Answer:
Step-by-step explanation:
The statement that is true about an angle drawn in standard position is that one side is always aligned with the positive x-axis. The other side of the angle can be aligned with either the positive y-axis or the negative y-axis. The vertex of the angle does not necessarily have to be at point (1,1) and positive angles are measured counterclockwise.
Really need help asap !
The value of h(x) using exponents are as follows:
For -1, the value of h(x)=1/10
For 0, the value of h(x) = 1
For 1, the value of h(x) = 10
For 2, the value of h(x) = 100
For 3, the value of h(x) = 1000
What are exponents?The exponent of a number tells us how many times the original value has been multiplied by itself. For instance, 2×2×2×2 can be expressed as [tex]2^{4}[/tex] the result of 4 times multiplying 2 by itself. Thus, 4 is referred to as the "exponent" or "power," while 2 is referred to as the "base."
Generally speaking, [tex]x^{n}[/tex] denotes that x has been multiplied by itself n times. Here x is the base and n is the power.
Now here, as we put the value of x in the equation, h(x) we can get the value of h(x) for each value of x.
So,
For -1, the value of h(x)=1/10
For 0, the value of h(x) = 1
For 1, the value of h(x) = 10
For 2, the value of h(x) = 100
For 3, the value of h(x) = 1000
To know more about exponents, visit:
https://brainly.com/question/30066987
#SPJ1
The Butler family and the Phillips family each used their sprinklers last summer. The water output rate for the Butler family's sprinkler was 25 L per hour. The water output rate for the Phillips family's sprinkler was 40 L per hour. The families used their sprinklers for a combined total of 55 hours, resulting in a total water output of 1750 L. How long was each sprinkler used?
The Butler family used their sprinkler for 30 hours and the Phillips family used their sprinkler for 25 hours.
Let's solve the problem with algebra.
Let x represent the number of hours the Butlers used their sprinkler, and y represent the number of hours the Phillips family used their sprinkler. We are aware of the following:
The Butler family's sprinkler had a water output rate of 25 L per hour, so the total amount of water they used is 25x.
The Phillips family's sprinkler had a water output rate of 40 L per hour, so the total amount of water they used was 40y.
The sprinklers were used by the families for a total of 55 hours, so x + y = 55.
The total amount of water produced was 1750 L, so 25x + 40y = 1750.
Using these equations, we can now solve for x and y.
First, we can solve for one of the variables in terms of the other using the equation x + y = 55. For instance, we can solve for x as follows:
x = 55 - y
When we plug this into the second equation, we get:
25(55 - y) + 40y = 1750
We get the following results when we expand and simplify:
1375 - 25y + 40y = 1750
15y = 375
y = 25
As a result, the Phillips family ran their sprinkler for 25 hours. We get the following when we plug this into the equation x + y = 55:
x + 25 = 55
x = 30
As a result, the Butlers used their sprinkler for 30 hours.
As a result, the Butler family sprinkled for 30 hours and the Phillips family sprinkled for 25 hours.
To know more similar question visit:
https://brainly.com/question/18089455
#SPJ1
Find the missing length indicated
The calculated value of the indicated missing length x in the right triangle is 12
How to determine the value of the indicated missing lengthGiven the right triangle
We can start by calculating the value of x using the following equivalent ratio
x : 9 = 25 - 9 : x
Evaluate the difference
This gives
x : 9 = 16 : x
Next, we express the equivalent ratio as a fraction
So, the ratio becomes
x/9 = 16/x
Cross multiply the equation to calculate x
So, we have the following
x * x = 9 * 16
Evaluate the product
x² = 144
Take the square root of both sides
So, we have the solution to be
y = 12
Hence, the value of x is 12
Read more about right triangles at
https://brainly.com/question/2437195
#SPJ1
Suppose you have a cache of radium, which has a half-life of approximately 1590 years. How long would you have to wait for 1/7 of it to disappear?
You would have to wait ___ years for 1/7 of the radium to disappear.
Accοrding tο the half-life fοrmula, we wοuld have tο wait apprοximately 4975 years fοr 1/7 οf the radium tο decay.
