\text{Find how many cherries is needed for 9 pies}\\\\\text{We know that there are 240 total cherries on 3 pies}\\\\\text{Now we need to find how many cherries will 9 pies need}\\\\\text{We simply have to multiply 240 by 3, since 3 multiplied by 3 is 9 pies}\\\text{So we would do the same with the cherries by multiplying it by 3}\\\\240\cdot3=720\\\\\boxed{\text{720 cherries}}[/tex]
Given v(x) = g(x) (3/2*x^4 + 4x – 1), find v'(2).
Answer:
Step-by-step explanation:
Given that v(x) = g(x)×(3/2*x^4+4x-1)
Let's find V'(2)
V(x) is a product of two functions
● V'(x) = g'(x)×(3/2*x^4+4x-1)+ g(x) ×(3/2*x^4+4x-1)
We are interested in V'(2) so we will replace x by 2 in the expression above.
g'(2) can be deduced from the graph.
● g'(2) is equal to the slope of the tangent line in 2.
● let m be that slope .
● g'(2) = m =>g'(2) = rise /run
● g'(2) = 2/1 =2
We've run 1 square to the right and rised 2 squares up to reach g(2)
g(2) is -1 as shown in the graph.
■■■■■■■■■■■■■■■■■■■■■■■■■■
Let's derivate the second function.
Let h(x) be that function
● h(x) = 3/2*x^4 +4x-1
● h'(x) = 3/2*4*x^3 + 4
● h'(x) = 6x^3 +4
Let's calculate h'(2)
● h'(2) = 6 × 2^3 + 4
● h'(2) = 52
Let's calculate h(2)
●h(2) = 3/2*2^4 + 4×2 -1
●h(2)= 31
■■■■■■■■■■■■■■■■■■■■■■■■■■
Replace now everything with its value to find V'(2)
● V'(2) = g'(2)×h(2) + g(2)× h'(2)
● V'(2)= 2×31 + (-1)×52
●V'(2) = 61 -52
●V'(2)= 9
i will rate you brainliest
Answer:
Option (2)
Step-by-step explanation:
In an arithmetic progression,
[tex]a_1,a_2,a_3.........a_{n-1},a_n[/tex]
First term of the progression,
a = [tex]a_1[/tex]
Common difference 'd' = [tex](a_2-a_1)[/tex]
Recursive formula for the sequence,
a = [tex]a_1[/tex]
[tex]a_n=a_{n-1}+d[/tex]
By applying these rules in the recursive formula,
[tex]a_1=\frac{4}{5}[/tex]
[tex]a_n=a_{n-1}+\frac{3}{2}[/tex]
Common difference 'd' = [tex]\frac{3}{2}[/tex]
Therefore, Option (2) will be the answer.
Combine like terms to simplify the expression: 2/5k - 3/5 +1/10k
━━━━━━━☆☆━━━━━━━
▹ Answer
1/2k - 3/5
▹ Step-by-Step Explanation
2/5k - 3/5 + 1/10k
Collect like terms:
2/5k + 1/10k = 1/2
Final Answer:
1/2k - 3/5
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
Answer:
1/2k - 3/5
Step-by-step explanation:
Hey there!
Well the only fraction needed to combine are,
2/5 and 1/10.
To add them we need to make 2/5 have a denominator of 10.
To do that we multiply 5 by 2.
5*2 = 10
What happens to the denominator happens to the denominator.
2*2 = 4
Fraction - 4/10
4/10 + 1/10 = 5/10
5/10
simplified
1/2
1/2k - 3/5
Hope this helps :)