Answer:
their sizes vary
Step-by-step explanation:
their sizes vary
The following figure appears in a math workbook. Students are asked to reflect the polygon across the line, then rotate it 90 degrees clockwise . Which figure shows the result of the two transformations?
Answer:
C
Step-by-step explanation:
tracing paper is your friend
y + x + z =762500
z : x = 15/9 : 2
y : x = 1 : 3/4
Step-by-step explanation:
true
Question
The sum of three consecutive even integers is -312. Find the Integers.
Answer:
-105, -104, -103
Step-by-step explanation:
lets the numbers be:
x
x+1
x+2
so:
x+(x+1)+(x+2)=-312
x+x+x+1+2=-312
3x+3=-312
3x=-312-3=-315
x=-315/3=-105
The data set shows the number of players on each softball team in a tournament:
9
12
8
7
7
21
11
9
8
7
10
7
10
11
Which of the following statements is true based on the data set?
There is one outlier that indicates an unusually large number of players on that team.
There are two outliers that indicate an unusually large number of players on those two teams.
There is one outlier that indicates an unusually small number of players on that team.
There are two outliers that indicate an unusually small number of players on those two teams.
A bank gives you a loan of 1,500,000 Baht to buy a house. The interest rate of the loan is 0.01% per day (Using 1 year = 365 days) How much interest you pay after 10 years
Answer:
547 500
Step-by-step explanation:
Interest for 1 year:
0.01%×365=3.65 a year
3.65×10=36.5% for 10 years
36.5×1,500,000÷100=547 500
The interest paid after 10 years is 547 ,500 Baht.
What is Interest ?Interest is the amount paid or earned when a loan is taken or an investment is done respectively.
It is given that
Principal = 1,500,000 Baht
Rate = 0.01 % per day
Time period = 10 years
Interest = ?
Interest = P *R *T/100
Interest = 1500000 * 0.01 *365* 10 / 100
Interest = 547,500 Baht
Therefore the interest paid after 10 years is 547 ,500 Baht.
To know more about Interest
https://brainly.com/question/13324776
#SPJ2
How do I solve this. Y=f(x)+a moves the function
Answer:
up
Step-by-step explanation:
for linear functions, adding a constant will increase the y value by two and shift the line up two units on the graph.
Answer: It moves the function 'a' units up if a > 0. Or it moves the function |a| units down if a < 0.
Explanation:
Consider an example like y = f(x)+2. This shifts the f(x) curve 2 units up because we're adding 2 to each y or f(x) output. A point like (5,7) shifts up to (5,9).
As another example, y = f(x)-5 moves the curve 5 units down.
In the first example, we had a > 0 which moved the function 'a' units up (a = 2 in that case). The second example had a = -5 which means a < 0, so that's why we shifted |a| = |-5| = 5 units down.
A candy company fills a package of candy with individually wrapped pieces of candy. The number of pieces of candy per package varies because the package is sold by weight. The company wants to estimate the number of pieces per package. Inspectors randomly sample 120 packages of this candy and count the number of pieces in each package. They find that the sample mean number of pieces is 18.72. Assume the population standard deviation of .8735. What is the point estimate of number of pieces per package
Answer:
The point estimate for the number of pieces per package is of 18.72.
Step-by-step explanation:
Point estimate of a population mean:
The mean of the sample gives an estimate for the population mean.
They find that the sample mean number of pieces is 18.72.
This means that the point estimate for the number of pieces per package is of 18.72.
Find all relative extrema of the function. Use the Second Derivative Test where applicable. (If an answer does not exist, enter DNE.)
f(x) = x² + 5x – 2
relative maximum
(x, y) = DNE
relativo minimum
(x, y) =
Answer:
Relative minimum: [tex]\left(-\frac{5}{2}, -\frac{33}{4}\right)[/tex], Relative maximum: [tex]DNE[/tex]
Step-by-step explanation:
First, we obtain the First and Second Derivatives of the polynomic function:
First Derivative
[tex]f'(x) = 2\cdot x + 5[/tex] (1)
Second Derivative
[tex]f''(x) = 2[/tex] (2)
Now, we proceed with the First Derivative Test on (1):
[tex]2\cdot x + 5 = 0[/tex]
[tex]x = -\frac{5}{2}[/tex]
The critical point is [tex]-\frac{5}{2}[/tex].