What is Expοnential Decay ?Expοnential decay is a mathematical prοcess in which a quantity decreases οver time in a manner prοpοrtiοnal tο its current value. This means that the rate οf decay is prοpοrtiοnal tο the amοunt οf the substance remaining, and as the amοunt οf the substance decreases, the rate οf decay alsο decreases. The fοrmula fοr expοnential decay is οften written as:
N(t) = N₀ *[tex]e^{(-kt)[/tex]
where N(t) is the amοunt οf substance remaining at time t, N₀ is the initial amοunt οf the substance, k is the decay cοnstant, and e is the base οf the natural lοgarithm.
The half-life οf radium is apprοximately 1590 years, which means that after 1590 years, half οf the οriginal radium will have decayed. Therefοre, we can use the half-life fοrmula tο find the amοunt οf time it wοuld take fοr 1/7 οf the radium tο decay:
N = N₀[tex]* (1/2)^{(t/t1/2)[/tex]
where N is the final amοunt (1/7 οf the οriginal amοunt), N0 is the initial amοunt, t is the time elapsed, and t1/2 is the half-life.
We can rearrange this fοrmula tο sοlve fοr t:
t = t1/2 * lοg2(N₀/N)
t = 1590 years * lοg2(7)
t ≈ 4975 years
Therefοre, we wοuld have tο wait apprοximately 4975 years fοr 1/7 οf the radium tο decay.
To know more about exponential Decay visit:
brainly.com/question/2193799
#SPJ1
1.The volume of a toaster is 100 in . If the toaster is 2.5 inches wide and 4 inches high, how long is the toaster, in inches?
2. Find the volume of a cylinder with a diameter of 9 ft and a height of 1 ft.
Use 3.14 or the calculator value for pi and provide an answer accurate to the nearest tenth.
Answer:
10 in.
Step-by-step explanation:
V = LWH
100 = L × 2.5 × 4
L = 10
Find the associated z-score or scores that represent the following standard normal areas(hint use the excel function =NORM.S.INV()
A. Middle 50 percent
B. Lowest 5 percent
C. Middle 90%
Answer all questions please(URGENT
The z-scores that represent the middle 50% of the standard normal distribution are between -0.6745 and 0.6745, the lowest 5% of the standard normal distribution is -1.645, and the 90% of the standard normal distribution is between -1.645 and 1.645.
What is the definition of standard normal variation?The mean and variance of a standard normal distribution are both 0. A z distribution is another name for this.
Yes, here are the z-scores for the given standard normal areas:
A. Middle 50%: The area between the 25th and 75th percentiles corresponds to the middle 50% of the standard normal distribution. Using Excel's NORM.S.INV() function, we can calculate the z-scores that correspond to those percentiles as follows:
-0.6745 is the z-score corresponding to the 25th percentile.
The 75th percentile z-score is 0.6745.
As a result, the z-scores representing the middle 50% of the standard normal distribution range between -0.6745 and 0.6745.
B. Lowest 5%: The area to the left of the 5th percentile corresponds to the lowest 5% of the standard normal distribution. Using Excel's NORM.S.INV() function, we can calculate the z-score that corresponds to that percentile as follows:
The z-score associated with the fifth percentile is -1.645.
As a result, the z-score representing the bottom 5% of the standard normal distribution is -1.645.
C. Middle 90%: The area between the 5th and 95th percentiles corresponds to the middle 90% of the standard normal distribution. Using Excel's NORM.S.INV() function, we can calculate the z-scores that correspond to those percentiles as follows:
The z-score associated with the fifth percentile is -1.645.
The z-score associated with the 95th percentile is 1.645.
As a result, the z-scores representing the middle 90% of the standard normal distribution range between -1.645 and 1.645.
To know more about standard normal distribution visit:
https://brainly.com/question/29509087
#SPJ1
Using the data table, what is the probability that Baxter’s Shelties will NOT have a Tri-Color puppy this year? Justify your decision.