As the second derivative is a constant function, we know that critical point leads to a minimum by Second Derivative Test, since [tex]f\left(-\frac{5}{2}\right) > 0[/tex].
Lastly, we find the remaining component associated with the critical point by direct evaluation of the function:
[tex]f\left(-\frac{5}{2} \right) = \left(-\frac{5}{2} \right)^{2} + 5\cdot \left(-\frac{5}{2} \right) - 2[/tex]
[tex]f\left(-\frac{5}{2} \right) = -\frac{33}{4}[/tex]
There are relative maxima.
Find all solutions of the equation in the interval [0, 2pi); sqrt(3) * csc(theta) - 2 = 0
Answer:
Step-by-step explanation:
Solution of the equation [tex]\sqrt{3} (cosec\theta) -2=0[/tex]in the [ 0, 2π) is [tex]\frac{\pi }{3}[/tex] and [tex]\frac{2\pi }{3}[/tex].
What is trigonometric ratio?" Trigonometric ratios are defined as relation of the ratio of the sides of the triangle to the acute angle of the given triangle enclosed in it."
Formula used
[tex]cosec\theta = \frac{1}{sin\theta}[/tex]
According to the question,
Given trigonometric ratio equation,
[tex]\sqrt{3} (cosec\theta) -2=0[/tex]
Replace trigonometric ratio [tex]cosec\theta[/tex] by [tex]sin\theta[/tex] in the above equation we get,
[tex]\sqrt{3} (\frac{1}{sin\theta} ) -2=0\\\\\implies \sqrt{3} (\frac{1}{sin\theta} ) = 2\\\\\implies sin\theta=\frac{\sqrt{3} }{2}[/tex]
As per given condition of the interval [ 0, 2π) we have,
[tex]\theta = sin^{-1} \frac{\sqrt{3} }{2} \\\\\ implies \theta = \frac{\pi }{3} or \frac{2\pi }{3}[/tex]
Hence, solution of the equation [tex]\sqrt{3} (cosec\theta) -2=0[/tex]in the [ 0, 2π) is
[tex]\frac{\pi }{3}[/tex] and [tex]\frac{2\pi }{3}[/tex].
Learn more about trigonometric ratio here
https://brainly.com/question/1201366
#SPJ3
Determine the nature of the roots: 4x2 + 13x + 6 = 0
a. no real solutions
b. cannot be determined
C. a unique real solution
two distinct real solutions d. two distinct real solutions
Answer:
D. is the correct option
Discriminant is greater than zero, so the roots are unequal and real.
Step-by-step explanation:
We use discriminant to find the nature of the roots
discriminant formula is, b^2 - 4ac
13^2 (-4) × 4 × 6 = 169-96
73 >0
if discriminant greater than 0 that means the roots are real and unequal.
What is the value of x in the diagram below? If necessary, round your answer
to the nearest tenth of a unit.
9514 1404 393
Answer:
A. 7.2
Step-by-step explanation:
In this geometry, all of the right triangles are similar. This means corresponding sides have the same ratio.
short side/hypotenuse = x/12 = 12/20
Multiplying by 12 gives ...
x = 12(12/20) = 144/20
x = 7.2
p{x:x is a natural number x (9
Answer:
you need a photo my dude
Step-by-step explanation:
The following data was obtained from 32 people aged 25-29 who were asked how many hours of TV they watched per week.
4,2,8,9,4,5,10,11,7,8,3,4,10,3,8,5,1,7,0,4,3,2,2,1,1,0,2,3,5,2,1,1.
Group the data in intervals and record the frequency of each interval as well as the cumulative frequency and relative frequency. Make a table showing this information.
Graph the data using frequency histogram.
Graph the data using a cumulative frequency chart.
Multiply and show work
Answer:
-15m^10 -38m8+57m^6+98m^4-30m^2
Answer:
jere is your answer i hope it will help u
No more than one state of nature can occur at a given time for a chance event. This indicates that the states of nature are defined such that they are
a. conservative events.
b. mutually exclusive.
c. independent outcomes.
d. collectively exhaustive.
Answer:
b. mutually exclusive.
Step-by-step explanation:
The given description is an illustration of mutually exclusive events.
Take for instance, when you roll a die;
It is impossible to have an outcome of 2 and 6 at the same time; these means that 2 and 6 are mutually exclusive.
In a nutshell, when two or more sates of events/states of nature can not happen at the same time; such events/states of nature are mutually exclusive.
7. What is given in the problem?
A. Radius of 80m C. Radius of 80 ft.
B. Diameter of 40 ft. D. Diameter of 40 m paki sagot
Answer:
radius of 80cm is the answer
An unconditional acceptance into a graduate program at a university will be given to students whose GMAT score plus 100 times the undergraduate grade point average is at least 1075. Robbin's GMAT score was 800. What must her grade point average be in order to be unconditionally accepted into the program?
Robbin's grade point average must be at least ___ in order to be unconditionally accepted into the program.
Answer:
Robbin's grade point average must be at least 2.75 in order to be unconditionally accepted into the program.
Step-by-step explanation:
An unconditional acceptance into a graduate program at a university will be given to students whose GMAT score plus 100 times the undergraduate grade point average is at least 1075
Considering the GMAT score x, and the GPA y, this situation is modeled by the following inequality:
[tex]x + 100y \geq 1075[/tex]
Robbin's GMAT score was 800.
This means that [tex]x = 800[/tex], and thus:
[tex]x + 100y \geq 1075[/tex]
[tex]800 + 100y \geq 1075[/tex]
[tex]100y \geq 275[/tex]
What must her grade point average be in order to be unconditionally accepted into the program?
Solving the above inequality for y:
[tex]100y \geq 275[/tex]
[tex]y \geq \frac{275}{100}[/tex]
[tex]y \geq 2.75[/tex]
Thus:
Robbin's grade point average must be at least 2.75 in order to be unconditionally accepted into the program.
help with this please !
Answer:
c
Step-by-step explanation:
Sally bought five books.Their mean price was 3.25. The total cost for four books was 11.75.what was the cost of the fifth book
Answer:
$4.50
Step-by-step explanation:
Use the mean formula: mean = sum of elements / number of elements
Let x represent the cost of the fifth book, and solve for x:
mean = sum of elements / number of elements
3.25 = (11.75 + x) / 5
16.25 = 11.75 + x
4.5 = x
So, the cost of the fifth book was $4.50
Please help me i will give you brainlest
Answer:
x = 14/3
Step-by-step explanation:
9.
The given equation is:
(x-2)+(x-3)+(x-9)=0
After opening the brackets,
x-2+x-3+x-9=0
3x+(-2-3-9) = 0
3x-14=0
x = 14/3
So, the value of x is equal to 14/3.
if a x + B Y is equal to a square minus b square and b x + A Y is equal to zero find the value of x + Y
9514 1404 393
Answer:
a-b
Step-by-step explanation:
Add the two equations together:
(ax +by) +(bx +ay) = (a² -b²) +(0)
x(a +b) +y(a +b) = (a +b)(a -b)
x + y = a - b . . . . . divide by (a+b), assuming a+b ≠ 0
a certain number n is 6 more than a second number and 9 less than a third number. in terms of n, which of the following expressions represents the second number
Answer:
n-6
Step-by-step explanation:
it is given that the first number is n
for the second number:
n is 6 more than a second number
more than means that we should subtract n by 6 to get the second number since n is 6 more than the second number
second number: n-6
What is the slope of (-1,3) and (3,1)
Work Shown:
Apply the slope formula
m = (y2-y1)/(x2-x1)
m = (1-3)/(3-(-1))
m = (1-3)/(3+1)
m = -2/4
m = -1/2 is the slope
In decimal form, this converts to -0.5, though usually slopes are in fraction form.
Chef Amy does beginning inventory on Thursday night and finds that she has $4697 in food products in the restaurant
Throughout the week she purchases:
$668 produce
$2206 meat
$2488 dry goods
$3755 dairy
The following Thursday she does ending inventory and finds that she has $3518 in food.
She looks at her sales and finds that she made $30658 over the same 7 day period.
What is her food cost as a percentage of sales (her food cost percentage)? Please input your answer as a percentage (30%), instead of a decimal (0.3).
Answer:
Her food cost as a percentage of sales is 33.58%.
Step-by-step explanation:
Since Chef Amy does beginning inventory on Thursday night and finds that she has $ 4697 in food products in the restaurant, and throughout the week she purchases:
$ 668 produces
$ 2206 meat
$ 2488 dry goods
$ 3755 dairy
The following Thursday she does ending inventory and finds that she has $ 3518 in food.
She looks at her sales de ella and finds that she made $ 30658 over the same 7 day period.