35% of households say they would feel secure if they had 50000 in savings he randomly selected 8 households and ask them if they would feel secure if they had 50000 in savings find the probability that the number that say that they would feel secure a exactly 5B more than 5 &c at most 5
Probability that precisely 5 people will respond that they would feel comfortable is 0.0808
Probability that more than 5 people will respond that they would feel comfortable is0.1061
Probability that at most 5 people will respond that they would feel comfortable is 0.9747
Probability Definition in MathProbability is a way to gauge how likely something is to happen. Several things are difficult to forecast with absolute confidence.
Solving the problem:35 percent of households claim that having $50,000 in savings would make them feel comfortable. Ask 8 homes that were chosen at random if they would feel comfortable if they had $50,000 in savings.
Binomial conundrum with p(secure) = 0.35 and n = 8.
the likelihood that the number of people who claim they would feel comfortable is
(a) The number exactly five is equal to ⁸C₅ (0.35)5×(0.65)×3=binompdf(8,0.35,5) = 0.0808.
(b) more than five = 1 - binomcdf(8,0.35,4) = 0.1061
(c) at most five = binomcdf(8,0.35,5) = 0.9747.
to know more about forecast, visit:
https://brainly.com/question/28839529
#SPJ1
Graph the linear equation.
42 + 6y = -12
Plot two points on the line to graph the line.
The graph of the linear function 4x + 6y = -12 is given by the image presented at the end of the answer.
How to define a linear function?The slope-intercept representation of a linear function is given by the equation presented as follows:
y = mx + b
The coefficients of the function and their meaning are described as follows:
m is the slope of the function, representing the change in the output variable y when the input variable x is increased by one.b is the y-intercept of the function, which is the initial value of the function, i.e., the numeric value of the function when the input variable x assumes a value of 0. On a graph, it is the value of y when the graph of the function crosses the y-axis.The function for this problem is given as follows:
4x + 6y = -12.
In slope-intercept form, the function is given as follows:
6y = -4x - 12.
y = -2x/3 - 2.
The slope and the intercept are given as follows:
Intercept of b = -2, meaning that when x = 0, y = -2.Slope of -2/3, meaning that when x decays by 3, y increases by two, hence the graph also passes through point (-3,0).More can be learned about linear functions at https://brainly.com/question/24808124
#SPJ1
mr.woodstock has a plot of land 36 meter long and 16 meters wide. he uses the land for mixed farming- rearing animals and growing crop? What length of wire does mr.woodstock need to fence his land?
Mr. Woodstock will need to purchase 144 meters of wire to fully encircle his land. He will need to measure the length of the four sides of the land and add them together. The four sides measure 36 meters + 36 meters + 16 meters + 16 meters, which equals a total of 104 meters. He should buy enough wire to cover an additional 40 meters to account for any extra material he may need. Therefore, he needs to purchase 144 meters of wire for his fencing.
A mountain is 13,318 ft above sea level and the valley is 390 ft below sea level What is the difference in elevation between the mountain and the valley
Answer: 13,708 ft
Step-by-step explanation:
To find the difference in elevation between the mountain and the valley, we need to subtract the elevation of the valley from the elevation of the mountain:
13,318 ft (mountain) - (-390 ft) (valley) = 13,318 ft + 390 ft = 13,708 ft
Therefore, the difference in elevation between the mountain and the valley is 13,708 ft.
Answer: The difference is 13,708 ft.
Given that a mountain is 13,318 feet above sea level. So the elevation of the mountain is [tex]= +13,318 \ \text{ft}[/tex].
Given that a valley is 390 feet below sea level.
So the elevation of the valley is [tex]= -390 \ \text{ft}[/tex].
So the difference between them is [tex]= 13,318 - (-390) = 13,318 + 390 = 13,708 \ \text{ft}.[/tex]
Learn more: https://brainly.com/question/20521181
Use the graphs shown in the figure below. All have the form f(x) = abª. Which graph has the smallest value for b?
Graph D of the given function has the smallest value for b.
Exponential Function: What Is It?As per name signifies, exponents are used in exponential functions. But take note that an exponential function does not have a constant as its base and a variable as its exponent. One of the following forms can be used for an exponential function.
f (x) = aˣ
According to the graph,y=f(x) >0
f(x)=abˣ , where a>0
So, f(x)=abˣ
When, b<1 f(x) decreases
When, b>1 f(x) increases and the larger the b the steeper the graph
So, graph of D is increasing and is steepest
So, graph D has the smallest value for b.
To know more about variable, visit
https://brainly.com/question/17344045
#SPJ1
Arguing geometrically, find all eigenvectors and eigen-values of the linear transformations in Exercises 15 through 22. In each case, find an eigenbasis if you can, and thus determine whether the given transformation is diagonalizable.
Reflection about a plane V in R3
The eigenvalues of the reflection about a plane in R3 are 1 and -1, with corresponding eigenvectors lying on the plane and perpendicular to the plane, respectively. Therefore, the transformation is diagonalizable with an eigenbasis consisting of these eigenvectors.
Consider a reflection about a plane V in R3. Let's denote this linear transformation by T.
We know that any vector v in R3 can be decomposed uniquely into a sum of two vectors, one in V and one in the orthogonal complement of V. Let's denote these subspaces by V and V⊥, respectively. Then we have:
R3 = V ⊕ V⊥
Since T reflects vectors across the plane V, any vector in V will be fixed by the transformation, while any vector in V⊥ will be flipped across the plane.
Let's consider a vector v in V. Since T fixes v, we have:
T(v) = v
This means that v is an eigenvector of T with eigenvalue 1.
Now let's consider a vector u in V⊥. Since T flips u across the plane V, we have:
T(u) = -u
This means that u is an eigenvector of T with eigenvalue -1.
Since any vector in R3 can be written as a sum of a vector in V and a vector in V⊥, we have shown that every vector in R3 is an eigenvector of T, and the corresponding eigenvalues are 1 and -1.
To find an eigenbasis, we need to find a basis for R3 consisting of eigenvectors of T. We have already shown that every vector in R3 is an eigenvector, so the standard basis {e1, e2, e3} is an eigenbasis. Therefore, T is diagonalizable.
The eigenvalues are λ1 = 1 and λ2 = -1, and the corresponding eigenvectors are {v} and {u}, where v is any nonzero vector in V and u is any nonzero vector in V⊥.
To know more about eigenvectors:
https://brainly.com/question/31013028
#SPJ4
Which expressions are equivalent to 8(3/4y -2)+6(-1/2+4)+1
Answer: 6y + 6
Step-by-step explanation:
To simplify the expression 8(3/4y -2) + 6(-1/2+4) + 1, we can follow the order of operations (PEMDAS):
First, we simplify the expression within parentheses, working from the inside out:
6(-1/2+4) = 6(7/2) = 21
Next, we distribute the coefficient of 8 to the terms within the first set of parentheses:
8(3/4y -2) = 6y - 16
Finally, we combine the simplified terms:
8(3/4y -2) + 6(-1/2+4) + 1 = 6y - 16 + 21 + 1 = 6y + 6
Therefore, the expression 8(3/4y -2) + 6(-1/2+4) + 1 is equivalent to 6y + 6.
The rate at which a rumor spreads through a town of population N can be modeled by the equation dt/dx = kx(N−x) where k is a constant and x is the number of people who have heard the rumor. (a) If two people start a rumor at time t=0 in a town of 1000 people, find x as a function of t given k=1/250. (b) When will half the population have heard the rumor?
(a) The function x as a function of t is t = 250ln(499x/998)
(b) Half the population will have heard the rumor approximately 109.86 units of time after it was started.
(a) To solve the differential equation dt/dx = kx(N−x), we can separate the variables and integrate
dt/dx = kx(N−x)
dt/(N-x) = kx dx
Integrating both sides, we get
t = -1/k × ln(N-x) - 1/k × ln(x) + C
where C is the constant of integration.
To find C, we can use the initial condition that two people start the rumor at t=0, so x=2:
0 = -1/k * ln(N-2) - 1/k * ln(2) + C
C = 1/k * ln(N-2) + 1/k * ln(2)
Substituting C back into the equation, we get:
t = -1/k * ln(N-x) - 1/k * ln(x) + 1/k * ln(N-2) + 1/k * ln(2)
Simplifying, we get
t = 1/k * [ln((N-2)x/(2(N-x)))]
Substituting k=1/250 and N=1000, we get:
t = 250ln(499x/998)
(b) We want to find the time t when half the population has heard the rumor, so x = N/2 = 500. Substituting this into the equation we obtained in part (a), we get
t = 250ln(499(500)/998) = 250ln(249/499)
t ≈ 109.86
Therefore, half the population will have heard the rumor approximately 109.86 units of time after it was started.