To determine what her food cost is as a percentage of sales (her food cost percentage), the following calculation must be performed:
4,697 + 668 + 2,206 + 2,488 + 3,755 = 13,814
13,814 - 3,518 = 10,296
30,658 = 100
10,296 = X
10,296 x 100 / 30,658 = X
1,029,600 / 30,658 = X
33.58 = X
Therefore, her food cost as a percentage of sales is 33.58%.
Which would result in a lower price to first discount an item by 10% and then by a further 15%, OR to first discount an item by 15% and then by a further 10%. Justify your reasoning.
Answer:
Neither one. They will both result in the same price.
Step-by-step explanation:
To discount an item 10%, you charge 90% of the price of the item. To find 90% of a price, you multiply the price by 0.9.
To discount an item 15%, you charge 85% of the price of the item. To find 85% of a price, you multiply the price by 0.85.
Since multiplication is commutative, multiplying a number by 0.9 and then by 0.85 is the same as multiplying the number by 0.85 first and then by 0.9.
Let's say the item costs x.
Take off the 10% discount first: 0.9x
Now take off the 15% discount: 0.85 * (0.9x)
Now do it the other way.
Take off the 15% discount first: 0.85x
Now take off the 10% discount: 0.9 * (0.85x)
Since 0.85 * 0.9 * x = 0.9 * 0.85 * x, the results are the same.
Answer: neither
You plan to conduct a survey to find what proportion of the workforce has two or more jobs. You decide on the 95% confidence level and a margin of error of 2%. A pilot survey reveals that 5 of the 50 sampled hold two or more jobs.
How many in the workforce should be interviewed to meet your requirements? (Round up your answer to the next whole number.)
Answer:
865 in the workforce should be interviewed to meet your requirements
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is given by:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
A pilot survey reveals that 5 of the 50 sampled hold two or more jobs.
This means that [tex]\pi = \frac{5}{50} = 0.1[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
How many in the workforce should be interviewed to meet your requirements?
Margin of error of 2%, so n for which M = 0.02.
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.02 = 1.96\sqrt{\frac{0.1*0.9}{n}}[/tex]
[tex]0.02\sqrt{n} = 1.96\sqrt{0.1*0.9}[/tex]
[tex]\sqrt{n} = \frac{1.96\sqrt{0.1*0.9}}{0.02}[/tex]
[tex](\sqrt{n})^2 = (\frac{1.96\sqrt{0.1*0.9}}{0.02})^2[/tex]
[tex]n = 864.4[/tex]
Rounding up:
865 in the workforce should be interviewed to meet your requirements
write the volume formula beside the solid figure
Answer:
cube(v=l×l×l)
cylinder (v= πr^2h)
cone(v=1/3πr^2h)
rectangular prism (v= area of base×lenght)
pyramid (v=1/3×area of base×h)
Step-by-step explanation:
Cube:-a^3
Cuboid:-lbh
Cylinder :-pi r^2h
Cone:-1/3pi r^2h
What is the value of y?
Enter your answer, as an exact value, in the box.
Answer:
y=4√3 units
Step-by-step explanation:
Hi there!
We are given ΔABC, which is a right triangle (m<C=90°), m<A=60°, AB=8, and BC=y
We need to find the value of y (BC)
The side AB is the hypotenuse of the (the side opposite from the right angle).
BC is a leg, which is a side that makes up the right angle.
Now, if we have a right triangle that has one of the acute angles as 60°, the side OPPOSITE from that 60° angle (in this case, BC) is equal to [tex]\frac{a\sqrt{3}}{2}[/tex], where a is the length of the hypotenuse
Since we have the hypotenuse given as 8, the length of BC (y) is [tex]\frac{8\sqrt{3}}{2}[/tex], or 4√3
so y=4√3 units
Hope this helps!
What is the solution to the system of equations graphed below?
Answer:
D
Step-by-step explanation:
The 2 lines intersect at (1, 5)
Answer:
D
Step-by-step explanation:
the line intersects at 1(x-axis)and 5(y-axis)
find the first 3 terms of the sequence below.
Answer:
Step-by-step explanation:
1 - 8
2 - 14
3 - 22
Answer:
8,14,22
Step-by-step explanation:
Tn = n^2 +3n +4
n=1
= 1^2 +3(1) +4
= 1 +3+4
= 8
n=2
= 2^2 +3(2) +4
= 4 +6+4
= 14
n=3
= 3^2 +3(3) +4
= 9 +9+4
= 22