Learn more about differential equation here
brainly.com/question/29199325
#SPJ4
I need help with this
Answer:
(x -14)² +(y -7)² = 1²
Step-by-step explanation:
You want the equation of the circle that represents the border of a logo centered 14 m right and 7 m up from the lower left corner of a soccer field. The logo is 2 m in diameter.
Equation of a circleThe equation of a circle with center (h, k) and radius r is ...
(x -h)² +(y -k)² = r²
Since the origin of the coordinate system is the lower left corner of the field, the center is located at (h, k) = (14, 7). The diameter of 2 m means the radius is 1 m. Using these values in the equation, it becomes ...
(x -14)² +(y -7)² = 1²
Linda deposits $50,000 into an account that pays 6% interest per year, compounded annually. Bob deposits $50,000 into an account that also pays 6% per year. But it is simple interest. Find the interest Linda and Bob earn during each of the first three years. Then decide who earns more interest for each year. Assume there are no withdrawals and no additional deposits. Year First Second Third Interest Linda earns (Interest compounded annually) Interest Bob earns (Simple interest) Who earns more interest? Linda earns more. Bob earns more. They earn the same amount. Linda earns more. Bob earns more. They earn the same amount. Linda earns more. Bob earns more. They earn the same amount.
Answer:
Step-by-step explanation:
To calculate the interest earned by Linda for the first year, we can use the formula:
A = P(1 + r/n)^(nt)
Where A is the amount after t years, P is the principal amount, r is the annual interest rate, n is the number of times the interest is compounded per year, and t is the time in years.
For the first year, we have:
A = $50,000(1 + 0.06/1)^(1*1) = $53,000
So, the interest earned by Linda for the first year is:
Interest = $53,000 - $50,000 = $3,000
For the second year, we can use the same formula with t = 2:
A = $50,000(1 + 0.06/1)^(1*2) = $56,180
Interest = $56,180 - $53,000 = $3,180
For the third year, we can use the same formula with t = 3:
A = $50,000(1 + 0.06/1)^(1*3) = $59,468.80
Interest = $59,468.80 - $56,180 = $3,288.80
Now, to calculate the interest earned by Bob for each of the first three years, we can use the formula:
Interest = Prt
Where P is the principal amount, r is the annual interest rate, and t is the time in years.
For the first year, we have:
Interest = $50,0000.061 = $3,000
For the second year, we have:
Interest = $50,0000.061 = $3,000
For the third year, we have:
Interest = $50,0000.061 = $3,000
As we can see, Linda earns more interest than Bob for each year, as her interest is compounded annually, while Bob's interest is simple interest. Therefore, the answer is:
Linda earns more.
Answer:
Linda earns $9550.8 interest and bob earns $9000 interest
Step-by-step explanation:
Linda takes compound interest: C.I. = Principal (1 + Rate)Time − Principal
interest= 50,000(1+6/100)³
=59550.8 - 50000
Linda earns $9550.8 interest in 3 years.
bob takes simple interest: S.I = prt/100
interest = 50,000*6*3/100
Bob earns $9000 in 3 years.
thus, Linda earns more interest than bob.
Which expression represents the distance
between point G and point H?
|-12|16| |-12|+|-9|
1-9|-|-6|
|-12|+|6|
-15
H(-9,6)
G(-9,-12)
15+y
0
-15-
15
Answer:
Step-by-step explanation:
2
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between 0°C and 1.08°C. Round your answer to 4 decimal places
Answer: We are given that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C.
To find the probability of obtaining a reading between 0°C and 1.08°C, we need to calculate the z-scores for these values using the formula:
z = (x - mu) / sigma
where x is the value we are interested in, mu is the mean, and sigma is the standard deviation.
For x = 0°C, we have:
z1 = (0 - 0) / 1.00 = 0
For x = 1.08°C, we have:
z2 = (1.08 - 0) / 1.00 = 1.08
Using a standard normal table or a calculator, we can find the probability of obtaining a z-score between 0 and 1.08.
Using a standard normal table or a calculator, we find that the probability of obtaining a z-score between 0 and 1.08 is 0.3583.
Therefore, the probability of obtaining a reading between 0°C and 1.08°C is 0.3583, rounded to 4 decimal places.
Step-by-step explanation:
A cultural researcher tests whether individuals from different cultures share or differ in the belief that dreams have meaning.
Independent Variable: ________
Quasi-Independent Variable: ________
Dependent Variable: ________
IV individuals from different cultures
DV the belief that dreams have meaning.
Independent Variable: Culture
Belief in the meaning of dreams is a quasi-independent variable (since it cannot be manipulated or assigned randomly)
The response to whether or not dreams have meaning is the dependent variable.
What are the three kinds of variables?An experimental investigation typically contains three types of variables: independent variables, dependent variables, and controlled variables.
What is the independent or quasi-independent variable?A compared to the rest of the country. Because the variable levels are pre-existing, it is not possible to assign participants to groups at random.
To know more about Variable visit:
brainly.com/question/1511425
#SPJ1
Find the standard normal area for each of the following Round your answers to the 4 decimal places
The standard normal areas are given as follows:
P(1.22 < Z < 2.15) = 0.0954. P(2 < Z < 3) = 0.0215.P(-2 < Z < 2) = 0.9544.P(Z > 0.5) = 0.3085.How to obtain probabilities using the normal distribution?The z-score of a measure X of a normally distributed variable that has mean represented by [tex]\mu[/tex] and standard deviation represented by [tex]\sigma[/tex] is obtained by the equation presented as follows:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The z-score represents how many standard deviations the measure X is above or below the mean of the distribution of the data-set, depending if the obtained z-score is positive(above the mean) or negative(below the mean).The z-score table is used to obtain the p-value of the z-score, and it represents the percentile of the measure X in the distribution.Considering the second bullet point, the areas are given as follows:
P(1.22 < Z < 2.15) = p-value of Z = 2.15 - p-value of Z = 1.22 = 0.9842 - 0.8888 = 0.0954.P(2 < Z < 3) = 0.0215 = p-value of Z = 3 - p-value of Z = 1 = 0.9987 - 0.9772 = 0.0215.P(-2 < Z < 2) = p-value of Z = 2 - p-value of Z = -2 = 0.9772 - 0.0228 = 0.9544P(Z > 0.5) = 1 - p-value of Z = 0.5 = 1 - 0.6915 = 0.3085.More can be learned about the normal distribution at https://brainly.com/question/25800303
#SPJ1
Find the area of the region that is bounded by the given curve and lies in the specified sector.
r = e^ θ/2
π/6 = θ = 7π/6
The area of the region that is bounded by the given curve and lies in the specified sector is A = 2(e^(7π/12) - e^(π/12))
The polar curve r = e^(θ/2) represents a spiral that starts from the origin and gets farther away as it unwinds. We want to find the area of the region that lies inside this spiral and inside the sector defined by the angles θ = π/6 and θ = 7π/6.
To solve the problem, we need to find the points where the curve intersects the sector, which are given by plugging in the values of θ:
r(π/6) = e^(π/12)
r(7π/6) = e^(7π/12)
Then we can set up the integral for the area inside the sector:
A = 1/2 ∫[π/6, 7π/6] (r(θ))^2 dθ
Substituting the equation for r:
A = 1/2 ∫[π/6, 7π/6] e^θ/2 dθ
Using the power rule for integration:
A = 2(e^(7π/12) - e^(π/12))
This is the exact value of the area inside the sector and inside the spiral. If we want a decimal approximation, we can use a calculator or computer software to evaluate it.
To know more about Area:
https://brainly.com/question/4036565
#SPJ4
Mr. Roy captures 15 snapping turtles near some wetland by his house. He marks them with a “math is cool” label and releases them back into the wild. 6 months later, he captures another 15 snapping turtles – 4 of which were marked. Estimate the population of snapping turtles in the area to the nearest whole number. Show your work.
Answer: 56
Step-by-step explanation:
One possible method to estimate the population of snapping turtles in the area is by using the mark and recapture method, also known as the Lincoln-Petersen index.
According to this method, the population size can be estimated by dividing the number of marked individuals in the second sample by the proportion of marked individuals in the combined sample. In other words:
Estimated population size = (Number of individuals in sample 1 × Number of individuals in sample 2) / Number of marked individuals in sample 2
Using the information provided in the problem, we can fill in the formula as follows:
Estimated population size = (15 × 15) / 4
Estimated population size = 56.25
Rounding to the nearest whole number, we get an estimated population size of 56 snapping turtles in the area.
through: (2,5), slope = 3
The equation of the line passing through (2,5) with a slope of 3 is y = 3x - 1.
This question is incomplete, the complete question is:
What is the equation of line passing through: (2,5), and with a slope = 3?
What is the equation of the line with the given point and slope?The equation of a line in slope-intercept form is expressed as:
y = mx + b
Where m is the slope and b is the y-intercept.
Given that, the point (2, 5) and the slope of the line is 3.
We can use the point-slope form of the equation of a line to find the equation in slope-intercept form:
y - y1 = m(x - x1)
Where x1 and y1 are the coordinates of the given point ( 2,5 ) and m is slope 3.
Substituting the given values, we get:
y - y1 = m(x - x1)
y - 5 = 3(x - 2)
Expanding and rearranging, we get:
y - 5 = 3x - 6
y = 3x - 1
Therefore, the equation of the line is y = 3x - 1.
Learn more about equation of line here: https://brainly.com/question/28696396
#SPJ1
Subtract: ? 5/6 - 4/6
Answer:
1/6
Step-by-step explanation:
5/6 - 4/6 = 1/6
Answer:
Step-by-step explanation:
To subtract these fractions, we need to have a common denominator. In this case, the denominators 5 and 6 do not match, so we have to find the least common multiple (LCM) of 5 and 6, which is 30.
Then, we can convert both fractions so that they have a denominator of 30:
5/6 = 25/30
4/6 = 20/30
Now we can subtract the numerators:
25/30 - 20/30 = 5/30
Simplifying the result to its lowest terms, we have:
5/30 = 1/6
Therefore, 5/6 - 4/6 = 1/6.
Which of the following pairs of sample size n and population proportion p would produce the greatest standard deviation for the sampling distribution of a sample proportion p?
Therefore , the solution of the given problem of standard deviation comes out to be option C with n = 1,000 and p near to 1/2 is the right response.
What does standard deviation actually mean?Statistics uses variance as a way to quantify difference. The image of the result is used to compute the average deviation between the collected data and the mean. Contrary to many other valid measures of variability, it includes those pieces of data on their own by comparing each number to the mean. Variations may be caused by willful mistakes, irrational expectations, or shifting economic or business conditions.
Here,
The following algorithm determines the standard deviation of the sampling distribution of a sample proportion p:
=> √((p*(1-p))/n)
where n is the sample size, and p is the population percentage.
For the sampling distribution of a sample proportion p,
the pair of sample number n and population proportion p that would result in the highest standard deviation is:
=>n =1,000, and p is almost half.
Because p=1/2
yields the highest possible value of the expression (p*(1-p)), a bigger sample size will result in a smaller standard deviation.
The standard deviations will be lower for the other choices, which have smaller sample sizes or extreme values of p.
Therefore, (C) with n = 1,000 and p near to 1/2 is the right response.
To know more about standard deviation visit :-
brainly.com/question/13673183
#SPJ1
Find the real solutions of the following equation by graphing.
x³ - 6x²+5x=0
The Solution(s) is/are ? .
The real solutions of the following equation are 5 and 1
[ Graph is attached below ]
Solving equation graphically:
To solve the given equation graphically we need to find the coordinate points that pass through the graph.
This can be done by taking 'x' values and solving for them 'y' values.
Now draw the graph using the above coordinates and find the solution as shown below.
Here we have
x³ - 6x²+ 5x = 0
Let y = x³ - 6x²+ 5x
To draw the graph find the coordinates of points as follows
At x = 0 => y = (0) + (0) + (0) = 0
At x = 1 => y = (1)³ - 6(1)² + 5(1) = 0
At x = -1 => y = (-1)³ - 6(-1)² + 5(-1) = - 12
At x = 2 => y = (2)³ - 6(2) + 5(2) = 6
From the above calculation,
The coordinates of the points to draw the graph are (0, 0), (1, 0), (-1, -12), and (2, 6)
Here the solutions of the graph are the x-coordinate of points where the graph cuts the x-axis
From the figure, the graph will cut the x-axis at 1 and 5
Therefore,
The real solutions of the following equation are 5 and 1
[ Graph is attached below ]
Learn more about Graphs at
https://brainly.com/question/8210152
#SPJ1
Can anyone help thanks!!!!
Answer:
B
Step-by-step explanation:
5^2 is the small square, 4(3x4x1/2) are the 4 triangles
Answer: The answer would be B.
Step-by-step explanation:
Hello.
First, we know that the smaller square is 5, and to find the area of the big square, we need to square 5 to get the area. We also know that C wouldn't be a viable option, so, our only remaining choices are A and B. We know that without the smaller square, there are 4 triangles, and the Area of a Triangle is: 1/2*b*h. So, this also takes A out as an option as well. After this, you will have your answer as B; 5^2 + 4(3 * 4 * 1/2)
(Or, you could have found the Area of the Triangles, and realize that neither A, nor C have those options, making B the answer by default.)
Hope this helps, (and maybe brainliest?)
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading less than 0.35°C.
Round your answer to 4 decimal places
The probability of obtaining a reading less than 0.35° C is approximately 35%.
What exactly is probability, and what is its formula?Accοrding tο the prοbability fοrmula, the likelihοοd οf an event οccurring is equal tο the ratiο οf the number οf favοurable οutcοmes tο the tοtal number οf οutcοmes. Prοbability οf an event οccurring P(E) = The number οf favοurable οutcοmes divided by the tοtal number οf οutcοmes.
The readings at freezing οn a set οf thermοmeters are nοrmally distributed, with a mean (x) οf 0°C and a standard deviatiοn (μ) οf 1.00°C. We want tο knοw hοw likely it is that we will get a reading that is less than 0.35°C.
To solve this problem, we must use the z-score formula to standardise the value:
[tex]$Z = \frac{x - \mu}{\sigma}[/tex]
Z = standard score
x = observed value
[tex]\mu[/tex] = mean of the sample
[tex]\sigma[/tex] = standard deviation of the sample
Here
x = 0.35° C
[tex]\mu[/tex] = 0° C
[tex]\sigma[/tex] = 1.00°C
Using the values on the formula:
[tex]$Z = \frac{0.35 - 0}{1}[/tex]
Z = 0.35
The probability of obtaining a reading less than 0.35° C is approximately 35%.
To know more about probability visit:
brainly.com/question/30719832
#SPJ1
ONQ is a sector of a circle with centre O and radius 13 cm. A is the point on ON and B is the point on OQ such that AOB is an equilateral triangle of side 9 cm. Calculate the area of the shaded region as a percentage of the area of the sector ONQ. Give your answer correct to 1 decimal place.
The area of the shaded region as a percentage of the area of the sector ONQ= 60.3%
What is an equilateral triangle?The shape of an equilateral triangle is an equilateral triangle.
The word "Equilateral" is formed by combining two words. H. "Equi" means equal, "lateral" means side.
Equilateral triangles are also called regular polygons or equilateral triangles because all sides are equal.
In geometry, an equilateral triangle is a triangle with all sides of equal length.
Three sides are equal, so three angles on the same side are equal. Therefore, it is also called an equilateral triangle with each angle of 60 degrees.
Like other types of triangles, equilateral triangles have formulas for area, perimeter, and height.
According to our question-
AB=OA=BO= 9CM
ONQ-AOB/ONQ*100
PUTTING VALUES
60.3%
Hence, The area of the shaded region as a percentage of the area of the sector ONQ= 60.3%
learn more about equilateral triangle click here:
https://brainly.com/question/17264112
#SPJ1